Activity 3.1 - SVD

SUBMISSION INSTRUCTIONS

  1. Render to html
  2. Publish your html to RPubs
  1. Submit a link to your published solutions

Problem 1

Reconsider the US air pollution data set:

library(HSAUR2)
Loading required package: tools
data(USairpollution)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

A)

Perform singular value decomposition of this data matrix. Then create the matrix \(D\). Describe what this matrix looks like.

X <- as.matrix (USairpollution)
components <- svd(X)
U <- components$u
d <- components$d
V <- components$v

d %>% round (2)
[1] 7051.95  931.12  540.46   92.71   85.24   52.95   10.14
X_scaled <- scale(X)
X_svd <- svd(X_scaled)
U <- X_svd$u
D<- diag(X_svd$d)
V <- X_svd$v

The matrix D is pxp diagonal matrix of the singular values. It’s the lower - dimension representation of what X looks like, and requires fewer numbers stored in memory.

B)

Verify that \(X=UDV^T\) by plotting all the entries of \(X\) versus all the entries of \(UDV^T\) with the 0/1 line.

r <- length (d)
D <- diag(d)
X_reconstructed <- U[, 1:r] %*% D %*% t(V[, 1:r])

UDVt_df <- data.frame(U %% diag(D) %% t(V)) base_canvas + geom_point (aes(x = X1, y= X2), data = UDVt_df, size = 0.2)

C)

Consider low-dimensional approximations of the data matrix. What is the fewest number of dimensions required to yield a correlation between the entries of \(X\) and \(\tilde X\) of at least 0.9?

Answer: 3.

D)

Find \(\Sigma\), the covariance matrix of this data set. Then perform eigen-decomposition of this matrix. Verify that

  • The eigenvectors of \(\Sigma\) equal the columns of \(V\)
  • The eigenvalues of \(\Sigma\) equal the diagonals of \(D^2/(n-1)\)
Sigma <- cov(X)
Sigma
                SO2        temp        manu       popul        wind
SO2      550.947561  -73.560671   8527.7201   6711.9945   3.1753049
temp     -73.560671   52.239878   -773.9713   -262.3496  -3.6113537
manu    8527.720122 -773.971341 317502.8902 311718.8140 191.5481098
popul   6711.994512 -262.349634 311718.8140 335371.8939 175.9300610
wind       3.175305   -3.611354    191.5481    175.9301   2.0410244
precip    15.001799   32.862988   -215.0199   -178.0529  -0.2185311
predays  229.929878  -82.426159   1968.9598    645.9860   6.2143902
              precip    predays
SO2       15.0017988  229.92988
temp      32.8629884  -82.42616
manu    -215.0199024 1968.95976
popul   -178.0528902  645.98598
wind      -0.2185311    6.21439
precip   138.5693840  154.79290
predays  154.7929024  702.59024
eigen(cor(X))$vector[,1]
[1]  0.4896988171 -0.3153706901  0.5411687028  0.4875881115  0.2498749284
[6]  0.0001873122  0.2601790729
X_scaled <- scale(X)
V <- svd(X_scaled)$v
V[,1]
[1] -0.4896988171  0.3153706901 -0.5411687028 -0.4875881115 -0.2498749284
[6] -0.0001873122 -0.2601790729

^^ both are matching - eigenvectors of sigma = columns of V except there’s negatives in the columns of V, not sure if I did the code correct.

PCs <- U %*% D
head (PCs, 3)
           [,1]       [,2]      [,3]      [,4]      [,5]       [,6]       [,7]
[1,]   22.86095 -107.60561  96.69918 17.522931 -4.903813 -0.9515431 -1.3335429
[2,] 1211.42817  326.75315  86.23811  4.439285 -4.622188 -7.0685433 -0.2032449
[3,]  412.46535  -75.45218 -70.63299 -3.005908 -2.535158  2.5848154  0.7051583
PCs <- X_scaled %*% V
head(PCs, 3)
                  [,1]       [,2]       [,3]       [,4]       [,5]        [,6]
Albany      0.03386467 -0.8988407  1.3365024  1.1290021 -0.2142696 -0.03599522
Albuquerque 1.79452779  2.7294026  1.1919175  0.2860230 -0.2019642 -0.26739069
Atlanta     0.61099829 -0.6302598 -0.9762353 -0.1936706 -0.1107725  0.09777906
                   [,7]
Albany      -0.13284885
Albuquerque -0.02024746
Atlanta      0.07024856
(PCs 
%>% data.frame()
%>% summarize (across(everything(), var))
)
       X1       X2       X3        X4        X5        X6         X7
1 2.72812 1.512335 1.394973 0.8919913 0.3467787 0.1002876 0.02551493
R <-cor(X)
eigen(R)$values
[1] 2.72811968 1.51233485 1.39497299 0.89199129 0.34677866 0.10028759 0.02551493

EigenValues and Varience of PC’s are exactly equal.

Problem 2

In this problem we explore how “high” a low-dimensional SVD approximation of an image has to be before you can recognize it.

.Rdata objects are essentially R workspace memory snapshots that, when loaded, load any type of R object that you want into your global environment. The command below, when executed, will load three objects into your memory: mysteryU4, mysteryD4, and mysteryV4. These are the first \(k\) vectors and singular values of an SVD I performed on a 700-pixels-tall \(\times\) 600-pixels-wide image of a well-known villain.

load('/Users/rosagomez/Desktop/DSCI 415/Data/mystery_person_k4.Rdata')

A)

Write a function that takes SVD ingredients u, d and v and renders the \(700 \times 600\) image produced by this approximation using functions from the magick package. Use your function to determine whether a 4-dimensional approximation to this image is enough for you to tell who the mystery villain is. Recall that you will likely need to rescale your recomposed approximation so that all pixels are in [0,1].

library (magick)
Linking to ImageMagick 6.9.13.29
Enabled features: cairo, fontconfig, freetype, heic, lcms, pango, raw, rsvg, webp
Disabled features: fftw, ghostscript, x11
show_svd_image <- function(u, d, v, k = length(d),
                           img_height = nrow(u),
                           img_width  = nrow(v),
                           main_title   = NULL) {

  Dk <- diag(d[1:k], nrow = k, ncol = k)
  Xk <- u[, 1:k] %*% Dk %*% t(v[, 1:k])
  

  Xk_rescaled <- (Xk - min(Xk)) / (max(Xk) - min(Xk))
  

  image(t(Xk_rescaled[nrow(Xk_rescaled):1, ]),
        col   = gray(seq(0, 1, length = 256)),
        axes  = FALSE,
        main  = if (is.null(main_title)) {
                  paste("k =", k, "approximation")
                } else main_title)
}
show_svd_image(mysteryU4, mysteryD4, mysteryV4, k=4,
               main_title= "4D SVD approx. ")

B)

I’m giving you slightly higher-dimensional approximations (\(k=10\) and \(k=50\), respectively) in the objects below:

load('/Users/rosagomez/Desktop/DSCI 415/Data/mystery_person_k10.Rdata')
load('/Users/rosagomez/Desktop/DSCI 415/Data/mystery_person_k50.Rdata')

Create both of the images produced by these approximations. At what point can you tell who the mystery villain is?

show_svd_image(mysteryU10, mysteryD10, mysteryV10, k=10,
               main_title =" K10 approx")

show_svd_image(mysteryU50, mysteryD50, mysteryV50,
               k=50,
               main_title = "Dr. Todd?")

C)

How many numbers need to be stored in memory for each of the following:

  • A full \(700\times 600\) image?
  • A 4-dimensional approximation?
  • A 10-dimensional approximation?
  • A 50-dimensional approximation?

full 700x600 image =

700 * 600 = 420,000 numbers

4D = 700 *4 = 2800,

600 *4 = 2400

2800 + 2400 + 4 = 5204 numbers

10D =

700 * 10 = 7000

600 * 10 = 6000

6000 + 7000 + 10 = 13,010 numbers

50D =

700 * 50 = 35,000

600 * 50 = 30,000

35,000 + 30,000 + 50 = 65,050 numbers