Objective:
You will use R to analyze the built-in airquality dataset, applying descriptive statistics techniques to explore environmental data. The assignment covers measures of central tendency, spread, histograms, boxplots, scatterplots, correlations, and summary tables, aligning with the Week 6 agenda on Descriptive Statistics.
Dataset
Source: Built-in R dataset airquality.
Description: Contains 153 observations of daily air quality measurements in New York from May to September 1973.
Variables (selected for this assignment):
Notes
-The airquality dataset has missing values in Ozone and Solar.R. The code uses na.rm = TRUE or use = “complete.obs” to handle them.
-If you encounter errors, check that tidyverse and corrplot are installed and loaded.
-Feel free to modify plot aesthetics (e.g., colors, binwidth) to enhance clarity.
Instructions:
Complete the following tasks using R to analyze the airquality dataset. Submit your Rpubs link that includes code, outputs (tables and plots), and written interpretations for each task. Ensure you load the dataset using data(airquality) and install/load the tidyverse and corrplot packages.
#Load your dataset
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(corrplot)
## corrplot 0.95 loaded
data("airquality")
airquality
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6
## 7 23 299 8.6 65 5 7
## 8 19 99 13.8 59 5 8
## 9 8 19 20.1 61 5 9
## 10 NA 194 8.6 69 5 10
## 11 7 NA 6.9 74 5 11
## 12 16 256 9.7 69 5 12
## 13 11 290 9.2 66 5 13
## 14 14 274 10.9 68 5 14
## 15 18 65 13.2 58 5 15
## 16 14 334 11.5 64 5 16
## 17 34 307 12.0 66 5 17
## 18 6 78 18.4 57 5 18
## 19 30 322 11.5 68 5 19
## 20 11 44 9.7 62 5 20
## 21 1 8 9.7 59 5 21
## 22 11 320 16.6 73 5 22
## 23 4 25 9.7 61 5 23
## 24 32 92 12.0 61 5 24
## 25 NA 66 16.6 57 5 25
## 26 NA 266 14.9 58 5 26
## 27 NA NA 8.0 57 5 27
## 28 23 13 12.0 67 5 28
## 29 45 252 14.9 81 5 29
## 30 115 223 5.7 79 5 30
## 31 37 279 7.4 76 5 31
## 32 NA 286 8.6 78 6 1
## 33 NA 287 9.7 74 6 2
## 34 NA 242 16.1 67 6 3
## 35 NA 186 9.2 84 6 4
## 36 NA 220 8.6 85 6 5
## 37 NA 264 14.3 79 6 6
## 38 29 127 9.7 82 6 7
## 39 NA 273 6.9 87 6 8
## 40 71 291 13.8 90 6 9
## 41 39 323 11.5 87 6 10
## 42 NA 259 10.9 93 6 11
## 43 NA 250 9.2 92 6 12
## 44 23 148 8.0 82 6 13
## 45 NA 332 13.8 80 6 14
## 46 NA 322 11.5 79 6 15
## 47 21 191 14.9 77 6 16
## 48 37 284 20.7 72 6 17
## 49 20 37 9.2 65 6 18
## 50 12 120 11.5 73 6 19
## 51 13 137 10.3 76 6 20
## 52 NA 150 6.3 77 6 21
## 53 NA 59 1.7 76 6 22
## 54 NA 91 4.6 76 6 23
## 55 NA 250 6.3 76 6 24
## 56 NA 135 8.0 75 6 25
## 57 NA 127 8.0 78 6 26
## 58 NA 47 10.3 73 6 27
## 59 NA 98 11.5 80 6 28
## 60 NA 31 14.9 77 6 29
## 61 NA 138 8.0 83 6 30
## 62 135 269 4.1 84 7 1
## 63 49 248 9.2 85 7 2
## 64 32 236 9.2 81 7 3
## 65 NA 101 10.9 84 7 4
## 66 64 175 4.6 83 7 5
## 67 40 314 10.9 83 7 6
## 68 77 276 5.1 88 7 7
## 69 97 267 6.3 92 7 8
## 70 97 272 5.7 92 7 9
## 71 85 175 7.4 89 7 10
## 72 NA 139 8.6 82 7 11
## 73 10 264 14.3 73 7 12
## 74 27 175 14.9 81 7 13
## 75 NA 291 14.9 91 7 14
## 76 7 48 14.3 80 7 15
## 77 48 260 6.9 81 7 16
## 78 35 274 10.3 82 7 17
## 79 61 285 6.3 84 7 18
## 80 79 187 5.1 87 7 19
## 81 63 220 11.5 85 7 20
## 82 16 7 6.9 74 7 21
## 83 NA 258 9.7 81 7 22
## 84 NA 295 11.5 82 7 23
## 85 80 294 8.6 86 7 24
## 86 108 223 8.0 85 7 25
## 87 20 81 8.6 82 7 26
## 88 52 82 12.0 86 7 27
## 89 82 213 7.4 88 7 28
## 90 50 275 7.4 86 7 29
## 91 64 253 7.4 83 7 30
## 92 59 254 9.2 81 7 31
## 93 39 83 6.9 81 8 1
## 94 9 24 13.8 81 8 2
## 95 16 77 7.4 82 8 3
## 96 78 NA 6.9 86 8 4
## 97 35 NA 7.4 85 8 5
## 98 66 NA 4.6 87 8 6
## 99 122 255 4.0 89 8 7
## 100 89 229 10.3 90 8 8
## 101 110 207 8.0 90 8 9
## 102 NA 222 8.6 92 8 10
## 103 NA 137 11.5 86 8 11
## 104 44 192 11.5 86 8 12
## 105 28 273 11.5 82 8 13
## 106 65 157 9.7 80 8 14
## 107 NA 64 11.5 79 8 15
## 108 22 71 10.3 77 8 16
## 109 59 51 6.3 79 8 17
## 110 23 115 7.4 76 8 18
## 111 31 244 10.9 78 8 19
## 112 44 190 10.3 78 8 20
## 113 21 259 15.5 77 8 21
## 114 9 36 14.3 72 8 22
## 115 NA 255 12.6 75 8 23
## 116 45 212 9.7 79 8 24
## 117 168 238 3.4 81 8 25
## 118 73 215 8.0 86 8 26
## 119 NA 153 5.7 88 8 27
## 120 76 203 9.7 97 8 28
## 121 118 225 2.3 94 8 29
## 122 84 237 6.3 96 8 30
## 123 85 188 6.3 94 8 31
## 124 96 167 6.9 91 9 1
## 125 78 197 5.1 92 9 2
## 126 73 183 2.8 93 9 3
## 127 91 189 4.6 93 9 4
## 128 47 95 7.4 87 9 5
## 129 32 92 15.5 84 9 6
## 130 20 252 10.9 80 9 7
## 131 23 220 10.3 78 9 8
## 132 21 230 10.9 75 9 9
## 133 24 259 9.7 73 9 10
## 134 44 236 14.9 81 9 11
## 135 21 259 15.5 76 9 12
## 136 28 238 6.3 77 9 13
## 137 9 24 10.9 71 9 14
## 138 13 112 11.5 71 9 15
## 139 46 237 6.9 78 9 16
## 140 18 224 13.8 67 9 17
## 141 13 27 10.3 76 9 18
## 142 24 238 10.3 68 9 19
## 143 16 201 8.0 82 9 20
## 144 13 238 12.6 64 9 21
## 145 23 14 9.2 71 9 22
## 146 36 139 10.3 81 9 23
## 147 7 49 10.3 69 9 24
## 148 14 20 16.6 63 9 25
## 149 30 193 6.9 70 9 26
## 150 NA 145 13.2 77 9 27
## 151 14 191 14.3 75 9 28
## 152 18 131 8.0 76 9 29
## 153 20 223 11.5 68 9 30
Tasks and Questions
Using functions you learned this week, compute mean, median, standard deviation, min, and max separately for Ozone, Temp, and Wind.
#Your code for Ozone goes here
Ozone_summary<- airquality |>
summarise(mean_ozone = mean(Ozone, na.rm=T),
median_ozone = median(Ozone, na.rm=T),
sd_ozone = sd(Ozone, na.rm =T),
min_ozone = min(Ozone, na.rm = T),
max_ozone = max(Ozone, na.rm = T))
Ozone_summary
## mean_ozone median_ozone sd_ozone min_ozone max_ozone
## 1 42.12931 31.5 32.98788 1 168
#Your code for Temp goes here
temp_summary<- airquality |>
summarise(mean_temp = mean(Temp, na.rm=T),
median_temp = median(Temp, na.rm=T),
sd_temp = sd(Temp, na.rm =T),
min_temp = min(Temp, na.rm = T),
max_temp = max(Temp, na.rm = T))
temp_summary
## mean_temp median_temp sd_temp min_temp max_temp
## 1 77.88235 79 9.46527 56 97
#Your code for Wind goes here
Wind_summary<- airquality |>
summarise(mean_wind = mean(Wind, na.rm=T),
median_wind = median(Wind, na.rm=T),
sd_wind = sd(Wind, na.rm =T),
min_wind = min(Wind, na.rm = T),
max_wind = max(Wind, na.rm = T))
Wind_summary
## mean_wind median_wind sd_wind min_wind max_wind
## 1 9.957516 9.7 3.523001 1.7 20.7
Question: Compare the mean and median for each variable. Are they similar or different, and what does this suggest about the distribution (e.g., skewness)? What does the standard deviation indicate about variability?
The mean and the median are different for each one of the variables, which suggest that distribution for one of these variables is skewed. For example, the mean value for Wind is 9,957516 and the median is 9,7. As a result, we can conclude that the distribution of Wind is slightly skewed right–meaning a few high values might have influenced the mean.
In terms of variability, the standard deviation indicates how spread the data points are from the mean.
Generate the histogram for Ozone.
#Your code goes here
library(ggplot2)
ggplot(airquality, aes(x = Ozone)) +
geom_histogram(binwidth = 15, fill = "#1f77b4", color = "black") +
labs(title = "Ozone distribution", x = "Ozone concentration", y = "Frequency") +
theme_minimal()
Question: Describe the shape of the ozone distribution (e.g., normal, skewed, unimodal). Are there any outliers or unusual features?
The ozone distribution is skewed-right, which means that the smaller values have a higher concentration. It is to notate that there are a few outliers.
Create a boxplot of ozone levels (Ozone) by month, with months
displayed as names (May, June, July, August, September) instead of
numbers (5–9).Recode the Month variable into a new column called
month_name with month names using case_when
from week 4.Generate a boxplot of Ozone by month_name.
# Your code here
airquality <- airquality |>
mutate(month_name = case_when(
Month == 5 ~ "May",
Month == 6 ~ "June",
Month == 7 ~ "July",
Month == 8 ~ "August",
Month == 9 ~ "September"
))
ggplot(airquality, aes(x=month_name, y=Ozone))+
geom_boxplot(fill="green", color="black")+
labs(x="Month", y="Ozone level", title = "Distribution of ozone level per month")+
theme_classic()
Question: How do ozone levels vary across months? Which month has the highest median ozone? Are there outliers in any month, and what might they indicate?
The ozone level significantly differ across the months. The distributions for august, june, and september is more concentrated while the distributions for august and july has a wider spread. With a value slightly above 50, july has the highest median value. Also, outliers are observable for all the distributions except july. we can say that these outliers indicate that the level of ozone might be significantly higher some days than it usually is.
Produce the scatterplot of Temp vs. Ozone, colored by Month.
# Your code goes here
ggplot(airquality, aes(x=Temp,y=Ozone, color=Month))+
geom_point()+
labs(x="Daily temperature", y="Ozone concentration", title="Temperature vs ozone concentration", color="Month")+
theme_minimal()
Question: Is there a visible relationship between temperature and ozone levels? Do certain months cluster together (e.g., higher ozone in warmer months)? Describe any patterns.
From the visual obtained, the level of ozone rises as the temperature increases. As a result, we can conclude that there’s a positive relationship between the two variables.
Compute and visualize the correlation matrix for Ozone, Temp, and Wind.
# Your code goes here
cor_matrix <- cor(
airquality |>
select(Ozone, Temp, Wind), use = "complete.obs")
corrplot(cor_matrix, method = "color", type = "upper", order = "hclust",
tl.col = "black", tl.srt = 45, addCoef.col = "black",
title = "Correlation Matrix of Ozone, tempe, and Wind")
Question: Identify the strongest and weakest correlations. For example, is ozone more strongly correlated with temperature or wind speed? Explain what the correlation values suggest about relationships between variables.
The strongest correlation is between Ozone and temp with a coefficient of 0.7, and the weakest correlation is between wind and temp with a coefficient of -0.51. These values, respectively, suggest that there is a positive correlation and a negative correlation.
Generate the summary table grouped by Month.Generate the summary table grouped by Month. It should include count, average mean of ozone, average mean of temperature, and average mean of wind per month.
# your code goes here
summary_table<- airquality |>
group_by(month_name)|>
summarise(avg_ozone = mean(Ozone, na.rm=T),
avg_temp = mean(Temp, na.rm=T),
Avg_Wind = mean(Wind, na.rm = T),
count = n())
summary_table
## # A tibble: 5 × 5
## month_name avg_ozone avg_temp Avg_Wind count
## <chr> <dbl> <dbl> <dbl> <int>
## 1 August 60.0 84.0 8.79 31
## 2 July 59.1 83.9 8.94 31
## 3 June 29.4 79.1 10.3 30
## 4 May 23.6 65.5 11.6 31
## 5 September 31.4 76.9 10.2 30
Submission Requirements
Publish it to Rpubs and submit your link on blackboard