## spc_tbl_ [14,999 × 10] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ satisfaction_level : num [1:14999] 0.38 0.8 0.11 0.72 0.37 0.41 0.1 0.92 0.89 0.42 ...
## $ last_evaluation : num [1:14999] 0.53 0.86 0.88 0.87 0.52 0.5 0.77 0.85 1 0.53 ...
## $ number_project : num [1:14999] 2 5 7 5 2 2 6 5 5 2 ...
## $ average_montly_hours : num [1:14999] 157 262 272 223 159 153 247 259 224 142 ...
## $ time_spend_company : num [1:14999] 3 6 4 5 3 3 4 5 5 3 ...
## $ Work_accident : num [1:14999] 0 0 0 0 0 0 0 0 0 0 ...
## $ left : num [1:14999] 1 1 1 1 1 1 1 1 1 1 ...
## $ promotion_last_5years: num [1:14999] 0 0 0 0 0 0 0 0 0 0 ...
## $ Department : chr [1:14999] "sales" "sales" "sales" "sales" ...
## $ salary : chr [1:14999] "low" "medium" "medium" "low" ...
## - attr(*, "spec")=
## .. cols(
## .. satisfaction_level = col_double(),
## .. last_evaluation = col_double(),
## .. number_project = col_double(),
## .. average_montly_hours = col_double(),
## .. time_spend_company = col_double(),
## .. Work_accident = col_double(),
## .. left = col_double(),
## .. promotion_last_5years = col_double(),
## .. Department = col_character(),
## .. salary = col_character()
## .. )
## - attr(*, "problems")=<externalptr>
## # A tibble: 6 × 10
## satisfaction_level last_evaluation number_project average_montly_hours
## <dbl> <dbl> <dbl> <dbl>
## 1 0.38 0.53 2 157
## 2 0.8 0.86 5 262
## 3 0.11 0.88 7 272
## 4 0.72 0.87 5 223
## 5 0.37 0.52 2 159
## 6 0.41 0.5 2 153
## # ℹ 6 more variables: time_spend_company <dbl>, Work_accident <dbl>,
## # left <dbl>, promotion_last_5years <dbl>, Department <chr>, salary <chr>
Histogram of Satisfaction Level

- Observation: Most employees have mid-range satisfaction, which
suggests average morale. Few report high or low satsifaction.
Box Plot of Last Evaluation

- Observation: Most evaluations are above 0.6, suggesting managers
generally rate performance positively. The presence of outliers suggests
a small group with very low evaluations.
Comparative Box Plot of Monthly Hours by Department

- Observation:
- Departments like Technical and Management tend to have longer
working hours,while HR and Support departments work fewer average
hours.
- This suggests differences in workload or project intensity among
departments.
Summarize attrition counts by salary level

- Observation:
- Employees with low salaries make up the largest portion of those who
left.
- This indicates that lower pay is a major factor contributing to
attrition.
Calculate average satisfaction per department

- Observation:
- Sales, Technical teams, HR and accounting show the lowest
satisfaction levels,suggesting possible job stress or overwork.
- Management and Support teams show relatively higher
satisfaction.