library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
flights_lga_xna <- flights %>%
filter(origin == "LGA", dest == "XNA") %>%
left_join(planes, by = "tailnum") %>%
left_join(airlines, by = "carrier") %>%
select(tailnum, manufacturer, model, year.y, name, origin, dest, flight)
# Rename year.y to something clearer
flights_lga_xna <- flights_lga_xna %>%
rename(plane_year = year.y)
flights_lga_xna
## # A tibble: 745 × 8
## tailnum manufacturer model plane_year name origin dest flight
## <chr> <chr> <chr> <int> <chr> <chr> <chr> <int>
## 1 N722MQ <NA> <NA> NA Envoy Air LGA XNA 4534
## 2 N719MQ <NA> <NA> NA Envoy Air LGA XNA 4525
## 3 N739MQ <NA> <NA> NA Envoy Air LGA XNA 4413
## 4 N719MQ <NA> <NA> NA Envoy Air LGA XNA 4534
## 5 N711MQ GULFSTREAM AEROSPACE G1159B 1976 Envoy Air LGA XNA 4525
## 6 N723MQ <NA> <NA> NA Envoy Air LGA XNA 4413
## 7 N711MQ GULFSTREAM AEROSPACE G1159B 1976 Envoy Air LGA XNA 4534
## 8 N730MQ <NA> <NA> NA Envoy Air LGA XNA 4525
## 9 N722MQ <NA> <NA> NA Envoy Air LGA XNA 4413
## 10 N719MQ <NA> <NA> NA Envoy Air LGA XNA 4534
## # ℹ 735 more rows
2. join - Add the airline name to the flights table (1 POINT)
flights_with_airline <- flights %>%
left_join(airlines, by = "carrier")
flights_with_airline
## # A tibble: 336,776 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 336,766 more rows
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
# Step 1: Find all airports used in flights (origin or destination)
active_airports <- flights %>%
select(origin, dest) %>%
pivot_longer(cols = c(origin, dest), values_to = "faa") %>%
distinct(faa)
# Step 2: Find airports not used in any commercial flights
no_commercial_flights <- airports %>%
anti_join(active_airports, by = "faa") %>%
select(faa, name, lat, lon, alt, tz, dst, tzone)
# View result
no_commercial_flights
## # A tibble: 1,355 × 8
## faa name lat lon alt tz dst tzone
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/…
## 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6 A America/…
## 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/…
## 4 06N Randall Airport 41.4 -74.4 523 -5 A America/…
## 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/…
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2 1593 -5 A America/…
## 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A America/…
## 8 0G7 Finger Lakes Regional Airport 42.9 -76.8 492 -5 A America/…
## 9 0P2 Shoestring Aviation Airfield 39.8 -76.6 1000 -5 U America/…
## 10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A America/…
## # ℹ 1,345 more rows