Tarea 3,
La base de datos gapminder contiene los paises de los diferentes continentes, la expectativa de vida, la poblacion y el PIB per capita para los quinquenios entre los años 1952 y 2007. (No olvide practicar los comandos head, tail, str/glimpse). Se busca que el codigo me de de respuesta puntualmente lo que se pide
library(dplyr)
##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readxl)
gapminder <- read_excel("C:/Users/alani/OneDrive/Escritorio/Curso R/Clase 3/gapminder.xlsx")
View(gapminder)
library(gapminder)
## Warning: package 'gapminder' was built under R version 4.5.1
##
## Adjuntando el paquete: 'gapminder'
## The following object is masked _by_ '.GlobalEnv':
##
## gapminder
gapminder_Japan<- gapminder%>%
filter(country=="Japan")%>%
select(country,year,pop)
gapminder_Japan
## # A tibble: 12 × 3
## country year pop
## <chr> <dbl> <dbl>
## 1 Japan 1952 86459025
## 2 Japan 1957 91563009
## 3 Japan 1962 95831757
## 4 Japan 1967 100825279
## 5 Japan 1972 107188273
## 6 Japan 1977 113872473
## 7 Japan 1982 118454974
## 8 Japan 1987 122091325
## 9 Japan 1992 124329269
## 10 Japan 1997 125956499
## 11 Japan 2002 127065841
## 12 Japan 2007 127467972
2.¿Cuales son los PIB per capita de Mexico?
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.5.1
## Warning: package 'tibble' was built under R version 4.5.1
## Warning: package 'readr' was built under R version 4.5.1
## Warning: package 'stringr' was built under R version 4.5.1
## Warning: package 'forcats' was built under R version 4.5.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.1 ✔ readr 2.1.5
## ✔ ggplot2 3.5.2 ✔ stringr 1.5.2
## ✔ lubridate 1.9.4 ✔ tibble 3.3.0
## ✔ purrr 1.0.4 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
gapminder_Mexico<-gapminder%>%
filter(country=="Mexico")%>%
select(country,gdpPercap)
gapminder_Mexico
## # A tibble: 12 × 2
## country gdpPercap
## <chr> <dbl>
## 1 Mexico 3478.
## 2 Mexico 4132.
## 3 Mexico 4582.
## 4 Mexico 5755.
## 5 Mexico 6809.
## 6 Mexico 7675.
## 7 Mexico 9611.
## 8 Mexico 8688.
## 9 Mexico 9472.
## 10 Mexico 9767.
## 11 Mexico 10742.
## 12 Mexico 11978.
3 ¿Cual es el pais de mayor expectativa de vida en el 2007?
gapminder_2007<-gapminder%>%
filter(year == 2007)%>%
filter(lifeExp == max(lifeExp))%>%
select(country,year,lifeExp)
gapminder_2007
## # A tibble: 1 × 3
## country year lifeExp
## <chr> <dbl> <dbl>
## 1 Japan 2007 82.6
4.¿Cual es el pais de menor PIB per capita?
gapminder_perCap<-gapminder%>%
filter(gdpPercap == min(gdpPercap))%>%
select(country,gdpPercap)
gapminder_perCap
## # A tibble: 1 × 2
## country gdpPercap
## <chr> <dbl>
## 1 Congo 241.
5.¿Cual era la poblacion de Argentina en 1992?
gapminder_Argentina<-gapminder%>%
filter(country == "Argentina", year == 1992)%>%
select(country,year,pop)
gapminder_Argentina
## # A tibble: 1 × 3
## country year pop
## <chr> <dbl> <dbl>
## 1 Argentina 1992 33958947
6.Agrupe por continente y obtenga la media de la poblacion, expectativa de vida y PIB per capita.
gapminder_agrupacion<-gapminder%>%
group_by(continent)%>%
summarise(media_pop=mean(gapminder$pop),
media_lifeExp=mean(gapminder$lifeExp),
media_gdpPercap=mean(gapminder$gdpPercap))
gapminder_agrupacion
## # A tibble: 5 × 4
## continent media_pop media_lifeExp media_gdpPercap
## <chr> <dbl> <dbl> <dbl>
## 1 Africa 29601212. 59.5 7215.
## 2 Americas 29601212. 59.5 7215.
## 3 Asia 29601212. 59.5 7215.
## 4 Europe 29601212. 59.5 7215.
## 5 Oceania 29601212. 59.5 7215.
7.Lo mismo del punto anterior, pero filtre para el año 2007.
gapminder_agrupacion_2007 <- gapminder %>%
filter(year == 2007) %>%
group_by(continent) %>%
summarise(media_pop = mean(pop),
media_lifeExp = mean(lifeExp),
media_gdpPercap = mean(gdpPercap))
gapminder_agrupacion_2007
## # A tibble: 5 × 4
## continent media_pop media_lifeExp media_gdpPercap
## <chr> <dbl> <dbl> <dbl>
## 1 Africa 17875763. 54.8 3089.
## 2 Americas 35954847. 73.6 11003.
## 3 Asia 115513752. 70.7 12473.
## 4 Europe 19536618. 77.6 25054.
## 5 Oceania 12274974. 80.7 29810.