library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.3
## Warning: package 'ggplot2' was built under R version 4.4.3
## Warning: package 'tidyr' was built under R version 4.4.3
## Warning: package 'forcats' was built under R version 4.4.3
## Warning: package 'lubridate' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.5
## ✔ ggplot2 4.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.4 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.4.3
head(edu_data)
## # A tibble: 6 × 10
## Country Education_Budget_Incre…¹ Average_Years_of_Sch…² Female_Enrollment_Rate
## <chr> <dbl> <dbl> <dbl>
## 1 Turkey 22 9.6 93
## 2 Norway 15 13.2 99
## 3 USA 10 13.4 98
## 4 Finland 18 13.1 99
## 5 Japan 12 12.8 98
## 6 Germany 11 12.6 99
## # ℹ abbreviated names: ¹Education_Budget_Increase_Percent,
## # ²Average_Years_of_Schooling
## # ℹ 6 more variables: Education_Inequality_Index <dbl>,
## # Student_Performance_Index <dbl>, Unemployment_Rate <dbl>,
## # Youth_Unemployment_Rate <dbl>, Human_Development_Index <dbl>,
## # Education_Reform_Index <dbl>
ggplot(edu_data, aes(x = Education_Reform_Index,
y = Student_Performance_Index)) +
geom_point(color = "steelblue", size = 3) +
geom_smooth(method = "lm", se = TRUE, color = "darkred", linetype = "dashed") +
stat_cor(method = "pearson",
label.x.npc = "left",
label.y.npc = "top",
size = 5) +
labs(title = "Effect of Education Reform on Student Performance",
x = "Education Reform Index (0–10)",
y = "Student Performance Index (0–100)") +
theme_minimal(base_size = 13)
## `geom_smooth()` using formula = 'y ~ x'
grafikta eğitim reformu ile öğrenci performanası arasında pozitif doğrurasal bir ilişki görülmektedir. İkişkinin düzeyi yüksek düzeydedir ve anlamlıdır [r ≈ 0.91, p < 0.01]
library(ggplot2)
ggplot(edu_data, aes(x = Country, y = Student_Performance_Index, fill = Country)) +
geom_col(alpha = 0.8) +
labs(title = "Student Performance by Country",
x = "Country",
y = "Student Performance Index (0–100)") +
theme_minimal(base_size = 13) +
theme(legend.position = "none")
Bar grafiğine bakıldığında öğrenci başarı indeksi güney kore ve finlandiya diğer ülkelerden daha üsttedir. Türkiye ise daha düşük seviyededir.
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.4.3
num_data <- edu_data[, sapply(edu_data, is.numeric)]
cor_matrix <- cor(num_data, use = "complete.obs")
ggcorrplot(cor_matrix,
method = "circle",
type = "lower",
lab = TRUE,
lab_size = 3,
colors = c("red", "white", "steelblue"),
title = "Correlation Matrix of Education Policy Variables",
ggtheme = theme_minimal())
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## ℹ The deprecated feature was likely used in the ggcorrplot package.
## Please report the issue at <https://github.com/kassambara/ggcorrplot/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Burada veri steinin bütün değişkenleri arasındaki ilişki gösteren kolersayon haritası verilmiştir. Education_Reform_Index, Student_Performance_Index ve Human_Development_Index arasında çok güçlü (r ≈ 0.9 ve üzeri) pozitif korelasyonlar var.Bu, eğitim reformlarının ülkelerin hem insani gelişmişlik düzeyine hem de öğrenci başarısına önemli katkı sağladığını gösteriyor.Average_Years_of_Schooling ile Female_Enrollment_Rate de benzer şekilde güçlü pozitif ilişkide (r ≈ 0.88 civarında). Eğitim süresi arttıkça kız öğrenci katılım oranı da artıyor.