1 Load Libraries

2 Load Data

2.1 Missing Data

2.2 Attention Checks

3 Measure Checking

3.1 Source Credibility

3.1.1 EFA

##        vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## Q27_1*    1 184 3.92 1.18      4    3.95 1.48   1   6     5 -0.23    -0.26 0.09
## Q27_2*    2 184 3.94 1.44      4    3.95 1.48   1   7     6 -0.05    -0.41 0.11
## Q27_3*    3 184 3.87 1.36      4    3.86 1.48   1   7     6 -0.02    -0.22 0.10
## Q27_4*    4 184 4.64 1.43      5    4.66 1.48   1   7     6 -0.25    -0.55 0.11
## Q27_5*    5 184 5.01 1.36      5    5.07 1.48   1   7     6 -0.37    -0.26 0.10
## Q27_6*    6 184 3.98 1.21      4    3.99 1.48   1   6     5 -0.12    -0.25 0.09
## Q94_1*    7 184 4.70 1.37      5    4.71 1.48   1   7     6 -0.19    -0.57 0.10
## Q94_2*    8 184 4.41 1.50      4    4.43 1.48   1   7     6 -0.10    -0.57 0.11
## Q94_3*    9 184 4.59 1.32      5    4.63 1.48   1   7     6 -0.28    -0.16 0.10

## 
## Call:
## factanal(x = d, factors = 1, rotation = "promax")
## 
## Uniquenesses:
## Unintelligent : Intelligent         Untrained : Trained 
##                       0.287                       0.353 
##           Inexpert : Expert       Uninformed : Informed 
##                       0.392                       0.226 
##     Incompetent : Competent             Stupid : Bright 
##                       0.280                       0.283 
##          Dishonest : Honest Untrustworthy : Trustworthy 
##                       0.224                       0.205 
##    Dishonorable : Honorable 
##                       0.269 
## 
## Loadings:
## [1] 0.844 0.804 0.780 0.880 0.849 0.847 0.881 0.892 0.855
## 
##                Factor1
## SS loadings       6.48
## Proportion Var    0.72
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 298.38 on 27 degrees of freedom.
## The p-value is 1.52e-47
## 
## Call:
## factanal(x = d, factors = 2, rotation = "promax")
## 
## Uniquenesses:
## Unintelligent : Intelligent         Untrained : Trained 
##                       0.217                       0.372 
##           Inexpert : Expert       Uninformed : Informed 
##                       0.408                       0.200 
##     Incompetent : Competent             Stupid : Bright 
##                       0.220                       0.202 
##          Dishonest : Honest Untrustworthy : Trustworthy 
##                       0.155                       0.055 
##    Dishonorable : Honorable 
##                       0.234 
## 
## Loadings:
##                             Factor1 Factor2
## Unintelligent : Intelligent  0.916         
## Uninformed : Informed        0.753         
## Incompetent : Competent      0.859         
## Stupid : Bright              0.917         
## Dishonest : Honest                   0.835 
## Untrustworthy : Trustworthy          1.019 
## Dishonorable : Honorable             0.731 
## Untrained : Trained          0.465         
## Inexpert : Expert            0.497         
## 
##                Factor1 Factor2
## SS loadings      3.489   2.526
## Proportion Var   0.388   0.281
## Cumulative Var   0.388   0.668
## 
## Factor Correlations:
##         Factor1 Factor2
## Factor1   1.000   0.829
## Factor2   0.829   1.000
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 156.68 on 19 degrees of freedom.
## The p-value is 1.12e-23

## 
## Call:
## factanal(x = d, factors = 1, rotation = "promax")
## 
## Uniquenesses:
## Unintelligent : Intelligent       Uninformed : Informed 
##                       0.305                       0.241 
##     Incompetent : Competent             Stupid : Bright 
##                       0.271                       0.268 
##          Dishonest : Honest Untrustworthy : Trustworthy 
##                       0.205                       0.204 
##    Dishonorable : Honorable 
##                       0.251 
## 
## Loadings:
## [1] 0.834 0.871 0.854 0.855 0.892 0.892 0.866
## 
##                Factor1
## SS loadings      5.256
## Proportion Var   0.751
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 167.68 on 14 degrees of freedom.
## The p-value is 2.02e-28
## 
## Call:
## factanal(x = d, factors = 2, rotation = "promax")
## 
## Uniquenesses:
## Unintelligent : Intelligent       Uninformed : Informed 
##                       0.245                       0.211 
##     Incompetent : Competent             Stupid : Bright 
##                       0.202                       0.172 
##          Dishonest : Honest Untrustworthy : Trustworthy 
##                       0.130                       0.086 
##    Dishonorable : Honorable 
##                       0.218 
## 
## Loadings:
##                             Factor1 Factor2
## Unintelligent : Intelligent  0.823         
## Uninformed : Informed        0.729         
## Incompetent : Competent      0.853         
## Stupid : Bright              0.918         
## Dishonest : Honest                   0.849 
## Untrustworthy : Trustworthy          0.933 
## Dishonorable : Honorable             0.730 
## 
##                Factor1 Factor2
## SS loadings      2.826   2.166
## Proportion Var   0.404   0.309
## Cumulative Var   0.404   0.713
## 
## Factor Correlations:
##         Factor1 Factor2
## Factor1   1.000   0.795
## Factor2   0.795   1.000
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 22.81 on 8 degrees of freedom.
## The p-value is 0.00362

3.1.2 Plots

3.1.2.1 Density Plots (by sample)

3.1.2.2 Density Plots (by condition)

3.1.2.3 Density Plots (by sample*condition)

3.1.3 Analysis

3.1.3.1 Regression

Trustworthiness of sources for all social media posts as DV, Adj. R^2 = .69, F(2,181) = 202.20, p < .001 Competence of source was stronger predictor (beta = .61, p < .001) than expertise (beta = .27, p < .001)

## source_comp  source_exp 
##    2.257774    2.257774
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = source_trust ~ source_comp + source_exp, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.71857 -0.31434  0.04788  0.33371  1.55647 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.220e-16  4.122e-02   0.000        1    
## source_comp 6.075e-01  6.210e-02   9.783  < 2e-16 ***
## source_exp  2.728e-01  6.210e-02   4.392  1.9e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5591 on 181 degrees of freedom
## Multiple R-squared:  0.6908, Adjusted R-squared:  0.6874 
## F-statistic: 202.2 on 2 and 181 DF,  p-value: < 2.2e-16

3.1.3.2 Plots (differences in source ratings by condition*sample)

3.2 Third Person Effect

3.2.1 Item Analysis

##        vars   n  mean   sd median trimmed  mad min max range  skew kurtosis
## Q28_1*    1 184  8.01 2.89      8    8.18 2.97   1  12    11 -0.46    -0.74
## Q28_2*    2 184  7.41 3.00      8    7.57 2.97   1  12    11 -0.40    -0.79
## Q28_3*    3 184  8.30 3.06      9    8.59 2.97   1  12    11 -0.68    -0.64
## Q28_4     4 184 10.68 0.47     11   10.72 0.00  10  11     1 -0.76    -1.43
## Q28_5*    5 184  7.93 2.68      9    8.28 1.48   1  11    10 -1.04     0.11
##          se
## Q28_1* 0.21
## Q28_2* 0.22
## Q28_3* 0.23
## Q28_4  0.03
## Q28_5* 0.20
## Call:corr.test(x = d)
## Correlation matrix 
##       Q28_1 Q28_2 Q28_3 Q28_5
## Q28_1  1.00  0.68  0.79  0.49
## Q28_2  0.68  1.00  0.66  0.50
## Q28_3  0.79  0.66  1.00  0.54
## Q28_5  0.49  0.50  0.54  1.00
## Sample Size 
## [1] 184
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##       Q28_1 Q28_2 Q28_3 Q28_5
## Q28_1     0     0     0     0
## Q28_2     0     0     0     0
## Q28_3     0     0     0     0
## Q28_5     0     0     0     0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option

3.2.2 Difference Plots

3.2.3 Difference Heatmaps

3.2.4 TPE by Sample/Condition Plots

3.2.5 TPE by Sample/Condition ANOVA

## Anova Table (Type 3 tests)
## 
## Response: tpe_othr
##           Effect     df  MSE         F   ges p.value
## 1      condition 1, 179 3.76      0.18  .001    .669
## 2           samp 1, 179 3.76 32.58 ***  .154   <.001
## 3 condition:samp 1, 179 3.76      0.01 <.001    .934
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## Anova Table (Type 3 tests)
## 
## Response: tpe_self
##           Effect     df  MSE         F  ges p.value
## 1      condition 1, 179 5.33      0.34 .002    .563
## 2           samp 1, 179 5.33 31.54 *** .150   <.001
## 3 condition:samp 1, 179 5.33      1.16 .006    .282
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## Anova Table (Type 3 tests)
## 
## Response: tpe_diff
##           Effect     df  MSE      F   ges p.value
## 1      condition 1, 179 1.32   0.01 <.001    .909
## 2           samp 1, 179 1.32 4.97 *  .027    .027
## 3 condition:samp 1, 179 1.32   1.50  .008    .222
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

## samp = Prolific:
##  condition emmean    SE  df lower.CL upper.CL
##  a          0.443 0.147 179    0.152    0.733
##  m          0.688 0.144 179    0.404    0.971
## 
## samp = SONA:
##  condition emmean    SE  df lower.CL upper.CL
##  a          1.074 0.221 179    0.638    1.510
##  m          0.871 0.206 179    0.464    1.278
## 
## Confidence level used: 0.95

3.3 SciPop

3.3.1 Factor Analysis

##       vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## Q29_1    1 183 2.86 0.66      3    2.86 0.00   1   4     3 -0.51     0.67 0.05
## Q29_2    2 183 2.96 0.67      3    2.97 0.00   1   4     3 -0.28     0.11 0.05
## Q29_3    3 183 1.77 0.80      2    1.68 1.48   1   4     3  0.75    -0.15 0.06
## Q29_4    4 183 2.03 0.95      2    1.93 1.48   1   4     3  0.53    -0.73 0.07
## Q29_5    5 183 2.27 0.94      2    2.22 1.48   1   4     3  0.14    -0.97 0.07
## Q29_6    6 183 2.29 0.96      2    2.24 1.48   1   4     3  0.14    -1.00 0.07
## Q29_7    7 183 2.09 0.91      2    2.03 1.48   1   4     3  0.34    -0.85 0.07
## Q29_8    8 183 1.87 0.88      2    1.79 1.48   1   4     3  0.63    -0.61 0.07
## lavaan 0.6.16 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        22
## 
##   Number of observations                           183
## 
## Model Test User Model:
##                                                       
##   Test statistic                                25.043
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.034
## 
## Model Test Baseline Model:
## 
##   Test statistic                               483.527
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.976
##   Tucker-Lewis Index (TLI)                       0.952
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1587.330
##   Loglikelihood unrestricted model (H1)      -1574.809
##                                                       
##   Akaike (AIC)                                3218.660
##   Bayesian (BIC)                              3289.269
##   Sample-size adjusted Bayesian (SABIC)       3219.591
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.066
##   90 Percent confidence interval - lower         0.018
##   90 Percent confidence interval - upper         0.107
##   P-value H_0: RMSEA <= 0.050                    0.241
##   P-value H_0: RMSEA >= 0.080                    0.313
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.038
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ppl =~                                                                
##     Q29_1             0.538    0.230    2.341    0.019    0.538    0.811
##     Q29_2             0.243    0.113    2.154    0.031    0.243    0.363
##   eli =~                                                                
##     Q29_3             0.641    0.059   10.833    0.000    0.641    0.803
##     Q29_4             0.701    0.070   10.020    0.000    0.701    0.743
##   dec =~                                                                
##     Q29_5             0.805    0.068   11.891    0.000    0.805    0.855
##     Q29_6             0.798    0.069   11.581    0.000    0.798    0.834
##   tru =~                                                                
##     Q29_7             0.744    0.063   11.727    0.000    0.744    0.818
##     Q29_8             0.691    0.062   11.190    0.000    0.691    0.784
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ppl ~~                                                                
##     eli              -0.061    0.106   -0.573    0.567   -0.061   -0.061
##     dec               0.148    0.111    1.339    0.181    0.148    0.148
##     tru               0.152    0.114    1.330    0.184    0.152    0.152
##   eli ~~                                                                
##     dec               0.526    0.075    7.058    0.000    0.526    0.526
##     tru               0.723    0.062   11.568    0.000    0.723    0.723
##   dec ~~                                                                
##     tru               0.624    0.065    9.624    0.000    0.624    0.624
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q29_1             0.150    0.244    0.615    0.538    0.150    0.342
##    .Q29_2             0.387    0.064    6.057    0.000    0.387    0.868
##    .Q29_3             0.225    0.049    4.571    0.000    0.225    0.355
##    .Q29_4             0.399    0.067    5.996    0.000    0.399    0.448
##    .Q29_5             0.239    0.067    3.556    0.000    0.239    0.270
##    .Q29_6             0.280    0.068    4.115    0.000    0.280    0.305
##    .Q29_7             0.274    0.055    4.937    0.000    0.274    0.331
##    .Q29_8             0.299    0.052    5.797    0.000    0.299    0.385
##     ppl               1.000                               1.000    1.000
##     eli               1.000                               1.000    1.000
##     dec               1.000                               1.000    1.000
##     tru               1.000                               1.000    1.000

3.3.2 Descriptives

##            vars   n mean sd median trimmed  mad   min  max range  skew kurtosis
## scipop        1 183    0  1  -0.03   -0.05 1.06 -2.18 2.59  4.78  0.38    -0.42
## scipop_ppl    2 183    0  1   0.17    0.01 1.38 -2.62 2.04  4.66 -0.11     0.11
## scipop_eli    3 183    0  1   0.13   -0.09 0.95 -1.15 2.69  3.84  0.55    -0.64
## scipop_dec    4 183    0  1   0.25   -0.03 0.84 -1.45 1.95  3.41  0.09    -0.89
## scipop_tru    5 183    0  1   0.02   -0.07 0.91 -1.21 2.48  3.69  0.39    -0.85
##              se
## scipop     0.07
## scipop_ppl 0.07
## scipop_eli 0.07
## scipop_dec 0.07
## scipop_tru 0.07

3.3.3 Item Histograms

3.3.4 Composite Histograms

3.4 Misinformation Flagging

4 Analysis

4.1 Correlation Matrix

4.2 Regressions

4.2.1 TPE Diff

## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = source_exp ~ tpe_diff + samp, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.51356 -0.57658  0.03629  0.58273  2.56885 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.36361    0.08725   4.168 4.77e-05 ***
## tpe_diff    -0.21394    0.05841  -3.663 0.000328 ***
## sampSONA    -0.64174    0.14520  -4.420 1.70e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9022 on 180 degrees of freedom
## Multiple R-squared:  0.1786, Adjusted R-squared:  0.1694 
## F-statistic: 19.56 on 2 and 180 DF,  p-value: 2.049e-08

## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = source_comp ~ tpe_diff + samp, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.77001 -0.49273 -0.09052  0.62854  2.12931 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.37723    0.08609   4.382 1.99e-05 ***
## tpe_diff    -0.19180    0.05763  -3.328  0.00106 ** 
## sampSONA    -0.72836    0.14327  -5.084 9.23e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8902 on 180 degrees of freedom
## Multiple R-squared:  0.1944, Adjusted R-squared:  0.1855 
## F-statistic: 21.72 on 2 and 180 DF,  p-value: 3.544e-09

## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = source_trust ~ tpe_diff + samp, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.82426 -0.58155  0.01088  0.60330  2.44979 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.31684    0.08947   3.541 0.000507 ***
## tpe_diff    -0.16132    0.05989  -2.694 0.007736 ** 
## sampSONA    -0.60877    0.14889  -4.089 6.53e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9251 on 180 degrees of freedom
## Multiple R-squared:  0.1355, Adjusted R-squared:  0.1259 
## F-statistic: 14.11 on 2 and 180 DF,  p-value: 2.034e-06

## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = source_cred ~ tpe_diff + samp, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.35183 -0.53099 -0.00375  0.56146  2.27510 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.35256    0.07858   4.487 1.29e-05 ***
## tpe_diff    -0.18902    0.05260  -3.593 0.000421 ***
## sampSONA    -0.65962    0.13078  -5.044 1.11e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8126 on 180 degrees of freedom
## Multiple R-squared:  0.2011, Adjusted R-squared:  0.1922 
## F-statistic: 22.65 on 2 and 180 DF,  p-value: 1.678e-09

4.2.2 SciPop

## scipop_ppl scipop_eli scipop_dec scipop_tru       samp 
##   1.043590   1.537552   1.397721   1.699335   1.042054
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = source_exp ~ scipop_ppl + scipop_eli + scipop_dec + 
##     scipop_tru + samp, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2978 -0.4693 -0.0358  0.4747  3.0640 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.20869    0.07855   2.657  0.00861 ** 
## scipop_ppl   0.19746    0.06606   2.989  0.00320 ** 
## scipop_eli   0.11956    0.08019   1.491  0.13775    
## scipop_dec   0.13885    0.07646   1.816  0.07104 .  
## scipop_tru   0.10195    0.08430   1.209  0.22812    
## sampSONA    -0.62139    0.14149  -4.392 1.93e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8724 on 177 degrees of freedom
## Multiple R-squared:  0.2446, Adjusted R-squared:  0.2233 
## F-statistic: 11.46 on 5 and 177 DF,  p-value: 1.343e-09
## scipop_ppl scipop_eli scipop_dec scipop_tru       samp 
##   1.043590   1.537552   1.397721   1.699335   1.042054
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = source_comp ~ scipop_ppl + scipop_eli + scipop_dec + 
##     scipop_tru + samp, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.82661 -0.60863 -0.05182  0.65160  2.61540 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.24153    0.08008   3.016  0.00294 ** 
## scipop_ppl   0.18121    0.06735   2.691  0.00782 ** 
## scipop_eli  -0.07939    0.08175  -0.971  0.33281    
## scipop_dec   0.13561    0.07794   1.740  0.08362 .  
## scipop_tru   0.06478    0.08594   0.754  0.45203    
## sampSONA    -0.72016    0.14425  -4.992 1.42e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8894 on 177 degrees of freedom
## Multiple R-squared:  0.2092, Adjusted R-squared:  0.1869 
## F-statistic: 9.365 on 5 and 177 DF,  p-value: 6.204e-08
## scipop_ppl scipop_eli scipop_dec scipop_tru       samp 
##   1.043590   1.537552   1.397721   1.699335   1.042054
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = source_trust ~ scipop_ppl + scipop_eli + scipop_dec + 
##     scipop_tru + samp, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.90523 -0.59975 -0.04114  0.62963  2.60365 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.201736   0.082012   2.460  0.01486 *  
## scipop_ppl   0.182259   0.068974   2.642  0.00897 ** 
## scipop_eli  -0.010619   0.083721  -0.127  0.89922    
## scipop_dec   0.193727   0.079824   2.427  0.01623 *  
## scipop_tru  -0.001031   0.088016  -0.012  0.99067    
## sampSONA    -0.598842   0.147727  -4.054 7.54e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9109 on 177 degrees of freedom
## Multiple R-squared:  0.1759, Adjusted R-squared:  0.1526 
## F-statistic: 7.556 on 5 and 177 DF,  p-value: 1.869e-06
## scipop_ppl scipop_eli scipop_dec scipop_tru       samp 
##   1.043590   1.537552   1.397721   1.699335   1.042054
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = source_cred ~ scipop_ppl + scipop_eli + scipop_dec + 
##     scipop_tru + samp, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.05580 -0.51487 -0.02397  0.48632  2.76101 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.21732    0.07205   3.016  0.00294 ** 
## scipop_ppl   0.18698    0.06060   3.086  0.00236 ** 
## scipop_eli   0.00985    0.07355   0.134  0.89362    
## scipop_dec   0.15607    0.07013   2.225  0.02732 *  
## scipop_tru   0.05523    0.07733   0.714  0.47599    
## sampSONA    -0.64680    0.12978  -4.984 1.48e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8002 on 177 degrees of freedom
## Multiple R-squared:  0.238,  Adjusted R-squared:  0.2165 
## F-statistic: 11.06 on 5 and 177 DF,  p-value: 2.787e-09

4.2.3 Misinformation Acceptance

## source_cred        samp  acc_rating 
##    1.329312    1.221920    1.286172
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = mis_rating ~ source_cred + samp + acc_rating, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.58254 -0.29816  0.01652  0.33839  1.26046 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.92336    0.18089   5.105 8.42e-07 ***
## source_cred  0.11982    0.04791   2.501   0.0133 *  
## sampSONA    -0.12199    0.08900  -1.371   0.1722    
## acc_rating   0.56761    0.06470   8.773 1.34e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5068 on 179 degrees of freedom
## Multiple R-squared:  0.4525, Adjusted R-squared:  0.4433 
## F-statistic: 49.31 on 3 and 179 DF,  p-value: < 2.2e-16

##      source_cred             samp       acc_rating source_cred:samp 
##         2.101822         1.306042         1.308811         1.928752
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## Call:
## lm(formula = mis_rating ~ source_cred * samp + acc_rating, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.64602 -0.32475  0.00682  0.36482  1.25232 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.96463    0.17799   5.420 1.92e-07 ***
## source_cred           0.22184    0.05908   3.755 0.000234 ***
## sampSONA             -0.18722    0.09024  -2.075 0.039445 *  
## acc_rating            0.54364    0.06400   8.494 7.74e-15 ***
## source_cred:sampSONA -0.26292    0.09230  -2.849 0.004910 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.497 on 178 degrees of freedom
## Multiple R-squared:  0.4764, Adjusted R-squared:  0.4646 
## F-statistic: 40.48 on 4 and 178 DF,  p-value: < 2.2e-16
## Analysis of Variance Table
## 
## Model 1: mis_rating ~ source_cred + samp + acc_rating
## Model 2: mis_rating ~ source_cred * samp + acc_rating
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)   
## 1    179 45.971                               
## 2    178 43.966  1    2.0042 8.1141 0.00491 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1