install.packages(“nycflights13”) install.packages(“tidyverse”)

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.2
## ✔ ggplot2   4.0.0     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(nycflights13)
# 1. Planes that fly from LGA to XNA
lga_to_xna_planes <- flights %>%
  filter(origin == "LGA", dest == "XNA") %>%
  select(tailnum) %>%
  distinct()

lga_to_xna_planes
## # A tibble: 70 × 1
##    tailnum
##    <chr>  
##  1 N722MQ 
##  2 N719MQ 
##  3 N739MQ 
##  4 N711MQ 
##  5 N723MQ 
##  6 N730MQ 
##  7 N734MQ 
##  8 N725MQ 
##  9 N736MQ 
## 10 N737MQ 
## # ℹ 60 more rows
# 2. Join airline names to flights
flights_with_airline <- flights %>%
  left_join(airlines, by = "carrier")

flights_with_airline
## # A tibble: 336,776 × 20
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ℹ 336,766 more rows
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
# 3. Airports with no commercial flights
airports_with_flights <- flights %>%
  select(origin) %>%
  distinct() %>%
  rename(faa = origin)

airports_no_flights <- airports %>%
  anti_join(airports_with_flights, by = "faa") %>%
  select(name) %>%
  distinct()

airports_no_flights
## # A tibble: 1,437 × 1
##    name                          
##    <chr>                         
##  1 Lansdowne Airport             
##  2 Moton Field Municipal Airport 
##  3 Schaumburg Regional           
##  4 Randall Airport               
##  5 Jekyll Island Airport         
##  6 Elizabethton Municipal Airport
##  7 Williams County Airport       
##  8 Finger Lakes Regional Airport 
##  9 Shoestring Aviation Airfield  
## 10 Jefferson County Intl         
## # ℹ 1,427 more rows
# 4. Airports with wind speeds greater than 30
high_wind_airports <- weather %>%
  filter(wind_speed > 30) %>%
  select(origin) %>%
  distinct() %>%
  left_join(airports, by = c("origin" = "faa")) %>%
  select(name) %>%
  distinct()

high_wind_airports
## # A tibble: 3 × 1
##   name               
##   <chr>              
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia