1 Loading Libraries

# install any packages you have not previously used, then comment them back out.

#install.packages("car")
#install.packages("effsize")

library(psych) # for the describe() command
library(car) # for the leveneTest() command
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
library(effsize) # for the cohen.d() command
## 
## Attaching package: 'effsize'
## The following object is masked from 'package:psych':
## 
##     cohen.d

2 Importing Data

d <- read.csv(file="Data/projectdata.csv", header=T)

# For the HW, you will import the project dataset you cleaned previously
# This will be the dataset you'll use for HWs throughout the rest of the semester

3 State Your Hypothesis

I predict that individuals with that earned a bachelors degree will report significantly higher levels of a satisfaction with life than those that did not earn a bachelors degree.

4 Check Your Variables

# you **only** need to check the variables you're using in the current analysis

## Checking the Categorical variable (IV)

str(d)
## 'data.frame':    3078 obs. of  7 variables:
##  $ ResponseID      : chr  "R_BJN3bQqi1zUMid3" "R_2TGbiBXmAtxywsD" "R_12G7bIqN2wB2N65" "R_39pldNoon8CePfP" ...
##  $ npi             : num  0.6923 0.1538 0.0769 0.0769 0.7692 ...
##  $ efficacy        : num  3.4 3.4 2.2 2.8 3 2.4 2.3 3 3 3.7 ...
##  $ swb             : num  4.33 4.17 1.83 5.17 3.67 ...
##  $ moa_independence: num  3.67 3.67 3.5 3 3.83 ...
##  $ usdream         : chr  "american dream is important and achievable for me" "american dream is important and achievable for me" "american dream is not important and maybe not achievable for me" "american dream is not important and maybe not achievable for me" ...
##  $ edu             : chr  "2 Currently in college" "5 Completed Bachelors Degree" "2 Currently in college" "2 Currently in college" ...
# if the categorical variable you're using is showing as a "chr" (character), you must change it to be a ** factor ** -- using the next line of code (as.factor)

 d$edu<- as.factor(d$edu)

str(d)
## 'data.frame':    3078 obs. of  7 variables:
##  $ ResponseID      : chr  "R_BJN3bQqi1zUMid3" "R_2TGbiBXmAtxywsD" "R_12G7bIqN2wB2N65" "R_39pldNoon8CePfP" ...
##  $ npi             : num  0.6923 0.1538 0.0769 0.0769 0.7692 ...
##  $ efficacy        : num  3.4 3.4 2.2 2.8 3 2.4 2.3 3 3 3.7 ...
##  $ swb             : num  4.33 4.17 1.83 5.17 3.67 ...
##  $ moa_independence: num  3.67 3.67 3.5 3 3.83 ...
##  $ usdream         : chr  "american dream is important and achievable for me" "american dream is important and achievable for me" "american dream is not important and maybe not achievable for me" "american dream is not important and maybe not achievable for me" ...
##  $ edu             : Factor w/ 7 levels "1 High school diploma or less, and NO COLLEGE",..: 2 5 2 2 2 2 5 2 2 2 ...
table(d$edu, useNA = "always")
## 
##      1 High school diploma or less, and NO COLLEGE 
##                                                 53 
##                             2 Currently in college 
##                                               2491 
## 3 Completed some college, but no longer in college 
##                                                 35 
##                   4 Complete 2 year College degree 
##                                                177 
##                       5 Completed Bachelors Degree 
##                                                135 
##                  6 Currently in graduate education 
##                                                131 
##                   7 Completed some graduate degree 
##                                                 56 
##                                               <NA> 
##                                                  0
## Checking the Continuous variable (DV)

# you can use the describe() command on an entire dataframe (d) or just on a single variable within your dataframe -- which we will do here

describe(d$swb)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 3078 4.47 1.32   4.67    4.53 1.48   1   7     6 -0.37    -0.46 0.02
# also use a histogram to visualize your continuous variable

hist(d$swb)

# use the describeBy() command to view the means and standard deviations by group
# it's very similar to the describe() command but splits the dataframe according to the 'group' variable

describeBy(d$swb, group=d$edu)
## 
##  Descriptive statistics by group 
## group: 1 High school diploma or less, and NO COLLEGE
##    vars  n mean   sd median trimmed  mad min  max range  skew kurtosis   se
## X1    1 53 4.12 1.54   4.33    4.22 1.48   1 6.67  5.67 -0.43    -0.78 0.21
## ------------------------------------------------------------ 
## group: 2 Currently in college
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2491 4.47 1.33   4.67    4.53 1.48   1   7     6 -0.37    -0.48 0.03
## ------------------------------------------------------------ 
## group: 3 Completed some college, but no longer in college
##    vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 35 3.99 1.51   4.17    4.02 1.48   1   7     6 -0.31    -0.62 0.26
## ------------------------------------------------------------ 
## group: 4 Complete 2 year College degree
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis  se
## X1    1 177 4.54 1.34   4.67    4.57 1.48 1.17   7  5.83 -0.27     -0.7 0.1
## ------------------------------------------------------------ 
## group: 5 Completed Bachelors Degree
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 135 4.52 1.34    4.5    4.55 1.48 1.5   7   5.5 -0.1    -0.79 0.12
## ------------------------------------------------------------ 
## group: 6 Currently in graduate education
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 131 4.63 1.14   4.83    4.69 0.99   1   7     6 -0.49     0.11 0.1
## ------------------------------------------------------------ 
## group: 7 Completed some graduate degree
##    vars  n mean   sd median trimmed  mad  min max range skew kurtosis   se
## X1    1 56 4.78 1.17      5    4.78 0.99 2.33   7  4.67 -0.1    -0.72 0.16
# lastly, use a boxplot to examine your chosen continuous and categorical variables together

boxplot(d$swb~d$edu)

5 Check Your Assumptions

5.1 T-test Assumptions

  • IV must have 2 levels
  • Data values must be independent (independent t-test only)
  • Data obtained via a random sample
  • Dependent variable must be normally distributed
  • Variances of the two groups are approx equal
# If the IV has more than 2 levels, you must DROP any additional levels in order to meet the first assumption of a t-test.

## NOTE: This is a FOUR STEP process!

d <- subset(d,edu  != "2 Currently in college") # use subset() to remove all participants from the additional level

table(d$edu, useNA = "always") # verify that now there are ZERO participants in the additional level
## 
##      1 High school diploma or less, and NO COLLEGE 
##                                                 53 
##                             2 Currently in college 
##                                                  0 
## 3 Completed some college, but no longer in college 
##                                                 35 
##                   4 Complete 2 year College degree 
##                                                177 
##                       5 Completed Bachelors Degree 
##                                                135 
##                  6 Currently in graduate education 
##                                                131 
##                   7 Completed some graduate degree 
##                                                 56 
##                                               <NA> 
##                                                  0
d$edu <- droplevels(d$edu) # use droplevels() to drop the empty factor

table(d$edu, useNA = "always") # verify that now the entire factor level is removed 
## 
##      1 High school diploma or less, and NO COLLEGE 
##                                                 53 
## 3 Completed some college, but no longer in college 
##                                                 35 
##                   4 Complete 2 year College degree 
##                                                177 
##                       5 Completed Bachelors Degree 
##                                                135 
##                  6 Currently in graduate education 
##                                                131 
##                   7 Completed some graduate degree 
##                                                 56 
##                                               <NA> 
##                                                  0
## NOTE: This is a FOUR STEP process!

d <- subset(d,edu  != "3 Completed some college, but no longer in college") # use subset() to remove all participants from the additional level

table(d$edu, useNA = "always") # verify that now there are ZERO participants in the additional level
## 
##      1 High school diploma or less, and NO COLLEGE 
##                                                 53 
## 3 Completed some college, but no longer in college 
##                                                  0 
##                   4 Complete 2 year College degree 
##                                                177 
##                       5 Completed Bachelors Degree 
##                                                135 
##                  6 Currently in graduate education 
##                                                131 
##                   7 Completed some graduate degree 
##                                                 56 
##                                               <NA> 
##                                                  0
d$edu <- droplevels(d$edu) # use droplevels() to drop the empty factor

table(d$edu, useNA = "always") # verify that now the entire factor level is removed 
## 
## 1 High school diploma or less, and NO COLLEGE 
##                                            53 
##              4 Complete 2 year College degree 
##                                           177 
##                  5 Completed Bachelors Degree 
##                                           135 
##             6 Currently in graduate education 
##                                           131 
##              7 Completed some graduate degree 
##                                            56 
##                                          <NA> 
##                                             0
## NOTE: This is a FOUR STEP process!

d <- subset(d,edu  != "4 Complete 2 year College degree") # use subset() to remove all participants from the additional level

table(d$edu, useNA = "always") # verify that now there are ZERO participants in the additional level
## 
## 1 High school diploma or less, and NO COLLEGE 
##                                            53 
##              4 Complete 2 year College degree 
##                                             0 
##                  5 Completed Bachelors Degree 
##                                           135 
##             6 Currently in graduate education 
##                                           131 
##              7 Completed some graduate degree 
##                                            56 
##                                          <NA> 
##                                             0
d$edu <- droplevels(d$edu) # use droplevels() to drop the empty factor

table(d$edu, useNA = "always") # verify that now the entire factor level is removed 
## 
## 1 High school diploma or less, and NO COLLEGE 
##                                            53 
##                  5 Completed Bachelors Degree 
##                                           135 
##             6 Currently in graduate education 
##                                           131 
##              7 Completed some graduate degree 
##                                            56 
##                                          <NA> 
##                                             0
## NOTE: This is a FOUR STEP process!

d <- subset(d,edu  != "6 Currently in graduate education") # use subset() to remove all participants from the additional level

table(d$edu, useNA = "always") # verify that now there are ZERO participants in the additional level
## 
## 1 High school diploma or less, and NO COLLEGE 
##                                            53 
##                  5 Completed Bachelors Degree 
##                                           135 
##             6 Currently in graduate education 
##                                             0 
##              7 Completed some graduate degree 
##                                            56 
##                                          <NA> 
##                                             0
d$edu <- droplevels(d$edu) # use droplevels() to drop the empty factor

table(d$edu, useNA = "always") # verify that now the entire factor level is removed 
## 
## 1 High school diploma or less, and NO COLLEGE 
##                                            53 
##                  5 Completed Bachelors Degree 
##                                           135 
##              7 Completed some graduate degree 
##                                            56 
##                                          <NA> 
##                                             0
## NOTE: This is a FOUR STEP process!

d <- subset(d,edu  != "7 Completed some graduate degree") # use subset() to remove all participants from the additional level

table(d$edu, useNA = "always") # verify that now there are ZERO participants in the additional level
## 
## 1 High school diploma or less, and NO COLLEGE 
##                                            53 
##                  5 Completed Bachelors Degree 
##                                           135 
##              7 Completed some graduate degree 
##                                             0 
##                                          <NA> 
##                                             0
d$edu <- droplevels(d$edu) # use droplevels() to drop the empty factor

table(d$edu, useNA = "always") # verify that now the entire factor level is removed 
## 
## 1 High school diploma or less, and NO COLLEGE 
##                                            53 
##                  5 Completed Bachelors Degree 
##                                           135 
##                                          <NA> 
##                                             0
## Repeat ALL THE STEPS ABOVE if your IV has more levels that need to be DROPPED. Copy the 4 lines of code, and replace the level name in the subset() command.

5.2 Testing Homogeneity of Variance with Levene’s Test

We can test whether the variances of our two groups are equal using Levene’s test. The NULL hypothesis is that the variance between the two groups is equal, which is the result we WANT. So when running Levene’s test we’re hoping for a NON-SIGNIFICANT result!

# use the leveneTest() command from the car package to test homogeneity of variance
# it uses the same 'formula' setup that we'll use for our t-test: formula is y~x, where y is our DV and x is our IV

leveneTest(swb ~ edu, data =d)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group   1  1.1912 0.2765
##       186

Levene’s test revealed that our data does not have significantly different variances between the two comparison groups, compelted bachelors degree and did not complete a bachelors degree, on their levels of satisfaction with life.

When running a t-test, we can account for heterogeneity in our variance by using the Welch’s t-test, which does not have the same assumption about variance as the Student’s t-test (the general default type of t-test in statistics). R defaults to using Welch’s t-test so this doesn’t require any changes on our part! Even if your data has no issues with homogeneity of variance, you’ll still use Welch’s t-test – it handles the potential issues around variance well and there are no real downsides. We’re using Levene’s test here to get into the habit of checking the homogeneity of our variance, even if we already have the solution for any potential problems.

5.3 Issues with My Data

My independent variable has more than 2 levels. To proceed with this analysis, I will drop the non binary participants from my sample. I will make a note to discuss this issue in my methods section write-up and in my discussion section as a limitation of my study.

My data also has an issue regarding homogeneity of variance, as Levene’s test was not significant. To accommodate for this heterogeneity of variance, I will use welch’s t-test instead of student’s t-test in my analysis.

6 Run a T-test

# Very simple! we use the same formula of y~x, where y is our DV and x is our IV

t_output <- t.test(d$swb~d$edu)  # t_output will now show in your Global Environment

7 View Test Output

t_output
## 
##  Welch Two Sample t-test
## 
## data:  d$swb by d$edu
## t = -1.6497, df = 84.646, p-value = 0.1027
## alternative hypothesis: true difference in means between group 1 High school diploma or less, and NO COLLEGE and group 5 Completed Bachelors Degree is not equal to 0
## 95 percent confidence interval:
##  -0.87573827  0.08151512
## sample estimates:
## mean in group 1 High school diploma or less, and NO COLLEGE 
##                                                    4.122642 
##                  mean in group 5 Completed Bachelors Degree 
##                                                    4.519753

8 Calculate Cohen’s d - Effect Size

# once again, we use the same formula, y~x, to calculate cohen's d

# We **only** calculate effect size if the test is SIG!

d_output <- cohen.d(d$swb~d$edu)  # d_output will now show in your Global Environment

9 View Effect Size

d_output
## 
## Cohen's d
## 
## d estimate: -0.2840817 (small)
## 95 percent confidence interval:
##       lower       upper 
## -0.60516949  0.03700608
## Remember to always take the ABSOLAUTE VALUE of the effect size value (i.e., it will never be negative)

10 Write Up Results

To test our hypothesis that people with a bachelors degree in our sample would report significantly higher levels of satisfaction with life than those that did not complete a bachelors degree, we used an independent samples t test. This required us to drop our currently in college, compelted two year college, compeleted some college but no longer in college, currently in graduate school, and completed gradaute degree participants from our sample, as we are limited to a two group comparison when using this test. We tested the homvogeneity of variance with leven’s test and did not find signs of heterogenity (p > .001). This suggests that there is an increased chance of type 1 error. To correct for this issue, we used welch’s t-test, which does not assume homogeneity of variance. Our data met all other assumptions of an independent samples t-test.

As predicted, we found that bachelor degree holders (M = 4.519753, SD = .0815) reported higher levels of satisfaction with life than high school diploma or less and no college (M = 4.122642, SD = -.8757); t(-1.6497) = -16.05, p = .1027 (see Figure 1). The effect size was calculated using Cohen’s d, with a value of .284 (small effect; Cohen, 1988).

[Revise the above statements for you HW assignment.]

References

Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge Academic.