# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.

Choose your stocks.

from 2012-12-31 to present

1 Import stock prices

symbols <- c("TSLA", "NVDA", "AAPL", "MSFT", "AMZN")

prices <- tq_get(x    = symbols,
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset (change the weigting scheme)

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "MSFT" "NVDA" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AAPL       0.25
## 2 AMZN       0.25
## 3 MSFT       0.2 
## 4 NVDA       0.2 
## 5 TSLA       0.1

4 Build a portfolio

# tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31 -0.00905
##  2 2013-02-28 -0.00315
##  3 2013-03-28  0.0196 
##  4 2013-04-30  0.0666 
##  5 2013-05-31  0.103  
##  6 2013-06-28 -0.0225 
##  7 2013-07-31  0.0651 
##  8 2013-08-30  0.0419 
##  9 2013-09-30  0.0447 
## 10 2013-10-31  0.0497 
## # ℹ 50 more rows

5 Compute Sharpe Ratio

rfr <- 0.0003

portfolio_sharpe_tbl <- portfolio_returns_tbl %>%

    tq_performance(Ra = returns,
                   Rf = rfr,
                   performance_fun = SharpeRatio,
                   FUN = "StdDev") 
   
 
portfolio_sharpe_tbl
## # A tibble: 1 × 1
##   `StdDevSharpe(Rf=0%,p=95%)`
##                         <dbl>
## 1                       0.554

6 Plot: Rolling Sharpe Ratio

calculate_rolling_sharpeRatio <- function(df) {

    SharpeRatio(df,
                Rf = rfr,
                FUN = "StdDev")

}

# dump(list = "calculate_rolling_sharpeRatio",
#      file = "00_scripts/calculate_rolling_sharpeRatio.R")

# Set the length of periods for rolling calculation
window <- 24

# Calculate rolling sharpe ratios
rolling_sharpe_tbl <- portfolio_returns_tbl %>%

    tq_mutate(select = returns,
              mutate_fun = rollapply,
              width = window,
              align = "right",
              FUN = calculate_rolling_sharpeRatio,
              col_rename = "sharpeRatio") %>%
    na.omit()

rolling_sharpe_tbl
## # A tibble: 37 × 3
##    date        returns sharpeRatio
##    <date>        <dbl>       <dbl>
##  1 2014-12-31 -0.0647        0.536
##  2 2015-01-30  0.00277       0.551
##  3 2015-02-27  0.0877        0.617
##  4 2015-03-31 -0.0464        0.527
##  5 2015-04-30  0.0984        0.537
##  6 2015-05-29  0.0200        0.494
##  7 2015-06-30 -0.0310        0.483
##  8 2015-07-31  0.0533        0.476
##  9 2015-08-31 -0.0229        0.412
## 10 2015-09-30  0.0155        0.389
## # ℹ 27 more rows
portfolio_returns_tbl %>%

    # Transform data
    mutate(returns_excess = if_else(returns > rfr, "above_rfr", "below_rfr")) %>%

    ggplot(aes(date, returns, color = returns_excess)) +
    geom_point(show.legend = FALSE) +

    # risk free rate
    geom_hline(yintercept = rfr, linetype = "dotted", size = 1, color = "cornflowerblue") +

    # election date
    geom_vline(xintercept = as.Date("2016-11-30"), size = 1, color = "cornflowerblue") +

    # formatting
    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +

    # labeling
    annotate(geom = "text",
             x = as.Date("2017-01-01"), y = -0.04,
             label = "Election", angle = 90, size = 5) +
    annotate(geom = "text",
             x = as.Date("2017-06-01"), y = -0.01,
             label = str_glue("No returns below the RFR
                              after the 2016 election"),
             color = "red", size = 4) +
    labs(y = "percent monthly returns",
         x = NULL)

alculate_rolling_sharpeRatio <- function(df) {

    SharpeRatio(df,
                Rf = rfr,
                FUN = "StdDev")

}

# dump(list = "calculate_rolling_sharpeRatio",
#      file = "00_scripts/calculate_rolling_sharpeRatio.R")

# Set the length of periods for rolling calculation
window <- 24

# Calculate rolling sharpe ratios
rolling_sharpe_tbl <- portfolio_returns_tbl %>%

    tq_mutate(select = returns,
              mutate_fun = rollapply,
              width = window,
              align = "right",
              FUN = calculate_rolling_sharpeRatio,
              col_rename = "sharpeRatio") %>%
    na.omit()

rolling_sharpe_tbl
## # A tibble: 37 × 3
##    date        returns sharpeRatio
##    <date>        <dbl>       <dbl>
##  1 2014-12-31 -0.0647        0.536
##  2 2015-01-30  0.00277       0.551
##  3 2015-02-27  0.0877        0.617
##  4 2015-03-31 -0.0464        0.527
##  5 2015-04-30  0.0984        0.537
##  6 2015-05-29  0.0200        0.494
##  7 2015-06-30 -0.0310        0.483
##  8 2015-07-31  0.0533        0.476
##  9 2015-08-31 -0.0229        0.412
## 10 2015-09-30  0.0155        0.389
## # ℹ 27 more rows
#  Rolling Sharpe ggplot

rolling_sharpe_tbl %>%

    ggplot(aes(date, sharpeRatio)) +
    geom_line(color = "cornflowerblue") +

    labs(title = paste0("Rolling ", window, "-Month Sharpe Ratio"),
         y = "rolling Sharpe Ratio",
         x = NULL) +
    theme(plot.title = element_text(hjust = 0.5)) +

    annotate(geom = "text",
             x = as.Date("2016-06-01"), y = 0.5,
             label = "This portfolio has done quite well since the 1st quarter of 2016.",
             size = 5, color = "red")

How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?

Overall my portfolio was fairly similar to the code in terms of performance in the rolling 24 month sharpe ratio. With the portfolio dropping to its lowest in the 1st quarter of 2016 and has climbed steadily till 2018.