# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("AMZN", "LLY", "KO", "GLD")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
symbols
## [1] "AMZN" "LLY" "KO" "GLD"
prices
## # A tibble: 12,948 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMZN 2012-12-31 12.2 12.6 12.1 12.5 68380000 12.5
## 2 AMZN 2013-01-02 12.8 12.9 12.7 12.9 65420000 12.9
## 3 AMZN 2013-01-03 12.9 13.0 12.8 12.9 55018000 12.9
## 4 AMZN 2013-01-04 12.9 13.0 12.8 13.0 37484000 13.0
## 5 AMZN 2013-01-07 13.1 13.5 13.1 13.4 98200000 13.4
## 6 AMZN 2013-01-08 13.4 13.4 13.2 13.3 60214000 13.3
## 7 AMZN 2013-01-09 13.4 13.5 13.3 13.3 45312000 13.3
## 8 AMZN 2013-01-10 13.4 13.4 13.1 13.3 57268000 13.3
## 9 AMZN 2013-01-11 13.3 13.4 13.2 13.4 48266000 13.4
## 10 AMZN 2013-01-14 13.4 13.7 13.4 13.6 85500000 13.6
## # ℹ 12,938 more rows
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 620 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AMZN 2013-01-31 0.0567
## 2 AMZN 2013-02-28 -0.00464
## 3 AMZN 2013-03-28 0.00837
## 4 AMZN 2013-04-30 -0.0488
## 5 AMZN 2013-05-31 0.0589
## 6 AMZN 2013-06-28 0.0311
## 7 AMZN 2013-07-31 0.0813
## 8 AMZN 2013-08-30 -0.0696
## 9 AMZN 2013-09-30 0.107
## 10 AMZN 2013-10-31 0.152
## # ℹ 610 more rows
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "GLD" "KO" "LLY"
# weights
weights <- c(0.2, 0.25, 0.35, 0.2)
weights
## [1] 0.20 0.25 0.35 0.20
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.2
## 2 GLD 0.25
## 3 KO 0.35
## 4 LLY 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 155 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0365
## 2 2013-02-28 0.00507
## 3 2013-03-28 0.0294
## 4 2013-04-30 -0.0185
## 5 2013-05-31 -0.0306
## 6 2013-06-28 -0.0354
## 7 2013-07-31 0.0495
## 8 2013-08-30 -0.0229
## 9 2013-09-30 0.00467
## 10 2013-10-31 0.0428
## # ℹ 145 more rows
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
market_returns_tbl
## # A tibble: 155 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0499
## 2 2013-02-28 0.0127
## 3 2013-03-28 0.0373
## 4 2013-04-30 0.0190
## 5 2013-05-31 0.0233
## 6 2013-06-28 -0.0134
## 7 2013-07-31 0.0504
## 8 2013-08-30 -0.0305
## 9 2013-09-30 0.0312
## 10 2013-10-31 0.0453
## # ℹ 145 more rows
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date",
"market_returns",
"portfolio_returns")
portfolio_market_returns_tbl
## # A tibble: 155 × 3
## date market_returns portfolio_returns
## <date> <dbl> <dbl>
## 1 2013-01-31 0.0499 0.0365
## 2 2013-02-28 0.0127 0.00507
## 3 2013-03-28 0.0373 0.0294
## 4 2013-04-30 0.0190 -0.0185
## 5 2013-05-31 0.0233 -0.0306
## 6 2013-06-28 -0.0134 -0.0354
## 7 2013-07-31 0.0504 0.0495
## 8 2013-08-30 -0.0305 -0.0229
## 9 2013-09-30 0.0312 0.00467
## 10 2013-10-31 0.0453 0.0428
## # ℹ 145 more rows
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.526
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "red") +
geom_smooth(method = "lm",
se = FALSE,
linewidth = 1.5,
color = "green") +
labs(y = "Portfolio Returns",
x = "Market Returns") +
coord_cartesian(xlim = c(0,0.1), ylim = c(0,0.1))
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated? The portfolio beta of 0.5 indicates that the portfolio is half as volatile as the market which in this case is SPY. This means the portfolio is less sensitive to market swings and is less risky compared to the market benchmark. The plot shows slightly more positive returns for the portfolio than the market. The magnitude of the beta coefficient is confirmed by the visualization because it is flatter than a 45 degree angle. The points are fairly spread out from the regression line with outliers meaning that the regression line is mostly inaccurate.