Clean the data
clean_fun <- function(df) { df %>%
transmute(
id,
age,
wave,
sex=as_factor(sex_gen), #make sex_gen as a factor
relstat=as_factor(relstat), #make relstat as a factor
relstat=case_when(relstat== "-7 Incomplete data" ~ as.character(NA), #specify when is missing
TRUE ~ as.character(relstat))%>% as_factor(), #make relstat as a factor again
health=case_when(hlt1<0 ~ as.numeric(NA), #specify when hlt1 is missing
TRUE ~ as.numeric(hlt1)),
sat=case_when(sat6<0 ~ as.numeric(NA), #specify when sat6 is missing
TRUE ~ as.numeric(sat6)),
partner=case_when(relstat %in% c("1 Never married single",
"6 Divorced/separated single",
"9 Widowed single") ~ "No",
# when relstat has any of the situations, I assign "No"
relstat %in% c("2 Never married LAT",
"3 Never married COHAB",
"4 Married COHAB",
"5 Married noncohabiting",
"7 Divorced/separated LAT",
"8 Divorced/separated COHAB",
"10 Widowed LAT",
"11 Widowed COHAB") ~ 'Yes') %>% as_factor()
# when relstat has any of the situations, I assign "Yes"
)%>% drop_na() }
wave1a <- clean_fun(wave1)
wave2a <- clean_fun(wave2)
wave3a <- clean_fun(wave3)
wave4a <- clean_fun(wave4)
wave5a <- clean_fun(wave5)
wave6a <- clean_fun(wave6)