\[F_X(x) = P(X\leq x) =\lim_{y\rightarrow \infty} F(x,y)\] \[F_Y(y) = P(Y\leq y) =\lim_{x\rightarrow \infty} F(x,y)\]
\[f_X(x) = \int_{-\infty}^\infty f(x,y) dy\]
\[f_Y(y) = \int_{-\infty}^\infty f(x,y) dx\]
\[f_X(x) = \frac{d}{dx} F_X(x)\] \[f_Y(y) = \frac{d}{dy} F_Y(y)\]
\[F_Y(x) = \begin{cases} 0 & x \leq 0 \\ 1-e^{-\lambda x}& x> 0 \end{cases}\]
\[f_Y(x) = \begin{cases}\lambda e^{-\lambda x} & x> 0\\ 0 & otherwise \end{cases}\]
\[F_X(y) =\begin{cases} 0 & y < 0 \\ y &0 \leq y \leq 1 \\ 1 & y > 1\end{cases}\]
\[f_X(y) = \begin{cases} 1 & 0 \leq y \leq 1 \\ 0 & otherwise \end{cases}\]
Suppose \(X\) and \(Y\) are jointly continuous with joint pdf:
\[f(x,y) = \begin{cases} 2x & 0 < x < 1, 0 < y < 1 \\ 0 & otherwise \end{cases}\]
Support:
Desmos screenshot (interactive: https://www.desmos.com/3d/rrimrnv8mt)
\[f_X(x) = \int_0^1 2x\ dy = 2xy\big|_{y=0}^1 = \begin{cases} 2x& 0 < x < 1\\ 0 & otherwise \end{cases}\] \(X \sim BETA(2,1)\)
\[f_Y(y) = \int_0^1 2x\ dx = x^2\big|_{x=0}^1 = \begin{cases} 1 & 0 < y < 1\\ 0 & otherwise \end{cases}\] \(Y \sim UNIF(0,1)\)
If \(X\) and \(Y\) are jointly continuous random variables with joint pdf \(f(x,y)\), then the conditional density functions are defined accordingly:
\[f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}\]
\[f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}\]
If \(X\) and \(Y\) are jointly continuous random variables with conditional pdfs as defined previously, then:
\[F_{X|Y}(x|y) = P(X \leq x|Y=y) = \int_{-\infty}^x f_{X|Y}(t|y)\ dt\] \[F_{Y|X}(y|x) = P(Y \leq y|X=x) = \int_{-\infty}^y f_{Y|X}(t|x)\ dt\]
As in univariate case, we can differentiate conditional CDFs to yield conditional pdfs:
\[f_{X|Y}(x|y) = \frac{d}{dx} F_{X|Y}(x|y)\] \[f_{Y|X}(y|x) = \frac{d}{dy} F_{Y|X}(y|x)\]
Suppose \(X\) and \(Y\) are jointly continuous with joint pdf:
\[f(x,y) = \begin{cases} \frac{1}{2} & 0 < x < y < 2 \\ 0 & otherwise \end{cases}\]
Find \(P(X < 1/2 | Y = 1.5)\).
Process:
Support with horizontal strip:
\[f_Y(y) = \int_0^y \frac{1}{2}\ dx =\frac{x}{2}\big|_{x=0}^y= \begin{cases} y/2 & 0 < y < 2 \\ 0 & otherwise \end{cases}\]
For \(0 < y < 2\): \[f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{1/2}{y/2} = \begin{cases} \frac{1}{y} & 0 < x < y \\ 0 & otherwise \end{cases}\] Note: \(X|Y=y \sim UNIF(0,y)\)!
For \(0 < x < y\): \[P(X \leq x | Y=y) = \int_0^x f_{X|Y}(t|y) dt= \int_0^x 1/y\ dt = x/y\] \[F_{X|Y}(x|y) = \begin{cases} 0 & x \leq 0 \\ x/y & 0 < x < y \\ 1 & x \geq y \end{cases}\]
\[\therefore P(X<1/2 | Y=1.5) = F_{X|Y}(0.5|1.5) = \frac{1}{3}\]
Let \(X\) and \(Y\) have the following joint pdf:
\[\scriptsize f(x,y) = \left\{\begin{array}{ll} 30xy^2 & x-1\leq y \leq 1-x;\ 0\leq x \leq 1 \\ 0 & otherwise\\ \end{array}\right.\]
(Fully interactive: https://www.desmos.com/3d/zhoozavkw8)
Tasks:
Support: \(x-1\leq y \leq 1-x, 0 \leq x \leq 1\)
\[f_X(x) = \int_{x-1}^{1-x} 30xy^2\ dy\]
\[=10xy^3 \big|_{y=x-1}^{1-x} = 10x(1-x)^3-10x(x-1)^3\] \[= 10x(1-x)^3-10x(-1)^3(1-x)^3\] \[= \begin{cases} 20x(1-x)^3 & 0 < x < 1 \\ 0 & otherwise \end{cases}\]
\[X\sim BETA(2,4)!\]
Support: \(x-1\leq y \leq 1-x, 0 \leq x \leq 1\)
For \(0 < y < 1\): \[f_Y(y) = \int_{0}^{1-y} 30xy^2\ dx\] \[ = 15x^2y^2\big|_{x=0}^{1-y} = 15(1-y)^2y^2\]
For \(-1 < y < 0\): \[f_Y(y) = \int_{0}^{1+y} 30xy^2\ dx\] \[ = 15x^2y^2\big|_{x=0}^{1+y} = 15(1+y)^2y^2\]
\[f_Y(y) = \begin{cases}15y^2(1-|y|)^2& -1 < y < 1 \\ 0 & otherwise \end{cases}\]
For \(0 < x < 1\):
\[f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)} = \frac{30xy^2}{20x(1-x)^3}\]
\[= \begin{cases} \frac{3y^2}{2(1-x)^3}& x-1 \leq y \leq 1-x \\ 0 & otherwise \end{cases} \]
For \(x-1 < y < 1-x\):
\[F_{Y|X}(y|x) = \int_{x-1}^y\frac{3t^2}{2(1-x)^3}\ dt = \frac{1}{2(1-x)^3}t^3\big|_{t=x-1}^y = \frac{y^3-(x-1)^3}{2(1-x)^3}\]
\[F_{Y|X}(y|x) = \begin{cases} 0 & y \leq x-1 \\ \frac{y^3-(x-1)^3}{2(1-x)^3} & x-1 < y < 1-x \\ 1 & y \geq 1-x \end{cases}\]
\[F_{Y|X}(y|0.75) = \begin{cases} 0 & y \leq -0.25 \\ \frac{y^3-(-0.25)^3}{2(0.25)^3} & -0.25 < y < 0.25 \\ 1 & y \geq 0.25 \end{cases}\]
\[\therefore P(Y>0|X=0.75) = 1-F_{Y|X}(0|0.75)= 1-\frac{0^3-(-0.25)^3}{2(0.25)^3} = 0.5\]