dados <- as_tibble(mtcars, rownames = "modelo")
head(dados)
## # A tibble: 6 × 12
## modelo mpg cyl disp hp drat wt qsec vs am gear carb
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 Mazda RX4 W… 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 Hornet 4 Dr… 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 Hornet Spor… 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
dados_mod <- dados |>
arrange(desc(mpg)) |>
filter(cyl %in% c(4, 6)) |>
mutate(
potencia_por_peso = hp / wt,
eficiente = mpg > mean(mpg)
)
head(dados_mod)
## # A tibble: 6 × 14
## modelo mpg cyl disp hp drat wt qsec vs am gear carb
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Toyota Coro… 33.9 4 71.1 65 4.22 1.84 19.9 1 1 4 1
## 2 Fiat 128 32.4 4 78.7 66 4.08 2.2 19.5 1 1 4 1
## 3 Honda Civic 30.4 4 75.7 52 4.93 1.62 18.5 1 1 4 2
## 4 Lotus Europa 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2
## 5 Fiat X1-9 27.3 4 79 66 4.08 1.94 18.9 1 1 4 1
## 6 Porsche 914… 26 4 120. 91 4.43 2.14 16.7 0 1 5 2
## # ℹ 2 more variables: potencia_por_peso <dbl>, eficiente <lgl>
datatable(
dados_mod,
options = list(pageLength = 5),
rownames = FALSE
)
ggplot(mtcars, aes(x = hp, y = mpg)) +
geom_point(color = "steelblue", size = 3) +
labs(
x = "Potência (hp)",
y = "Consumo (mpg)",
title = "Relação entre Potência e Consumo"
)

ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
geom_boxplot(fill = "orange") +
labs(
x = "Número de Cilindros",
y = "Consumo (mpg)",
title = "Distribuição do Consumo por Cilindros"
)
