Jacob Stoughton and Jakub Kepa

library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.2
## ✔ ggplot2   4.0.0     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Create the code makes a table for each of the below questions.

1. join + filter - Which airplanes fly LGA to XNA (1 POINT)

planes_LGAXNA <- flights %>%
  filter(origin == "LGA", dest == "XNA")

flights_planes <- planes_LGAXNA %>%
  left_join(planes, by = "tailnum")

flights_planes %>%
select(year.x, month, day, dep_time, arr_time)
## # A tibble: 745 × 5
##    year.x month   day dep_time arr_time
##     <int> <int> <int>    <int>    <int>
##  1   2013     1     1      656     1007
##  2   2013     1     1     1525     1934
##  3   2013     1     1     1740     2158
##  4   2013     1     2      656     1014
##  5   2013     1     2     1531     1846
##  6   2013     1     2     1740     2035
##  7   2013     1     3      703     1014
##  8   2013     1     3     1525     1802
##  9   2013     1     3     1737     1953
## 10   2013     1     4      701      934
## # ℹ 735 more rows
head(flights_planes)
## # A tibble: 6 × 27
##   year.x month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1   2013     1     1      656            705        -9     1007            940
## 2   2013     1     1     1525           1530        -5     1934           1805
## 3   2013     1     1     1740           1745        -5     2158           2020
## 4   2013     1     2      656            705        -9     1014            940
## 5   2013     1     2     1531           1530         1     1846           1805
## 6   2013     1     2     1740           1745        -5     2035           2020
## # ℹ 19 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, year.y <int>, type <chr>,
## #   manufacturer <chr>, model <chr>, engines <int>, seats <int>, speed <int>,
## #   engine <chr>

2. join - Add the airline name to the flights table (1 POINT)

flights_airlines <- flights %>%
  left_join(airlines, by = "carrier")

flights_airlines %>%
select(year, month, day, dep_time, arr_time, name)
## # A tibble: 336,776 × 6
##     year month   day dep_time arr_time name                    
##    <int> <int> <int>    <int>    <int> <chr>                   
##  1  2013     1     1      517      830 United Air Lines Inc.   
##  2  2013     1     1      533      850 United Air Lines Inc.   
##  3  2013     1     1      542      923 American Airlines Inc.  
##  4  2013     1     1      544     1004 JetBlue Airways         
##  5  2013     1     1      554      812 Delta Air Lines Inc.    
##  6  2013     1     1      554      740 United Air Lines Inc.   
##  7  2013     1     1      555      913 JetBlue Airways         
##  8  2013     1     1      557      709 ExpressJet Airlines Inc.
##  9  2013     1     1      557      838 JetBlue Airways         
## 10  2013     1     1      558      753 American Airlines Inc.  
## # ℹ 336,766 more rows
head(flights_airlines)
## # A tibble: 6 × 20
##    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1  2013     1     1      517            515         2      830            819
## 2  2013     1     1      533            529         4      850            830
## 3  2013     1     1      542            540         2      923            850
## 4  2013     1     1      544            545        -1     1004           1022
## 5  2013     1     1      554            600        -6      812            837
## 6  2013     1     1      554            558        -4      740            728
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>

3. join + select + distinct() - Which airports have no commercial flights (1 POINT)

airports_flights <- flights %>%
  select(origin, dest) %>%
  distinct()

airports_no_flights <- airports %>%
  anti_join(airports_flights, by = c("faa" = "origin")) %>%
  anti_join(airports_flights, by = c("faa" = "dest"))

airports_no_flights %>% 
  select(faa, name, lat, lon)
## # A tibble: 1,355 × 4
##    faa   name                             lat    lon
##    <chr> <chr>                          <dbl>  <dbl>
##  1 04G   Lansdowne Airport               41.1  -80.6
##  2 06A   Moton Field Municipal Airport   32.5  -85.7
##  3 06C   Schaumburg Regional             42.0  -88.1
##  4 06N   Randall Airport                 41.4  -74.4
##  5 09J   Jekyll Island Airport           31.1  -81.4
##  6 0A9   Elizabethton Municipal Airport  36.4  -82.2
##  7 0G6   Williams County Airport         41.5  -84.5
##  8 0G7   Finger Lakes Regional Airport   42.9  -76.8
##  9 0P2   Shoestring Aviation Airfield    39.8  -76.6
## 10 0S9   Jefferson County Intl           48.1 -123. 
## # ℹ 1,345 more rows
head(airports_no_flights)
## # A tibble: 6 × 8
##   faa   name                             lat   lon   alt    tz dst   tzone      
##   <chr> <chr>                          <dbl> <dbl> <dbl> <dbl> <chr> <chr>      
## 1 04G   Lansdowne Airport               41.1 -80.6  1044    -5 A     America/Ne…
## 2 06A   Moton Field Municipal Airport   32.5 -85.7   264    -6 A     America/Ch…
## 3 06C   Schaumburg Regional             42.0 -88.1   801    -6 A     America/Ch…
## 4 06N   Randall Airport                 41.4 -74.4   523    -5 A     America/Ne…
## 5 09J   Jekyll Island Airport           31.1 -81.4    11    -5 A     America/Ne…
## 6 0A9   Elizabethton Municipal Airport  36.4 -82.2  1593    -5 A     America/Ne…

4. EXTRA CREDIT - (2 POINT2) - NO HELP - NO PARTIAL CREDIT

Create a table with the names of the airports with the most

winds (wind_speed > 30). The table must contain only the airport

name (airports$name) and no duplicate rows

 high_wind_airports <- weather %>%
   filter(wind_speed > 30) %>%
   left_join(airports, by = c ("origin" = "faa")) %>%
   select(name) %>%
   distinct()
 head(high_wind_airports)
## # A tibble: 3 × 1
##   name               
##   <chr>              
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia