
Tabel dataset
library(ggplot2)
library(DT)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(reshape2)
library(corrplot)
## corrplot 0.95 loaded
# --- Right-skewed data (with extreme values) ---
set.seed(123)
data_skew <- read.csv("4 Central Tendency – Introduction to Statistics.csv")
numeric_data <- data_skew %>% select(where(is.numeric))
subset_data <- numeric_data[, 1:4]
DT::datatable(
data_skew,
caption = "Central Tendency",
rownames = F,
options = list(pageLenght = 10)
)
Distribusi data
variabel numerik
subset_data_long <- melt(subset_data)
## No id variables; using all as measure variables
ggplot(subset_data_long, aes(x = value, fill = variable)) +
geom_histogram(color = "white", bins = 30, alpha = 0.7) +
facet_wrap(~ variable, scales = "free", ncol = 2) +
labs(title = "Distribusi Data untuk Setiap Variabel Numerik",
x = "Nilai", y = "Frekuensi") +
theme_minimal()

Distribusi data untuk setiap variabel numerik menggambarkan nilai
nilai tersebar dalam variabel berikut membantu kita memahami pola untuk
menganalisis Central Tendencym.
Boxplot
ggplot(subset_data_long, aes(x = variable, y = value, fill = variable)) +
geom_boxplot(alpha = 0.8) +
labs(title = "Boxplot Perbandingan Sebaran Empat Variabel Numerik",
x = "Variabel", y = "Nilai")

Dari boxplot terlihat bahwa TotalPurchase memiliki sebaran nilai yang
paling besar dan terdapat outlier. Variabel Age memiliki sebaran paling
kecil, artinya datanya lebih seragam. Sementara X dan CustomerID berada
di rentang menengah dengan variasi sedang. Ini menunjukkan bahwa
TotalPurchase paling bervariasi antar pelanggan, sedangkan Age paling
stabil.
# Distribusi Total Purchase
``` r
# Pastikan paket yang dibutuhkan
library(ggplot2)
library(dplyr)
# Hitung statistik ringkas untuk kolom TotalPurchase
stats_summary <- data_skew %>%
summarise(
TotalPurchase_Mean = mean(TotalPurchase, na. = TRUE),
TotalPurchase_Median = median(TotalPurchase, na.rm = TRUE),
TotalPurchase_Mode = as.numeric(names(sort(table(TotalPurchase), decreasing = TRUE)[1]))
)
# Buat histogram dengan mean, median, dan mode
tp_hist <- ggplot(data_skew, aes(x = TotalPurchase)) +
geom_histogram(aes(y = after_stat(density)),
binwidth =50, fill = "#5ab4ac", color = "white", alpha = 0.8) +
geom_density(color = "#2b8cbe", linewidth = 1.3, alpha = 0.9) +
geom_vline(aes(xintercept = stats_summary$TotalPurchase_Mean, color = "Mean"),
linewidth = 1.2) +
geom_vline(aes(xintercept = stats_summary$TotalPurchase_Median, color = "Median"),
linewidth = 1.2, linetype = "dashed") +
geom_vline(aes(xintercept = stats_summary$TotalPurchase_Mode, color = "Mode"),
linewidth = 1.2, linetype = "dotdash") +
scale_color_manual(values = c("Mean" = "red", "Median" = "blue", "Mode" = "green")) +
labs(
title = "Distribusi TotalPurchase",
subtitle = "Menunjukkan Nilai Mean, Median, dan Mode",
x = "TotalPurchase",
y = "Density",
color = "Statistik"
) +
theme_minimal() +
theme(
plot.title = element_text(face = "bold", hjust = 0.5),
legend.position = "bottom"
)
# Tampilkan plot
print(tp_hist)

Bisa di lihat dari visualisasi diatas bahwa distribusi totalpurchase
terlihat miring ke ke kanan, jika dilihat dari nilai mean,media,modus
menunjukan sebagian besar data totalpurchase bernilai kecil akan tetapi
ada beberapa nilai outlier sehingga menaikan nilai rata-rata
Kesimpulan
Dari hasil analisis kami dapat disimpulkan bahwa sebagian besar
pelanggan berbelanja dalam jumlah kecil, sementara hanya sedikit
pelanggan dengan pembelian yang sangat tinggi. Hal ini menunjukkan
adanya perbedaan signifikan antar pelanggan, sehingga perusahaan perlu
berfokus untuk meningkatkan nilai pembelian pelanggan umum sekaligus
mempertahankan pelanggan dengan pembelian besar.
LS0tDQp0aXRsZTogIkNlbnRyYWwgVGVuZGVuY3kiICMgTWFpbiB0aXRsZSBvZiB0aGUgZG9jdW1lbnQNCnN1YnRpdGxlOiAiQXNzaWdubWVudCB+IFdlZWsgNiIgIyBTdWJ0aXRsZSBvciB0b3BpYyBmb3Igd2VlayAyDQphdXRob3I6IA0KLSAiQWRpbmRhIEFkZWxpYSBGIg0KLSAiQW5nZWxpY2EgRmxvcmVudGluYSIgDQotICJCb21hIFNhdHJpbyIgDQotICJDaHJpY3llc2lhIFcuRi5VdmFzIiANCi0gIlN5YWZpZiBBem1pIExvbnRvaCIgICAgICAgICAgIyBSZXBsYWNlIHdpdGggeW91ciBmdWxsIG5hbWUNCmRhdGU6ICAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiICMgQXV0byBkaXNwbGF5cyB0aGUgY3VycmVudCBkYXRlDQpvdXRwdXQ6ICAgICAgICAgICAgICAgICAgICAgICAgICMgT3V0cHV0IHNlY3Rpb24gZGVmaW5lcyB0aGUgZm9ybWF0IGFuZCBsYXlvdXQgDQogIHJtZGZvcm1hdHM6OnJlYWR0aGVkb3duOiAgICAgICMgaHR0cHM6Ly9naXRodWIuY29tL2p1YmEvcm1kZm9ybWF0cw0KICAgIHNlbGZfY29udGFpbmVkOiB0cnVlICAgICAgICAjIEVtYmVkcyBhbGwgcmVzb3VyY2VzIChDU1MsIEpTLCBpbWFnZXMpIA0KICAgIHRodW1ibmFpbHM6IHRydWUgICAgICAgICAgICAjIERpc3BsYXlzIGltYWdlIHRodW1ibmFpbHMgaW4gdGhlIGRvYw0KICAgIGxpZ2h0Ym94OiB0cnVlICAgICAgICAgICAgICAjIEVuYWJsZXMgY2xpY2sgdG8gZW5sYXJnZSBpbWFnZXMNCiAgICBnYWxsZXJ5OiB0cnVlICAgICAgICAgICAgICAgIyBHcm91cHMgaW1hZ2VzIGludG8gYW4gaW50ZXJhY3RpdmUgZ2FsbGVyeQ0KICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZSAgICAgICAjIEF1dG9tYXRpY2FsbHkgbnVtYmVycyBhbGwgc2VjdGlvbnMNCiAgICBsaWJfZGlyOiBsaWJzICAgICAgICAgICAgICAgIyBEaXJlY3Rvcnkgd2hlcmUgSmF2YVNjcmlwdC9DU1MgbGlicmFyaWVzDQogICAgZGZfcHJpbnQ6ICJwYWdlZCIgICAgICAgICAgICMgRGlzcGxheXMgZGF0YSBmcmFtZXMgYXMgaW50ZXJhY3RpdmUgcGFnZWQgDQogICAgY29kZV9mb2xkaW5nOiAic2hvdyIgICAgICAgICMgQWxsb3dzIGZvbGRpbmcvdW5mb2xkaW5nIFIgY29kZSBibG9ja3MgDQogICAgY29kZV9kb3dubG9hZDogeWVzICAgICAgICAgICMgQWRkcyBhIGJ1dHRvbiB0byBkb3dubG9hZCBhbGwgUiBjb2RlDQotLS0NCjxpbWcgaWQ9IkZvdG8iIHNyYz0iaHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL2JvbWFzczExMTYvS2Vsb21wb2stMi9tYWluL0tlbG9tcG9rXzIlMjBTdGF0aXN0aWthLmpwZyIgYWx0PSJMb2dvIiBzdHlsZT0id2lkdGg6MjAwcHg7IGRpc3BsYXk6IGJsb2NrOyBtYXJnaW46IGF1dG87Ij4NCg0KIyBUYWJlbCBkYXRhc2V0DQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoRFQpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShyZXNoYXBlMikNCmxpYnJhcnkoY29ycnBsb3QpDQoNCiMgLS0tIFJpZ2h0LXNrZXdlZCBkYXRhICh3aXRoIGV4dHJlbWUgdmFsdWVzKSAtLS0NCnNldC5zZWVkKDEyMykNCg0KZGF0YV9za2V3IDwtIHJlYWQuY3N2KCI0IENlbnRyYWwgVGVuZGVuY3kg4oCTIEludHJvZHVjdGlvbiB0byBTdGF0aXN0aWNzLmNzdiIpDQpudW1lcmljX2RhdGEgPC0gZGF0YV9za2V3ICU+JSBzZWxlY3Qod2hlcmUoaXMubnVtZXJpYykpDQpzdWJzZXRfZGF0YSA8LSBudW1lcmljX2RhdGFbLCAxOjRdDQoNCiBEVDo6ZGF0YXRhYmxlKA0KICAgZGF0YV9za2V3LA0KICAgY2FwdGlvbiA9ICJDZW50cmFsIFRlbmRlbmN5IiwNCiAgIHJvd25hbWVzID0gRiwNCiAgIG9wdGlvbnMgPSBsaXN0KHBhZ2VMZW5naHQgPSAxMCkNCiApDQogDQpgYGANCg0KIyBEaXN0cmlidXNpIGRhdGEgdmFyaWFiZWwgbnVtZXJpaw0KYGBge3IgZmlnLndpZHRoPTEwLCBmaWcuaGVpZ2h0PTh9DQoNCnN1YnNldF9kYXRhX2xvbmcgPC0gbWVsdChzdWJzZXRfZGF0YSkNCg0KZ2dwbG90KHN1YnNldF9kYXRhX2xvbmcsIGFlcyh4ID0gdmFsdWUsIGZpbGwgPSB2YXJpYWJsZSkpICsNCmdlb21faGlzdG9ncmFtKGNvbG9yID0gIndoaXRlIiwgYmlucyA9IDMwLCBhbHBoYSA9IDAuNykgKw0KZmFjZXRfd3JhcCh+IHZhcmlhYmxlLCBzY2FsZXMgPSAiZnJlZSIsIG5jb2wgPSAyKSArDQpsYWJzKHRpdGxlID0gIkRpc3RyaWJ1c2kgRGF0YSB1bnR1ayBTZXRpYXAgVmFyaWFiZWwgTnVtZXJpayIsDQp4ID0gIk5pbGFpIiwgeSA9ICJGcmVrdWVuc2kiKSArDQp0aGVtZV9taW5pbWFsKCkNCiANCmBgYA0KDQoNCkRpc3RyaWJ1c2kgZGF0YSB1bnR1ayBzZXRpYXAgdmFyaWFiZWwgbnVtZXJpayBtZW5nZ2FtYmFya2FuIG5pbGFpIG5pbGFpIHRlcnNlYmFyIGRhbGFtIHZhcmlhYmVsIGJlcmlrdXQgbWVtYmFudHUga2l0YSBtZW1haGFtaSBwb2xhIHVudHVrIG1lbmdhbmFsaXNpcyBDZW50cmFsIFRlbmRlbmN5bS4NCg0KDQojIEJveHBsb3QNCmBgYHtyfQ0KZ2dwbG90KHN1YnNldF9kYXRhX2xvbmcsIGFlcyh4ID0gdmFyaWFibGUsIHkgPSB2YWx1ZSwgZmlsbCA9IHZhcmlhYmxlKSkgKw0KZ2VvbV9ib3hwbG90KGFscGhhID0gMC44KSArDQpsYWJzKHRpdGxlID0gIkJveHBsb3QgUGVyYmFuZGluZ2FuIFNlYmFyYW4gRW1wYXQgVmFyaWFiZWwgTnVtZXJpayIsDQp4ID0gIlZhcmlhYmVsIiwgeSA9ICJOaWxhaSIpIA0KDQpgYGANCg0KRGFyaSBib3hwbG90IHRlcmxpaGF0IGJhaHdhIFRvdGFsUHVyY2hhc2UgbWVtaWxpa2kgc2ViYXJhbiBuaWxhaSB5YW5nIHBhbGluZyBiZXNhciBkYW4gdGVyZGFwYXQgb3V0bGllci4gVmFyaWFiZWwgQWdlIG1lbWlsaWtpIHNlYmFyYW4gcGFsaW5nIGtlY2lsLCBhcnRpbnlhIGRhdGFueWEgbGViaWggc2VyYWdhbS4gU2VtZW50YXJhIFggZGFuIEN1c3RvbWVySUQgYmVyYWRhIGRpIHJlbnRhbmcgbWVuZW5nYWggZGVuZ2FuIHZhcmlhc2kgc2VkYW5nLiBJbmkgbWVudW5qdWtrYW4gYmFod2EgVG90YWxQdXJjaGFzZSBwYWxpbmcgYmVydmFyaWFzaSBhbnRhciBwZWxhbmdnYW4sIHNlZGFuZ2thbiBBZ2UgcGFsaW5nIHN0YWJpbC4NCg0KYGBgDQoNCiMgRGlzdHJpYnVzaSBUb3RhbCBQdXJjaGFzZQ0KYGBge3J9DQojIFBhc3Rpa2FuIHBha2V0IHlhbmcgZGlidXR1aGthbg0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShkcGx5cikNCg0KIyBIaXR1bmcgc3RhdGlzdGlrIHJpbmdrYXMgdW50dWsga29sb20gVG90YWxQdXJjaGFzZQ0Kc3RhdHNfc3VtbWFyeSA8LSBkYXRhX3NrZXcgJT4lDQogIHN1bW1hcmlzZSgNCiAgICBUb3RhbFB1cmNoYXNlX01lYW4gPSBtZWFuKFRvdGFsUHVyY2hhc2UsIG5hLiA9IFRSVUUpLA0KICAgIFRvdGFsUHVyY2hhc2VfTWVkaWFuID0gbWVkaWFuKFRvdGFsUHVyY2hhc2UsIG5hLnJtID0gVFJVRSksDQogICAgVG90YWxQdXJjaGFzZV9Nb2RlID0gYXMubnVtZXJpYyhuYW1lcyhzb3J0KHRhYmxlKFRvdGFsUHVyY2hhc2UpLCBkZWNyZWFzaW5nID0gVFJVRSlbMV0pKQ0KICApDQoNCiMgQnVhdCBoaXN0b2dyYW0gZGVuZ2FuIG1lYW4sIG1lZGlhbiwgZGFuIG1vZGUNCnRwX2hpc3QgPC0gZ2dwbG90KGRhdGFfc2tldywgYWVzKHggPSBUb3RhbFB1cmNoYXNlKSkgKw0KICBnZW9tX2hpc3RvZ3JhbShhZXMoeSA9IGFmdGVyX3N0YXQoZGVuc2l0eSkpLCANCiAgICAgICAgICAgICAgICAgYmlud2lkdGggPTUwLCBmaWxsID0gIiM1YWI0YWMiLCBjb2xvciA9ICJ3aGl0ZSIsIGFscGhhID0gMC44KSArDQogIGdlb21fZGVuc2l0eShjb2xvciA9ICIjMmI4Y2JlIiwgbGluZXdpZHRoID0gMS4zLCBhbHBoYSA9IDAuOSkgKw0KICBnZW9tX3ZsaW5lKGFlcyh4aW50ZXJjZXB0ID0gc3RhdHNfc3VtbWFyeSRUb3RhbFB1cmNoYXNlX01lYW4sIGNvbG9yID0gIk1lYW4iKSwgDQogICAgICAgICAgICAgbGluZXdpZHRoID0gMS4yKSArDQogIGdlb21fdmxpbmUoYWVzKHhpbnRlcmNlcHQgPSBzdGF0c19zdW1tYXJ5JFRvdGFsUHVyY2hhc2VfTWVkaWFuLCBjb2xvciA9ICJNZWRpYW4iKSwgDQogICAgICAgICAgICAgbGluZXdpZHRoID0gMS4yLCBsaW5ldHlwZSA9ICJkYXNoZWQiKSArDQogIGdlb21fdmxpbmUoYWVzKHhpbnRlcmNlcHQgPSBzdGF0c19zdW1tYXJ5JFRvdGFsUHVyY2hhc2VfTW9kZSwgY29sb3IgPSAiTW9kZSIpLCANCiAgICAgICAgICAgICBsaW5ld2lkdGggPSAxLjIsIGxpbmV0eXBlID0gImRvdGRhc2giKSArDQogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjKCJNZWFuIiA9ICJyZWQiLCAiTWVkaWFuIiA9ICJibHVlIiwgIk1vZGUiID0gImdyZWVuIikpICsNCiAgbGFicygNCiAgICB0aXRsZSA9ICJEaXN0cmlidXNpIFRvdGFsUHVyY2hhc2UiLA0KICAgIHN1YnRpdGxlID0gIk1lbnVuanVra2FuIE5pbGFpIE1lYW4sIE1lZGlhbiwgZGFuIE1vZGUiLA0KICAgIHggPSAiVG90YWxQdXJjaGFzZSIsDQogICAgeSA9ICJEZW5zaXR5IiwNCiAgICBjb2xvciA9ICJTdGF0aXN0aWsiDQogICkgKw0KICB0aGVtZV9taW5pbWFsKCkgKw0KICB0aGVtZSgNCiAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGZhY2UgPSAiYm9sZCIsIGhqdXN0ID0gMC41KSwNCiAgICBsZWdlbmQucG9zaXRpb24gPSAiYm90dG9tIg0KICApDQoNCiMgVGFtcGlsa2FuIHBsb3QNCnByaW50KHRwX2hpc3QpDQoNCmBgYA0KDQpCaXNhIGRpIGxpaGF0IGRhcmkgdmlzdWFsaXNhc2kgZGlhdGFzIGJhaHdhIGRpc3RyaWJ1c2kgdG90YWxwdXJjaGFzZSB0ZXJsaWhhdCBtaXJpbmcga2Uga2Uga2FuYW4sIGppa2EgZGlsaWhhdCBkYXJpIG5pbGFpIG1lYW4sbWVkaWEsbW9kdXMgbWVudW5qdWthbiBzZWJhZ2lhbiBiZXNhciBkYXRhIHRvdGFscHVyY2hhc2UgYmVybmlsYWkga2VjaWwgYWthbiB0ZXRhcGkgYWRhIGJlYmVyYXBhIG5pbGFpIG91dGxpZXIgc2VoaW5nZ2EgbWVuYWlrYW4gbmlsYWkgcmF0YS1yYXRhDQoNCg0KIyBLZXNpbXB1bGFuDQogRGFyaSBoYXNpbCBhbmFsaXNpcyBrYW1pIGRhcGF0IGRpc2ltcHVsa2FuIGJhaHdhIHNlYmFnaWFuIGJlc2FyIHBlbGFuZ2dhbiBiZXJiZWxhbmphIGRhbGFtIGp1bWxhaCBrZWNpbCwgc2VtZW50YXJhIGhhbnlhIHNlZGlraXQgcGVsYW5nZ2FuIGRlbmdhbiBwZW1iZWxpYW4geWFuZyBzYW5nYXQgdGluZ2dpLiBIYWwgaW5pIG1lbnVuanVra2FuIGFkYW55YSBwZXJiZWRhYW4gc2lnbmlmaWthbiBhbnRhciBwZWxhbmdnYW4sIHNlaGluZ2dhIHBlcnVzYWhhYW4gcGVybHUgYmVyZm9rdXMgdW50dWsgbWVuaW5na2F0a2FuIG5pbGFpIHBlbWJlbGlhbiBwZWxhbmdnYW4gdW11bSBzZWthbGlndXMgbWVtcGVydGFoYW5rYW4gcGVsYW5nZ2FuIGRlbmdhbiBwZW1iZWxpYW4gYmVzYXIuDQo=