# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
symbols
## [1] "SPY" "EFA" "IJS" "EEM" "AGG"
prices
## # A tibble: 6,300 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 SPY 2012-12-31 140. 143. 140. 142. 243935200 114.
## 2 SPY 2013-01-02 145. 146. 145. 146. 192059000 117.
## 3 SPY 2013-01-03 146. 146. 145. 146. 144761800 117.
## 4 SPY 2013-01-04 146. 147. 146. 146. 116817700 117.
## 5 SPY 2013-01-07 146. 146. 145. 146. 110002500 117.
## 6 SPY 2013-01-08 146. 146. 145. 146. 121265100 117.
## 7 SPY 2013-01-09 146. 146. 146. 146. 90745600 117.
## 8 SPY 2013-01-10 147. 147. 146. 147. 130735400 118.
## 9 SPY 2013-01-11 147. 147. 147. 147. 113917300 118.
## 10 SPY 2013-01-14 147. 147. 146. 147. 89567200 118.
## # ℹ 6,290 more rows
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 300 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AGG 2013-01-31 -0.00623
## 2 AGG 2013-02-28 0.00589
## 3 AGG 2013-03-28 0.000985
## 4 AGG 2013-04-30 0.00964
## 5 AGG 2013-05-31 -0.0202
## 6 AGG 2013-06-28 -0.0158
## 7 AGG 2013-07-31 0.00269
## 8 AGG 2013-08-30 -0.00830
## 9 AGG 2013-09-30 0.0111
## 10 AGG 2013-10-31 0.00829
## # ℹ 290 more rows
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# tq_portfolio()
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
market_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0499
## 2 2013-02-28 0.0127
## 3 2013-03-28 0.0373
## 4 2013-04-30 0.0190
## 5 2013-05-31 0.0233
## 6 2013-06-28 -0.0134
## 7 2013-07-31 0.0504
## 8 2013-08-30 -0.0305
## 9 2013-09-30 0.0312
## 10 2013-10-31 0.0453
## # ℹ 50 more rows
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date",
"market_returns",
"portfolio_returns")
portfolio_market_returns_tbl
## # A tibble: 60 × 3
## date market_returns portfolio_returns
## <date> <dbl> <dbl>
## 1 2013-01-31 0.0499 0.0204
## 2 2013-02-28 0.0127 -0.00239
## 3 2013-03-28 0.0373 0.0121
## 4 2013-04-30 0.0190 0.0174
## 5 2013-05-31 0.0233 -0.0128
## 6 2013-06-28 -0.0134 -0.0247
## 7 2013-07-31 0.0504 0.0321
## 8 2013-08-30 -0.0305 -0.0224
## 9 2013-09-30 0.0312 0.0511
## 10 2013-10-31 0.0453 0.0301
## # ℹ 50 more rows
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.738
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm",
se = FALSE,
linewidth = 1.5,
color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
actual_fitted_long_tbl <- portfolio_market_returns_tbl %>%
#linear regression model
lm(portfolio_returns ~ market_returns, data = .) %>%
# get fitted and actual returns
broom::augment() %>%
# add date
mutate(date = portfolio_market_returns_tbl$date) %>%
select(date,
portfolio_returns,
.fitted) %>%
# Transform data to long
pivot_longer(cols = c(portfolio_returns, .fitted),
names_to = "type",
values_to = "returns")
actual_fitted_long_tbl %>%
ggplot(aes(x = date, y = returns, color = type)) +
geom_line()