library(tidyverse)
library(openintro)
population <- ames$Gr.Liv.Area
samp <- sample(population, 60)
samp
## [1] 1210 1764 1513 1567 1082 1341 864 1838 1112 1425 1211 1812 912 1134 1496
## [16] 1262 1253 1340 1355 2322 1694 1652 1760 2495 1876 1734 1226 848 1660 1208
## [31] 1537 2443 1830 2318 1621 1308 3238 2296 2263 1386 1594 1377 1025 1240 2076
## [46] 1713 1989 1280 788 860 1464 1258 2061 1856 1852 2128 951 616 1692 819

## [1] 1547.417
Exercise 1
Describe the distribution of your sample. What would you say is
the “typical” size within your sample? Also state precisely what you
interpreted “typical” to mean.
The distribution has a left skewing slope, centered around the mean
of 1421 square feet for gross living area. There are small amounts of
outliers approaching 6000 square feet on the right tail, and a hard
cutoff of 660 for a minimum. The median gross living area is 1420, which
is right near center in my sample.
Exercise 2
Would you expect another student’s distribution to be identical
to yours? Would you expect it to be similar? Why or why not?
I would expect each sample of 60 to be slightly different
distributions from mine. My sample was nearly exactly center of the
mean, indicating that other students’ samples would be less and more
than my mean, and their minimums and maximums may look different as
well. The general shape, skew, approximate minimums and maximums would
be expected to hold similar interpretations.
Exercise 3
For the confidence interval to be valid, the sample mean must be
normally distributed and have standard error s/√n. What conditions must
be met for this to be true?
The sample observations must be random, and independently chosen from
one another. This is done randomly in the 60 designation of the Rstudio
code. The size of the sample also must be less than 10% of the total
population, ensuring more repeatability that future samples will also be
differentiated from one another. The population was 2930, so a maximum
sample size of 293 would allow for confidence intervals. My sample of 60
lies within this range to satisfy confidence intervals.
# Insert code for Exercise 3 here
sample_mean <-mean(samp)
qnorm(.975)
## [1] 1.959964
se <- sd(samp) / sqrt(60)
lower <- sample_mean - 1.96 * se
upper <- sample_mean + 1.96 * se
c(lower, upper)
## [1] 1420.704 1674.130
Exercise 4
What does “95% confidence” mean?
95 percent confidence interval means that upon repetitions of random
sampling, we would expect 95% of the samples to lie between two
values.
# Insert code for Exercise 4 here
mean(population)
## [1] 1499.69
Exercise 5
Does your confidence interval capture the true average size of
houses in Ames?
My 95% confidence interval was 1306 - 1536 gross living area. The
population mean was found to be 1499. 1499 of the population mean
# Insert code for Exercise 5 here
mean(population)
## [1] 1499.69
LS0tDQp0aXRsZTogIkxhYiAxOiBJbnRybyB0byBSIg0KYXV0aG9yOiAiQ29saW4gSG9mZm1hbiINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogb3BlbmludHJvOjpsYWJfcmVwb3J0DQotLS0NCg0KYGBge3IgbG9hZC1wYWNrYWdlcywgbWVzc2FnZT1GQUxTRX0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShvcGVuaW50cm8pDQpgYGANCg0KYGBge3IgbG9hZC1kYXRhLCBtZXNzYWdlPUZBTFNFLCBpbmNsdWRlPUZ9DQpkb3dubG9hZC5maWxlKCJodHRwOi8vd3d3Lm9wZW5pbnRyby5vcmcvc3RhdC9kYXRhL2FtZXMuUkRhdGEiLCBkZXN0ZmlsZSA9ICJhbWVzLlJEYXRhIikNCmxvYWQoImFtZXMuUkRhdGEiKQ0KYGBgDQoNCg0KYGBge3IgY3JlYXRlLXZhcmlhYmxlc30NCnBvcHVsYXRpb24gPC0gYW1lcyRHci5MaXYuQXJlYQ0Kc2FtcCA8LSBzYW1wbGUocG9wdWxhdGlvbiwgNjApDQpzYW1wDQpoaXN0KHNhbXApDQptZWFuKHNhbXApDQpgYGANCg0KIyMjIEV4ZXJjaXNlIDENCipEZXNjcmliZSB0aGUgZGlzdHJpYnV0aW9uIG9mIHlvdXIgc2FtcGxlLiBXaGF0IHdvdWxkIHlvdSBzYXkgaXMgdGhlIOKAnHR5cGljYWzigJ0gc2l6ZSB3aXRoaW4geW91ciBzYW1wbGU/IEFsc28gc3RhdGUgcHJlY2lzZWx5IHdoYXQgeW91IGludGVycHJldGVkIOKAnHR5cGljYWzigJ0gdG8gbWVhbi4qDQoNClRoZSBkaXN0cmlidXRpb24gaGFzIGEgbGVmdCBza2V3aW5nIHNsb3BlLCBjZW50ZXJlZCBhcm91bmQgdGhlIG1lYW4gb2YgMTQyMSBzcXVhcmUgZmVldCBmb3IgZ3Jvc3MgbGl2aW5nIGFyZWEuIFRoZXJlIGFyZSBzbWFsbCBhbW91bnRzIG9mIG91dGxpZXJzIGFwcHJvYWNoaW5nIDYwMDAgc3F1YXJlIGZlZXQgb24gdGhlIHJpZ2h0IHRhaWwsIGFuZCBhIGhhcmQgY3V0b2ZmIG9mIDY2MCBmb3IgYSBtaW5pbXVtLiBUaGUgbWVkaWFuIGdyb3NzIGxpdmluZyBhcmVhIGlzIDE0MjAsIHdoaWNoIGlzIHJpZ2h0IG5lYXIgY2VudGVyIGluIG15IHNhbXBsZS4gDQoNCg0KIyMjIEV4ZXJjaXNlIDINCipXb3VsZCB5b3UgZXhwZWN0IGFub3RoZXIgc3R1ZGVudOKAmXMgZGlzdHJpYnV0aW9uIHRvIGJlIGlkZW50aWNhbCB0byB5b3Vycz8gV291bGQgeW91IGV4cGVjdCBpdCB0byBiZSBzaW1pbGFyPyBXaHkgb3Igd2h5IG5vdD8qDQoNCkkgd291bGQgZXhwZWN0IGVhY2ggc2FtcGxlIG9mIDYwIHRvIGJlIHNsaWdodGx5IGRpZmZlcmVudCBkaXN0cmlidXRpb25zIGZyb20gbWluZS4gTXkgc2FtcGxlIHdhcyBuZWFybHkgZXhhY3RseSBjZW50ZXIgb2YgdGhlIG1lYW4sIGluZGljYXRpbmcgdGhhdCBvdGhlciBzdHVkZW50cycgc2FtcGxlcyB3b3VsZCBiZSBsZXNzIGFuZCBtb3JlIHRoYW4gbXkgbWVhbiwgYW5kIHRoZWlyIG1pbmltdW1zIGFuZCBtYXhpbXVtcyBtYXkgbG9vayBkaWZmZXJlbnQgYXMgd2VsbC4gVGhlIGdlbmVyYWwgc2hhcGUsIHNrZXcsIGFwcHJveGltYXRlIG1pbmltdW1zIGFuZCBtYXhpbXVtcyB3b3VsZCBiZSBleHBlY3RlZCB0byBob2xkIHNpbWlsYXIgaW50ZXJwcmV0YXRpb25zLiANCg0KDQojIyMgRXhlcmNpc2UgMw0KKkZvciB0aGUgY29uZmlkZW5jZSBpbnRlcnZhbCB0byBiZSB2YWxpZCwgdGhlIHNhbXBsZSBtZWFuIG11c3QgYmUgbm9ybWFsbHkgZGlzdHJpYnV0ZWQgYW5kIGhhdmUgc3RhbmRhcmQgZXJyb3IgIHMv4oiabi4gV2hhdCBjb25kaXRpb25zIG11c3QgYmUgbWV0IGZvciB0aGlzIHRvIGJlIHRydWU/Kg0KDQpUaGUgc2FtcGxlIG9ic2VydmF0aW9ucyBtdXN0IGJlIHJhbmRvbSwgYW5kIGluZGVwZW5kZW50bHkgY2hvc2VuIGZyb20gb25lIGFub3RoZXIuIFRoaXMgaXMgZG9uZSByYW5kb21seSBpbiB0aGUgNjAgZGVzaWduYXRpb24gb2YgdGhlIFJzdHVkaW8gY29kZS4gVGhlIHNpemUgb2YgdGhlIHNhbXBsZSBhbHNvIG11c3QgYmUgbGVzcyB0aGFuIDEwJSBvZiB0aGUgdG90YWwgcG9wdWxhdGlvbiwgZW5zdXJpbmcgbW9yZSByZXBlYXRhYmlsaXR5IHRoYXQgZnV0dXJlIHNhbXBsZXMgd2lsbCBhbHNvIGJlIGRpZmZlcmVudGlhdGVkIGZyb20gb25lIGFub3RoZXIuIFRoZSBwb3B1bGF0aW9uIHdhcyAyOTMwLCBzbyBhIG1heGltdW0gc2FtcGxlIHNpemUgb2YgMjkzIHdvdWxkIGFsbG93IGZvciBjb25maWRlbmNlIGludGVydmFscy4gTXkgc2FtcGxlIG9mIDYwIGxpZXMgd2l0aGluIHRoaXMgcmFuZ2UgdG8gc2F0aXNmeSBjb25maWRlbmNlIGludGVydmFscy4gDQoNCmBgYHtyIHNhbXAtbWVhbn0NCg0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgMyBoZXJlDQpzYW1wbGVfbWVhbiA8LW1lYW4oc2FtcCkNCnFub3JtKC45NzUpDQpzZSA8LSBzZChzYW1wKSAvIHNxcnQoNjApDQpsb3dlciA8LSBzYW1wbGVfbWVhbiAtIDEuOTYgKiBzZQ0KdXBwZXIgPC0gc2FtcGxlX21lYW4gKyAxLjk2ICogc2UNCmMobG93ZXIsIHVwcGVyKQ0KYGBgDQojIyMgRXhlcmNpc2UgNA0KKldoYXQgZG9lcyDigJw5NSUgY29uZmlkZW5jZeKAnSBtZWFuPyoNCg0KOTUgcGVyY2VudCBjb25maWRlbmNlIGludGVydmFsIG1lYW5zIHRoYXQgdXBvbiByZXBldGl0aW9ucyBvZiByYW5kb20gc2FtcGxpbmcsIHdlIHdvdWxkIGV4cGVjdCA5NSUgb2YgdGhlIHNhbXBsZXMgdG8gbGllIGJldHdlZW4gdHdvIHZhbHVlcy4NCg0KYGBge3IgY29uZi1pbnR9DQoNCiMgSW5zZXJ0IGNvZGUgZm9yIEV4ZXJjaXNlIDQgaGVyZQ0KbWVhbihwb3B1bGF0aW9uKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDUNCipEb2VzIHlvdXIgY29uZmlkZW5jZSBpbnRlcnZhbCBjYXB0dXJlIHRoZSB0cnVlIGF2ZXJhZ2Ugc2l6ZSBvZiBob3VzZXMgaW4gQW1lcz8qDQoNCk15IDk1JSBjb25maWRlbmNlIGludGVydmFsIHdhcyAxMzA2IC0gMTUzNiBncm9zcyBsaXZpbmcgYXJlYS4gVGhlIHBvcHVsYXRpb24gbWVhbiB3YXMgZm91bmQgdG8gYmUgMTQ5OS4gMTQ5OSBvZiB0aGUgcG9wdWxhdGlvbiBtZWFuIA0KDQpgYGB7cn0NCg0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNSBoZXJlDQptZWFuKHBvcHVsYXRpb24pDQoNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSA2OiBFWFRSQSBDUkVESVQNCg0KKkVhY2ggc3R1ZGVudCBpbiB5b3VyIGNsYXNzIHNob3VsZCBoYXZlIGdvdHRlbiBhIHNsaWdodGx5IGRpZmZlcmVudCBjb25maWRlbmNlIGludGVydmFsLiBXaGF0IHByb3BvcnRpb24gb2YgdGhvc2UgaW50ZXJ2YWxzIHdvdWxkIHlvdSBleHBlY3QgdG8gY2FwdHVyZSB0aGUgdHJ1ZSBwb3B1bGF0aW9uIG1lYW4/IFdoeT8qDQoNCkkgd291bGQgZXhwZWN0IDk1JSBvZiB0aGUgcmVzcG9uc2VzIHRvIGNvbnRhaW4gdGhlIHRydWUgcG9wdWxhdGlvbiBtZWFuIG9mIDE0OTkuIFRoaXMgd291bGQgbWVhbiB0aGF0IDE5IG9mIDIwIHN0dWRlbnRzIHdvdWxkIGhhdmUgY29uZmlkZW5jZSBpbnRlcnZhbHMgY29udGFpbmluZyB0aGUgcG9wdWxhdGlvbiBtZWFuLiAxIGluIDIwIHN0dWRlbnRzIGNvdWxkIGJlIGV4cGVjdGVkIHRvIGhhdmUgdGFrZW4gYSBzYW1wbGUgdGhhdCB5aWVsZHMgYSBjb25maWRlbmNlIGludGVydmFsIHRoYXQgZG9lcyBub3QgaW5jbHVkZSB0aGUgdHJ1ZSBwb3B1bGF0aW9uIG1lYW4uIA0KDQoNCg0KDQoNCg==