library(readr)
library(ggplot2)
hr <- read_csv('https://raw.githubusercontent.com/aiplanethub/Datasets/refs/heads/master/HR_comma_sep.csv')
## Rows: 14999 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Department, salary
## dbl (8): satisfaction_level, last_evaluation, number_project, average_montly...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
cor.test(hr$satisfaction_level , hr$last_evaluation)
##
## Pearson's product-moment correlation
##
## data: hr$satisfaction_level and hr$last_evaluation
## t = 12.933, df = 14997, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.08916727 0.12082195
## sample estimates:
## cor
## 0.1050212
ggplot(hr, aes(x = satisfaction_level, y = last_evaluation)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "red") +
labs(
title = "Higher satisfaction linked to slightly higher evaluations",
x = "Satisfaction Level",
y = "Last Evaluation"
)
## `geom_smooth()` using formula = 'y ~ x'
# Correlation 2
cor.test(hr$average_montly_hours, hr$last_evaluation)
##
## Pearson's product-moment correlation
##
## data: hr$average_montly_hours and hr$last_evaluation
## t = 44.237, df = 14997, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3255078 0.3538218
## sample estimates:
## cor
## 0.3397418
ggplot(hr, aes(x = average_montly_hours, y = last_evaluation)) +
geom_point(alpha = 0.3, size = 1) +
geom_smooth(method = "lm", se = FALSE, color = "red", linewidth = 1) +
labs(
title = "Employees who work more hours tend to get higher evaluations",
x = "Average Monthly Hours",
y = "Last Evaluation"
)
## `geom_smooth()` using formula = 'y ~ x'
# Correlation 3
cor.test(hr$satisfaction_level, hr$average_montly_hours)
##
## Pearson's product-moment correlation
##
## data: hr$satisfaction_level and hr$average_montly_hours
## t = -2.4556, df = 14997, p-value = 0.01408
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.036040356 -0.004045605
## sample estimates:
## cor
## -0.02004811
ggplot(hr, aes(x = satisfaction_level, y = average_montly_hours)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "red") +
labs(
title = "More satisfied employees tend to work slightly fewer hours",
x = "Satisfaction Level",
y = "Average Monthly Hours"
)
## `geom_smooth()` using formula = 'y ~ x'
# Correlation 4
cor.test(hr$time_spend_company, hr$promotion_last_5years)
##
## Pearson's product-moment correlation
##
## data: hr$time_spend_company and hr$promotion_last_5years
## t = 8.2768, df = 14997, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.05148468 0.08334679
## sample estimates:
## cor
## 0.06743293
ggplot(hr, aes(x = factor(promotion_last_5years), y = time_spend_company)) +
geom_boxplot(fill = "lightblue") +
labs(
title = "Employees promoted in the last 5 years tend to have spent more years at the company",
x = "Promotion in Last 5 Years (0 = No, 1 = Yes)",
y = "Years at Company"
) +
theme_minimal()