# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("APPL", "NFLX", "GOOG", "NVDA", "GOLD")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(
select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GOOG" "NFLX" "NVDA"
#weights
weights <- c(0.4, 0.35, 0.25)
weights
## [1] 0.40 0.35 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 GOOG 0.4
## 2 NFLX 0.35
## 3 NVDA 0.25
?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.229
## 2 2013-02-28 0.0783
## 3 2013-03-28 0.00205
## 4 2013-04-30 0.0790
## 5 2013-05-31 0.0518
## 6 2013-06-28 -0.0276
## 7 2013-07-31 0.0618
## 8 2013-08-30 0.0401
## 9 2013-09-30 0.0567
## 10 2013-10-31 0.0737
## # ℹ 50 more rows
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute( select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.06
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
actual_fitted_long_tbl <- portfolio_market_returns_tbl %>%
# Linear Regression Modle
lm(portfolio_returns ~ market_returns, data = .) %>%
# Get fitted and actual returns
broom::augment() %>%
# Add date
mutate(date = portfolio_market_returns_tbl$date) %>%
select(date, portfolio_returns, market_returns) %>%
# Transform data to long
pivot_longer(cols = c(portfolio_returns, market_returns),
names_to = "type",
values_to = "returns")
actual_fitted_long_tbl %>%
ggplot(aes(x = date, y = returns, color = type)) +
geom_line()
How sensitive is your portfolio to the market? Discuss in terms of the
beta coefficient. Does the plot confirm the beta coefficient you
calculated?
The beta coefficient shows that my portfolio is slightly more volatile than the market, meaning it reacts more to market changes. This fits with the mix of high-growth tech stocks and Gold for balance. The scatterplot confirms this, showing a strong positive relationship between market and portfolio returns. calculated.