# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("F", "RIVN", "LCID", "TM", "HMC")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2025-10-25")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "F" "HMC" "LCID" "RIVN" "TM"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 F 0.25
## 2 HMC 0.25
## 3 LCID 0.2
## 4 RIVN 0.2
## 5 TM 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 154 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.00911
## 2 2013-02-28 -0.00101
## 3 2013-03-28 0.0183
## 4 2013-04-30 0.0339
## 5 2013-05-31 0.0209
## 6 2013-06-28 -0.00155
## 7 2013-07-31 0.0236
## 8 2013-08-30 -0.0196
## 9 2013-09-30 0.0330
## 10 2013-10-31 0.0177
## # ℹ 144 more rows
rfr <- 0.0003
portfolio_sharpe_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
Rf = rfr,
performance_fun = SharpeRatio,
FUN = "StdDev")
portfolio_sharpe_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 -0.0494
calculate_rolling_sharpeRatio <- function(df) {
SharpeRatio(df,
Rf = rfr,
FUN = "StdDev")
}
# dump(list = "calculate_rolling_sharpeRatio",
# file = "00_scripts/calculate_rolling_sharpeRatio.R")
# Set the length of periods for rolling calculation
window <- 24
# Calculate rolling sharpe ratios
rolling_sharpe_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
align = "right",
FUN = calculate_rolling_sharpeRatio,
col_rename = "sharpeRatio") %>%
na.omit()
rolling_sharpe_tbl
## # A tibble: 131 × 3
## date returns sharpeRatio
## <date> <dbl> <dbl>
## 1 2014-12-31 -0.00716 0.0802
## 2 2015-01-30 -0.00203 0.0576
## 3 2015-02-27 0.0543 0.151
## 4 2015-03-31 -0.0000793 0.119
## 5 2015-04-30 0.00221 0.0635
## 6 2015-05-29 -0.00590 0.0127
## 7 2015-06-30 -0.0194 -0.0214
## 8 2015-07-31 0.0111 -0.0460
## 9 2015-08-31 -0.0477 -0.0929
## 10 2015-09-30 -0.0166 -0.190
## # ℹ 121 more rows
# Figure 7.5 Rolling Sharpe ggplot ----
rolling_sharpe_tbl %>%
ggplot(aes(date, sharpeRatio)) +
geom_line(color = "cornflowerblue") +
labs(title = paste0("Rolling ", window, "-Month Sharpe Ratio"),
y = "rolling Sharpe Ratio",
x = NULL) +
theme(plot.title = element_text(hjust = 0.5)) +
annotate(geom = "text",
x = as.Date("2016-06-01"), y = 0.5,
label = "This portfolio has done quite well since 2016.",
size = 5, color = "red")
How has your portfolio performed over time? Provide dates of the
structural breaks, if any. The Code Along Assignment 9 had one
structural break in November 2016. What do you think the reason
is?
My portfolio has performed well sense November 2016, the largest break
looking as if it was in 2024. The reasoning for these breaks I belive to
be is increases in volatility.