# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NVDA", "AAPL", "AMD", "GOOG", "INTC")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMD" "GOOG" "INTC" "NVDA"
## [1] "NVDA" "AAPL" "AMD" "GOOG" "INTC"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMD 0.25
## 3 GOOG 0.2
## 4 INTC 0.2
## 5 NVDA 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.00164
## 2 2013-02-28 -0.00108
## 3 2013-03-28 0.0152
## 4 2013-04-30 0.0583
## 5 2013-05-31 0.114
## 6 2013-06-28 -0.0279
## 7 2013-07-31 0.0103
## 8 2013-08-30 -0.0323
## 9 2013-09-30 0.0532
## 10 2013-10-31 0.0333
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 0.338
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 AAPL -0.555
## 2 AMD 0.293
## 3 GOOG 0.784
## 4 INTC -0.0321
## 5 NVDA 0.899
## 6 Portfolio 0.338
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
geom_text(aes(label = asset),
vjust = 1.5,
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
## Scatterplot of skewness comparison
# Transform data: calculate rolling skewness
rolling_skew_tbl <- portfolio_returns_tbl %>%
tq_mutate(Select = returns,
mutate_fun = rollapply,
width = 24,
FUN = skewness,
col_rename = "Skew") %>%
select(-returns) %>%
na.omit()
# Plot
rolling_skew_tbl %>%
ggplot(aes(x = date, y = Skew)) +
geom_line(color = "cornflowerblue") +
geom_hline(yintercept = 0, linetype = "dotted", size = 2) +
# Formatting
scale_y_continuous(limits = c(-1,1), breaks = seq(-1,1,0.2)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(y = "Skewness",
x = NULL,
title = "Rolling 24-Month Skewness") +
annotate(geom = "text",
x = as.Date("2016-07-01"), y = 0.8,
color = "red", size = 5,
label = str_glue("The 24-month skewness is positive for about half of the lifetime,
even though the overall skewness is negative"))
Is any asset in your portfolio more likely to return extreme positive
returns than your portfolio collectively? Discuss in terms of skewness.
You may also refer to the distribution of returns you plotted in Code
along 4. Yes in my portfolio Nvidia and Google are both over 0.5 showing
an extreme positive skewness and brings my portfolio up to around 0.25.
This is offset by Apple having a negative skewness of 0.5 respectively
balancing out the skewness if I only had Nvidia for instance and not
both Nvidia and Google. This is reflected by the 24 month rolling
skewness as the graph shows a high postive skewness with only slightly
dipping into the negative skewed range in late 2015 and early 2016. As
well as sipping in the beginning of 2018. Over all giving a positive
return and a high return at that.