Tuliskan latar belakang singkat mengenai analisis survival dan tujuan dari tugas ini.
Analisis survival digunakan untuk memodelkan waktu hingga terjadinya suatu peristiwa. Dalam tugas ini, metode Cox Proportional Hazards diterapkan pada dataset lung / ovarian untuk memahami faktor-faktor yang memengaruhi risiko kejadian.
Silahkan gunakan salah satu dari dua dataset berikut: (i) pilihan pertama:
data(lung)
head(lung)
## inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
## 1 3 306 2 74 1 1 90 100 1175 NA
## 2 3 455 2 68 1 0 90 90 1225 15
## 3 3 1010 1 56 1 0 90 90 NA 15
## 4 5 210 2 57 1 1 90 60 1150 11
## 5 1 883 2 60 1 0 100 90 NA 0
## 6 12 1022 1 74 1 1 50 80 513 0
data(ovarian)
head(ovarian)
## futime fustat age resid.ds rx ecog.ps
## 1 59 1 72.3315 2 1 1
## 2 115 1 74.4932 2 1 1
## 3 156 1 66.4658 2 1 2
## 4 421 0 53.3644 2 2 1
## 5 431 1 50.3397 2 1 1
## 6 448 0 56.4301 1 1 2
summary(lung)
## inst time status age
## Min. : 1.00 Min. : 5.0 Min. :1.000 Min. :39.00
## 1st Qu.: 3.00 1st Qu.: 166.8 1st Qu.:1.000 1st Qu.:56.00
## Median :11.00 Median : 255.5 Median :2.000 Median :63.00
## Mean :11.09 Mean : 305.2 Mean :1.724 Mean :62.45
## 3rd Qu.:16.00 3rd Qu.: 396.5 3rd Qu.:2.000 3rd Qu.:69.00
## Max. :33.00 Max. :1022.0 Max. :2.000 Max. :82.00
## NA's :1
## sex ph.ecog ph.karno pat.karno
## Min. :1.000 Min. :0.0000 Min. : 50.00 Min. : 30.00
## 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.: 75.00 1st Qu.: 70.00
## Median :1.000 Median :1.0000 Median : 80.00 Median : 80.00
## Mean :1.395 Mean :0.9515 Mean : 81.94 Mean : 79.96
## 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.: 90.00 3rd Qu.: 90.00
## Max. :2.000 Max. :3.0000 Max. :100.00 Max. :100.00
## NA's :1 NA's :1 NA's :3
## meal.cal wt.loss
## Min. : 96.0 Min. :-24.000
## 1st Qu.: 635.0 1st Qu.: 0.000
## Median : 975.0 Median : 7.000
## Mean : 928.8 Mean : 9.832
## 3rd Qu.:1150.0 3rd Qu.: 15.750
## Max. :2600.0 Max. : 68.000
## NA's :47 NA's :14
table(lung$status)
##
## 1 2
## 63 165
km_fit <- survfit(Surv(time, status) ~ sex, data = lung)
ggsurvplot(km_fit, data = lung, pval = TRUE, risk.table = TRUE,
surv.median.line = "hv",
title = "Kaplan–Meier Curve by Sex")
survdiff(Surv(time, status) ~ sex, data = lung)
## Call:
## survdiff(formula = Surv(time, status) ~ sex, data = lung)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## sex=1 138 112 91.6 4.55 10.3
## sex=2 90 53 73.4 5.68 10.3
##
## Chisq= 10.3 on 1 degrees of freedom, p= 0.001
fit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, data = lung)
summary(fit)
## Call:
## coxph(formula = Surv(time, status) ~ age + sex + ph.ecog, data = lung)
##
## n= 227, number of events= 164
## (1 observation deleted due to missingness)
##
## coef exp(coef) se(coef) z Pr(>|z|)
## age 0.011067 1.011128 0.009267 1.194 0.232416
## sex -0.552612 0.575445 0.167739 -3.294 0.000986 ***
## ph.ecog 0.463728 1.589991 0.113577 4.083 4.45e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## age 1.0111 0.9890 0.9929 1.0297
## sex 0.5754 1.7378 0.4142 0.7994
## ph.ecog 1.5900 0.6289 1.2727 1.9864
##
## Concordance= 0.637 (se = 0.025 )
## Likelihood ratio test= 30.5 on 3 df, p=1e-06
## Wald test = 29.93 on 3 df, p=1e-06
## Score (logrank) test = 30.5 on 3 df, p=1e-06
ph_test <- cox.zph(fit)
ph_test
## chisq df p
## age 0.188 1 0.66
## sex 2.305 1 0.13
## ph.ecog 2.054 1 0.15
## GLOBAL 4.464 3 0.22
ggcoxzph(ph_test)
ggadjustedcurves(fit, data = lung, variable = "sex",
legend.title = "Sex",
title = "Adjusted Survival Curves by Sex")
Ringkas temuan utama (variabel signifikan dan arah pengaruhnya).
Jelaskan implikasi hasil.
Sebutkan keterbatasan analisis.
| Komponen | Deskripsi | Poin |
|---|---|---|
| Eksplorasi & Deskriptif | Statistik ringkas, Kaplan–Meier plot, uji Log-Rank | 30 |
| Model Cox PH | Estimasi model, interpretasi Hazard Ratio (HR), uji PH, grafik residual | 50 |
| Laporan & Reproducibility | Struktur laporan rapi, interpretasi hasil, dan kode dapat dijalankan ulang tanpa error | 20 |
| Total | 100 |
Therneau, T. M., & Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. Springer.