Data Analysis complete

library(tidyverse)
library(tidyr)
library(dplyr)
library(readr)
library(purrr)
library(ggplot2)
library(e1071)
library(emmeans)
library(lme4)
library(lmerTest)
library(patchwork)
library(brms)
library(bayesplot)
library(car)
library(effects)
library(glue)
library(scales)
library(data.table)
library(effects)
# Disable emmeans computation limits for large models
emmeans::emm_options(
  lmerTest.limit = Inf,
  pbkrtest.limit = Inf
)

#A: Behvioural analysis

# --- Load E-Prime file ---
RT <- read.csv("/Users/can/Documents/Uni/Thesis/Data/E-Prime/all_excluded2.csv", sep = ";")

# --- Filter, convert, exclude S12  ---
RTR <- RT %>%
  dplyr::filter(procedure == "responsprocedure") %>%
  dplyr::mutate(
    feedback.ACC = as.numeric(feedback.ACC),
    feedback.RT  = as.numeric(feedback.RT)
  ) %>%
  dplyr::filter(subject != 12)

# --- Trial numbering within subject × session ---
RTR <- RTR %>%
  dplyr::group_by(subject, session) %>%
  dplyr::mutate(trial = cumsum(sub.trial.number == 1)) %>%
  dplyr::ungroup()

# --- Compute per-trial accuracy & mean RT  ---
df <- RTR %>%
  dplyr::group_by(subject, session, trial) %>%
  dplyr::mutate(
    trial.acc = sum(feedback.ACC, na.rm = TRUE) / dplyr::n(),
    trial.RT  = mean(feedback.RT, na.rm = TRUE)
  ) %>%
  dplyr::ungroup()

# --- keep all trials once, tag correctness ---
df_acc_base <- df %>%
  dplyr::mutate(
    subject          = as.factor(subject),
    sub.trial.number = as.factor(sub.trial.number),
    # keep session numeric here; convert to labels locally in plots when needed
    is_correct       = trial.acc == 1,
    trial_acc_cat    = factor(dplyr::if_else(trial.acc == 1, "correct", "wrong"),
                              levels = c("correct", "wrong"))
  )

# helper to label sessions as "Block 1".."Block 5" on demand
as_block_factor <- function(x) factor(x, levels = 1:5, labels = paste("Block", 1:5))
safe_fit <- function(formula, data) {
  # Try lmer first; fall back to lm if random effects not identifiable
  out <- tryCatch(lme4::lmer(formula, data = data), error = function(e) NULL)
  if (is.null(out)) {
    message("⚠️ Falling back to lm (random effect not identifiable).")
    out <- stats::lm(update(formula, . ~ . - (1 | subject)), data = data)
  }
  out
}

#A1 RT per block

# ===== RT per block (correct vs wrong) — one-stop function =====
# - Fits RT ~ trial_acc_cat * Block + (1|subject)


# Helper (safe lmer with fallback)
if (!exists("safe_fit")) {
  safe_fit <- function(formula, data) {
    m <- tryCatch(lme4::lmer(formula, data = data), error = function(e) NULL)
    if (is.null(m)) {
      message("⚠️ Falling back to lm (random effect not identifiable).")
      m <- stats::lm(update(formula, . ~ . - (1 | subject)), data = data)
    }
    m
  }
}
# Helper (block labels)
if (!exists("as_block_factor")) {
  as_block_factor <- function(x) factor(x, levels = 1:5, labels = paste("Block", 1:5))
}

rt_per_block_with_correctness <- function(df_acc_all, make_plot = TRUE) {
  # 1) Build trial-level dataset
  df_trial_all <- df_acc_all %>%
    dplyr::distinct(subject, session, trial, .keep_all = TRUE) %>%
    dplyr::transmute(subject, session_f = as_block_factor(session),
                     rt = trial.RT, trial_acc_cat)

  # 2) Fit combined model with correctness factor
  cat("\n\n========== RT per block — COMBINED (correctness as factor) ==========\n")
  mdl_all <- safe_fit(rt ~ trial_acc_cat * session_f + (1 | subject), data = df_trial_all)
  cat("\nModel summary:\n"); print(summary(mdl_all))
  cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl_all, type = 2))

  # 3) EMMs by block and correctness
  emms_all <- emmeans::emmeans(mdl_all, ~ session_f | trial_acc_cat)
  cat("\nEMMs (session | correctness):\n"); print(summary(emms_all))
  cat("\nPairwise session (within correctness):\n")
  print(emmeans::emmeans(mdl_all, pairwise ~ session_f | trial_acc_cat)$contrasts)

  # 4) % faster (correct vs wrong) — overall and per block
  overall_subtitle <- NULL
  em_overall <- tryCatch(emmeans::emmeans(mdl_all, ~ trial_acc_cat) %>% as.data.frame(),
                         error = function(e) NULL)
  if (!is.null(em_overall) && all(c("correct","wrong") %in% em_overall$trial_acc_cat)) {
    mean_correct <- em_overall$emmean[em_overall$trial_acc_cat == "correct"]
    mean_wrong   <- em_overall$emmean[em_overall$trial_acc_cat == "wrong"]
    pct_faster_overall <- 100 * (1 - mean_correct / mean_wrong)
    cat(sprintf("\nOverall %% faster (correct vs wrong): %.2f%%\n", pct_faster_overall))
    overall_subtitle <- sprintf("Overall %% faster (correct vs wrong): %.2f%%", pct_faster_overall)
  } else {
    cat("\nOverall %% faster: not available (only one correctness level present).\n")
  }

  em_per_block <- emmeans::emmeans(mdl_all, ~ trial_acc_cat | session_f) %>% as.data.frame()
  if (all(c("correct","wrong") %in% em_per_block$trial_acc_cat)) {
    pct_tbl <- em_per_block %>%
      dplyr::select(session_f, trial_acc_cat, emmean) %>%
      tidyr::pivot_wider(names_from = trial_acc_cat, values_from = emmean) %>%
      dplyr::mutate(`% faster (correct vs wrong)` = 100 * (1 - correct / wrong)) %>%
      dplyr::select(session_f, `% faster (correct vs wrong)`)
    cat("\nPer-block %% faster (correct vs wrong):\n"); print(pct_tbl)
  } else {
    cat("\nPer-block %% faster: not available (only one correctness level present within blocks).\n")
  }

  # 5) Fitted EMM plot (always printed)
  p <- as.data.frame(emms_all) %>%
    ggplot2::ggplot(ggplot2::aes(x = session_f, y = emmean,
                                 group = trial_acc_cat, color = trial_acc_cat)) +
    ggplot2::geom_point() +
    ggplot2::geom_errorbar(ggplot2::aes(ymin = emmean - SE, ymax = emmean + SE), width = .15) +
    ggplot2::labs(title = "RT per block — fitted EMMs (correct vs wrong)",
                  subtitle = overall_subtitle,
                  x = "Block", y = "Estimated RT", color = "Correctness") +
    ggplot2::theme_minimal(base_size = 12) +
    ggplot2::theme(panel.grid = ggplot2::element_blank())

  if (make_plot) print(p)

  # 6) Split (correct-only / wrong-only) models — diagnostics in console (no extra plots)
  for (lab in c("correct", "wrong")) {
    df_trial <- df_trial_all %>% dplyr::filter(trial_acc_cat == lab)
    if (nrow(df_trial) == 0) { cat("\n⚠️ No data for", lab, "\n"); next }
    cat("\n\n========== RT per block —", toupper(lab), "==========\n")
    mdl <- safe_fit(rt ~ session_f + (1 | subject), data = df_trial)
    cat("\nModel summary:\n"); print(summary(mdl))
    cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl, type = 2))
    emms <- emmeans::emmeans(mdl, ~ session_f)
    cat("\nEMMs (session):\n"); print(summary(emms))
    cat("\nPairwise (Tukey):\n"); print(emmeans::emmeans(mdl, pairwise ~ session_f)$contrasts)
  }

  invisible(list(model = mdl_all, emms = emms_all, plot = p))
}


rt_per_block_with_correctness(df_acc_base)


========== RT per block — COMBINED (correctness as factor) ==========

Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ trial_acc_cat * session_f + (1 | subject)
   Data: data

REML criterion at convergence: 59183.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.5546 -0.4805 -0.0988  0.3305 17.6628 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 44156    210.1   
 Residual             51999    228.0   
Number of obs: 4320, groups:  subject, 18

Fixed effects:
                                    Estimate Std. Error t value
(Intercept)                           498.49      50.27   9.916
trial_acc_catwrong                    362.46      20.05  18.077
session_fBlock 2                      -16.31      12.95  -1.260
session_fBlock 3                       21.83      13.64   1.600
session_fBlock 4                      -36.97      12.41  -2.978
session_fBlock 5                       68.17      13.71   4.972
trial_acc_catwrong:session_fBlock 2  -145.39      25.90  -5.613
trial_acc_catwrong:session_fBlock 3  -230.63      25.52  -9.037
trial_acc_catwrong:session_fBlock 4  -210.33      27.09  -7.765
trial_acc_catwrong:session_fBlock 5  -150.08      25.56  -5.872

Correlation of Fixed Effects:
            (Intr) trl_c_ sss_B2 sss_B3 sss_B4 sss_B5 t__:_2 t__:_3 t__:_4
trl_cc_ctwr -0.074                                                        
sssn_fBlck2 -0.114  0.288                                                 
sssn_fBlck3 -0.108  0.271  0.424                                          
sssn_fBlck4 -0.119  0.300  0.462  0.440                                   
sssn_fBlck5 -0.108  0.274  0.419  0.397  0.436                            
trl_cc_:_B2  0.057 -0.773 -0.506 -0.217 -0.234 -0.213                     
trl_cc_:_B3  0.058 -0.782 -0.232 -0.541 -0.239 -0.215  0.614              
trl_cc_:_B4  0.055 -0.739 -0.215 -0.207 -0.464 -0.202  0.575  0.586       
trl_cc_:_B5  0.058 -0.786 -0.227 -0.214 -0.236 -0.545  0.609  0.616  0.580

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                          Chisq Df Pr(>Chisq)    
trial_acc_cat           715.960  1  < 2.2e-16 ***
session_f               141.487  4  < 2.2e-16 ***
trial_acc_cat:session_f  92.146  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs (session | correctness):
trial_acc_cat = correct:
 session_f emmean   SE   df lower.CL upper.CL
 Block 1      498 50.3 17.9      393      604
 Block 2      482 50.5 18.1      376      588
 Block 3      520 50.6 18.4      414      627
 Block 4      462 50.3 17.9      356      567
 Block 5      567 50.7 18.4      460      673

trial_acc_cat = wrong:
 session_f emmean   SE   df lower.CL upper.CL
 Block 1      861 52.7 21.6      751      970
 Block 2      699 51.3 19.3      592      806
 Block 3      652 50.9 18.8      546      759
 Block 4      614 52.0 20.4      505      722
 Block 5      779 50.8 18.7      672      886

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise session (within correctness):
trial_acc_cat = correct:
 contrast          estimate   SE   df t.ratio p.value
 Block 1 - Block 2     16.3 12.9 4293   1.260  0.7159
 Block 1 - Block 3    -21.8 13.6 4293  -1.600  0.4971
 Block 1 - Block 4     37.0 12.4 4293   2.978  0.0243
 Block 1 - Block 5    -68.2 13.7 4293  -4.972  <.0001
 Block 2 - Block 3    -38.1 14.3 4293  -2.672  0.0584
 Block 2 - Block 4     20.7 13.2 4293   1.570  0.5172
 Block 2 - Block 5    -84.5 14.4 4293  -5.872  <.0001
 Block 3 - Block 4     58.8 13.8 4293   4.254  0.0002
 Block 3 - Block 5    -46.3 15.0 4294  -3.084  0.0175
 Block 4 - Block 5   -105.1 13.9 4293  -7.552  <.0001

trial_acc_cat = wrong:
 contrast          estimate   SE   df t.ratio p.value
 Block 1 - Block 2    161.7 22.3 4293   7.236  <.0001
 Block 1 - Block 3    208.8 21.5 4293   9.731  <.0001
 Block 1 - Block 4    247.3 24.0 4293  10.305  <.0001
 Block 1 - Block 5     81.9 21.4 4294   3.822  0.0013
 Block 2 - Block 3     47.1 17.5 4293   2.697  0.0545
 Block 2 - Block 4     85.6 20.5 4293   4.169  0.0003
 Block 2 - Block 5    -79.8 17.5 4294  -4.568  <.0001
 Block 3 - Block 4     38.5 19.5 4293   1.971  0.2803
 Block 3 - Block 5   -126.9 16.4 4294  -7.758  <.0001
 Block 4 - Block 5   -165.4 19.6 4294  -8.454  <.0001

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 5 estimates 
NOTE: Results may be misleading due to involvement in interactions

Overall % faster (correct vs wrong): 29.84%

Per-block %% faster (correct vs wrong):
# A tibble: 5 × 2
  session_f `% faster (correct vs wrong)`
  <fct>                             <dbl>
1 Block 1                            42.1
2 Block 2                            31.0
3 Block 3                            20.2
4 Block 4                            24.8
5 Block 5                            27.3



========== RT per block — CORRECT ==========

Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ session_f + (1 | subject)
   Data: data

REML criterion at convergence: 37124.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.8886 -0.5512 -0.1382  0.3723 10.4716 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 37404    193.4   
 Residual             25812    160.7   
Number of obs: 2852, groups:  subject, 18

Fixed effects:
                 Estimate Std. Error t value
(Intercept)       499.092     45.988  10.853
session_fBlock 2  -18.479      9.135  -2.023
session_fBlock 3   17.916      9.637   1.859
session_fBlock 4  -38.771      8.756  -4.428
session_fBlock 5   64.359      9.691   6.641

Correlation of Fixed Effects:
            (Intr) sss_B2 sss_B3 sss_B4
sssn_fBlck2 -0.088                     
sssn_fBlck3 -0.083  0.425              
sssn_fBlck4 -0.092  0.462  0.441       
sssn_fBlck5 -0.083  0.418  0.395  0.435

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
           Chisq Df Pr(>Chisq)    
session_f 123.77  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs (session):
 session_f emmean   SE   df lower.CL upper.CL
 Block 1      499 46.0 17.4      402      596
 Block 2      481 46.1 17.6      384      578
 Block 3      517 46.2 17.8      420      614
 Block 4      460 46.0 17.5      363      557
 Block 5      563 46.2 17.8      466      661

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey):
 contrast          estimate    SE   df t.ratio p.value
 Block 1 - Block 2     18.5  9.14 2830   2.023  0.2552
 Block 1 - Block 3    -17.9  9.64 2830  -1.859  0.3399
 Block 1 - Block 4     38.8  8.76 2830   4.428  0.0001
 Block 1 - Block 5    -64.4  9.69 2830  -6.641  <.0001
 Block 2 - Block 3    -36.4 10.10 2830  -3.613  0.0028
 Block 2 - Block 4     20.3  9.28 2830   2.186  0.1854
 Block 2 - Block 5    -82.8 10.20 2830  -8.146  <.0001
 Block 3 - Block 4     56.7  9.76 2830   5.811  <.0001
 Block 3 - Block 5    -46.4 10.60 2831  -4.368  0.0001
 Block 4 - Block 5   -103.1  9.84 2830 -10.480  <.0001

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 5 estimates 


========== RT per block — WRONG ==========

Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ session_f + (1 | subject)
   Data: data

REML criterion at convergence: 21091.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.3493 -0.4884 -0.0940  0.3321 12.5268 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  58984   242.9   
 Residual             100214   316.6   
Number of obs: 1468, groups:  subject, 18

Fixed effects:
                 Estimate Std. Error t value
(Intercept)        862.51      62.58  13.783
session_fBlock 2  -165.20      31.34  -5.271
session_fBlock 3  -214.20      30.07  -7.124
session_fBlock 4  -252.45      33.64  -7.505
session_fBlock 5   -88.35      30.07  -2.938

Correlation of Fixed Effects:
            (Intr) sss_B2 sss_B3 sss_B4
sssn_fBlck2 -0.325                     
sssn_fBlck3 -0.337  0.687              
sssn_fBlck4 -0.302  0.611  0.638       
sssn_fBlck5 -0.340  0.682  0.706  0.631

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
           Chisq Df Pr(>Chisq)    
session_f 86.063  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs (session):
 session_f emmean   SE   df lower.CL upper.CL
 Block 1      863 62.6 23.1      733      992
 Block 2      697 60.2 19.8      572      823
 Block 3      648 59.6 19.1      524      773
 Block 4      610 61.4 21.5      482      738
 Block 5      774 59.5 18.9      650      899

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey):
 contrast          estimate   SE   df t.ratio p.value
 Block 1 - Block 2    165.2 31.3 1448   5.270  <.0001
 Block 1 - Block 3    214.2 30.1 1448   7.123  <.0001
 Block 1 - Block 4    252.5 33.6 1448   7.504  <.0001
 Block 1 - Block 5     88.3 30.1 1448   2.938  0.0277
 Block 2 - Block 3     49.0 24.3 1447   2.015  0.2593
 Block 2 - Block 4     87.3 28.7 1448   3.036  0.0206
 Block 2 - Block 5    -76.8 24.5 1448  -3.134  0.0151
 Block 3 - Block 4     38.3 27.3 1447   1.402  0.6263
 Block 3 - Block 5   -125.8 23.1 1449  -5.454  <.0001
 Block 4 - Block 5   -164.1 27.5 1449  -5.957  <.0001

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 5 estimates 
rt_block_full_report <- function(df, file = NULL, make_plot = TRUE, open = TRUE, width = 200) {
  if (is.null(file)) {
    file <- file.path(getwd(), sprintf("rt_block_output_%s.txt",
                                       format(Sys.time(), "%Y-%m-%d_%H-%M-%S")))
  }
  old_width <- getOption("width")
  options(width = width)  # wider lines so nothing wraps oddly

  con <- file(file, open = "wt")
  # capture both stdout and messages
  sink(con); sink(con, type = "message")
  # ALWAYS restore sinks & width even if an error happens
  on.exit({
    try(sink(NULL), silent = TRUE)
    try(sink(NULL, type = "message"), silent = TRUE)
    try(close(con), silent = TRUE)
    options(width = old_width)
  }, add = TRUE)

  # >>> run your existing function (prints go to the file)
  res <- rt_per_block_with_correctness(df, make_plot = make_plot)

  # restore and open
  sink(NULL); sink(NULL, type = "message"); close(con)
  options(width = old_width)

  if (open) file.show(file)
  invisible(list(result = res, path = file))
}

# ===== RUN (this will create & open a scrollable .txt with the full output) =====
rt_block_full_report(df_acc_base, make_plot = TRUE)
NOTE: Results may be misleading due to involvement in interactions

#A2.1 Correct-(or Wrong-)trials per block (counts, model & plot)

# ===== Combined plot: RT EMMs + % correct on x-axis =====

if (!exists("safe_fit")) {
  safe_fit <- function(formula, data) {
    m <- tryCatch(lme4::lmer(formula, data = data), error = function(e) NULL)
    if (is.null(m)) {
      message("⚠️ Falling back to lm (random effect not identifiable).")
      m <- stats::lm(update(formula, . ~ . - (1 | subject)), data = data)
    }
    m
  }
}
if (!exists("as_block_factor")) {
  as_block_factor <- function(x) factor(x, levels = 1:5, labels = paste("Block", 1:5))
}

plot_rt_with_percent_correct <- function(df_acc_all, total_trials_per_block = 48, show_plot = TRUE, digits = 0) {
  # ---------- RT model & EMMs (correct vs wrong by block) ----------
  df_trial_all <- df_acc_all %>%
    dplyr::distinct(subject, session, trial, .keep_all = TRUE) %>%
    dplyr::transmute(subject,
                     session_f = as_block_factor(session),
                     rt = trial.RT,
                     trial_acc_cat)

  mdl_rt <- safe_fit(rt ~ trial_acc_cat * session_f + (1 | subject), data = df_trial_all)
  em_rt  <- emmeans::emmeans(mdl_rt, ~ session_f | trial_acc_cat)
  df_rt  <- as.data.frame(em_rt)

  # Overall % faster (subtitle)
  overall_subtitle <- NULL
  em_overall <- tryCatch(emmeans::emmeans(mdl_rt, ~ trial_acc_cat) %>% as.data.frame(), error = function(e) NULL)
  if (!is.null(em_overall) && all(c("correct","wrong") %in% em_overall$trial_acc_cat)) {
    mean_correct <- em_overall$emmean[em_overall$trial_acc_cat == "correct"]
    mean_wrong   <- em_overall$emmean[em_overall$trial_acc_cat == "wrong"]
    pct_faster_overall <- 100 * (1 - mean_correct / mean_wrong)
    overall_subtitle <- sprintf("Overall %% faster (correct vs wrong): %.2f%%", pct_faster_overall)
  }

  # ---------- % correct per block from GLMM (for x-axis labels) ----------
  correct_counts <- df_acc_all %>%
    dplyr::filter(trial_acc_cat == "correct") %>%
    dplyr::distinct(subject, session, trial) %>%
    dplyr::count(subject, session, name = "correct_trials") %>%
    dplyr::mutate(session_f = as_block_factor(session),
                  fail_trials = total_trials_per_block - correct_trials)

  label_map <- setNames(levels(df_rt$session_f), levels(df_rt$session_f))  # default
  base_names <- c("Block 1" = "6 Steps",
                  "Block 2" = "12 Steps",
                  "Block 3" = "18 Steps",
                  "Block 4" = "Familiar",
                  "Block 5" = "Unfamiliar")
  label_map <- base_names[names(label_map)]

  if (nrow(correct_counts) > 0) {
    mdl_pc <- tryCatch(
      lme4::glmer(cbind(correct_trials, fail_trials) ~ session_f + (1 | subject),
                  data = correct_counts, family = binomial),
      error = function(e) NULL
    )
    if (!is.null(mdl_pc)) {
      em_pc <- emmeans::emmeans(mdl_pc, ~ session_f, type = "response")
      df_pc <- as.data.frame(em_pc)
      val_col <- if ("prob" %in% names(df_pc)) "prob" else if ("response" %in% names(df_pc)) "response" else "emmean"
      df_pc <- df_pc %>% dplyr::transmute(session_f, pct = round(.data[[val_col]] * 100, digits))
    } else {
      # fallback: descriptive mean % correct out of 48
      df_pc <- correct_counts %>%
        dplyr::mutate(pct = 100 * correct_trials / total_trials_per_block) %>%
        dplyr::group_by(session_f) %>%
        dplyr::summarise(pct = round(mean(pct, na.rm = TRUE), digits), .groups = "drop")
    }
    
    add_map <- setNames(paste0(label_map[df_pc$session_f], " (", df_pc$pct, "%)"),
                        df_pc$session_f)
    label_map[names(add_map)] <- add_map
  }

  # ---------- Combined plot (clean) ----------
  p <- ggplot2::ggplot(df_rt, ggplot2::aes(x = session_f, y = emmean,
                                           group = trial_acc_cat, color = trial_acc_cat)) +
    # dotted divider between Block 3 and Block 4 (i.e., after the 3rd discrete position)
    ggplot2::geom_vline(xintercept = 3.5, linetype = "dotted") +
    ggplot2::geom_point() +
    ggplot2::geom_errorbar(ggplot2::aes(ymin = emmean - SE, ymax = emmean + SE), width = 0.15) +
    ggplot2::scale_x_discrete(labels = label_map) +
    ggplot2::labs(title = "RT across difficulty levels",
                  subtitle = overall_subtitle,
                  x = "Difficulty",
                  y = "Estimated RT (in ms)",
                  color = "Correctness") +
    ggplot2::theme_minimal(base_size = 12) +
    ggplot2::theme(panel.grid = ggplot2::element_blank())

  if (show_plot) print(p)

  invisible(list(m_rt = mdl_rt, em_rt = em_rt,
                 m_pc = if (exists("mdl_pc")) mdl_pc else NULL,
                 xaxis_labels = label_map, plot = p))
}

# RUN
plot_rt_with_percent_correct(df_acc_base)
NOTE: Results may be misleading due to involvement in interactions

# === Training-only plot: Blocks 1–3 ===
# RT EMMs (correct vs wrong) + % correct on x-axis

if (!exists("safe_fit")) {
  safe_fit <- function(formula, data) {
    m <- tryCatch(lme4::lmer(formula, data = data), error = function(e) NULL)
    if (is.null(m)) {
      message("⚠️ Falling back to lm (random effect not identifiable).")
      m <- stats::lm(update(formula, . ~ . - (1 | subject)), data = data)
    }
    m
  }
}
if (!exists("as_block_factor")) {
  as_block_factor <- function(x) factor(x, levels = 1:5, labels = paste("Block", 1:5))
}

plot_rt_training_blocks <- function(df_acc_all, total_trials_per_block = 48, show_plot = TRUE, digits = 0) {

  df_trial_all <- df_acc_all %>%
    dplyr::distinct(subject, session, trial, .keep_all = TRUE) %>%
    dplyr::transmute(subject,
                     session_f = as_block_factor(session),
                     rt = trial.RT,
                     trial_acc_cat) %>%
    dplyr::filter(session_f %in% c("Block 1","Block 2","Block 3")) %>%
    dplyr::mutate(session_f = factor(session_f, levels = c("Block 1","Block 2","Block 3")))

  # Model & EMMs (training only)
  mdl_rt <- safe_fit(rt ~ trial_acc_cat * session_f + (1 | subject), data = df_trial_all)
  em_rt  <- emmeans::emmeans(mdl_rt, ~ session_f | trial_acc_cat)
  df_rt  <- as.data.frame(em_rt)

  # Overall % faster from training only
  overall_subtitle <- NULL
  em_overall <- tryCatch(emmeans::emmeans(mdl_rt, ~ trial_acc_cat) %>% as.data.frame(), error = function(e) NULL)
  if (!is.null(em_overall) && all(c("correct","wrong") %in% em_overall$trial_acc_cat)) {
    mc <- em_overall$emmean[em_overall$trial_acc_cat == "correct"]
    mw <- em_overall$emmean[em_overall$trial_acc_cat == "wrong"]
    pct_faster_overall <- 100 * (1 - mc / mw)
    overall_subtitle <- sprintf("Overall %% faster (correct vs wrong): %.2f%%", pct_faster_overall)
  }

  # ---------- % correct per training block for x-axis labels ----------
  correct_counts <- df_acc_all %>%
    dplyr::filter(trial_acc_cat == "correct", session %in% 1:3) %>%
    dplyr::distinct(subject, session, trial) %>%
    dplyr::count(subject, session, name = "correct_trials") %>%
    dplyr::mutate(session_f = factor(as_block_factor(session),
                                     levels = c("Block 1","Block 2","Block 3")),
                  fail_trials = total_trials_per_block - correct_trials)

  label_map <- c("Block 1" = "6 Steps",
                 "Block 2" = "12 Steps",
                 "Block 3" = "18 Steps")

  if (nrow(correct_counts) > 0) {
    mdl_pc <- tryCatch(
      lme4::glmer(cbind(correct_trials, fail_trials) ~ session_f + (1 | subject),
                  data = correct_counts, family = binomial),
      error = function(e) NULL
    )
    if (!is.null(mdl_pc)) {
      em_pc <- emmeans::emmeans(mdl_pc, ~ session_f, type = "response")
      df_pc <- as.data.frame(em_pc)
      val_col <- if ("prob" %in% names(df_pc)) "prob" else if ("response" %in% names(df_pc)) "response" else "emmean"
      df_pc <- df_pc %>% dplyr::transmute(session_f, pct = round(.data[[val_col]] * 100, digits))
    } else {
      df_pc <- correct_counts %>%
        dplyr::mutate(pct = 100 * correct_trials / total_trials_per_block) %>%
        dplyr::group_by(session_f) %>%
        dplyr::summarise(pct = round(mean(pct, na.rm = TRUE), digits), .groups = "drop")
    }
    label_map[df_pc$session_f] <- paste0(label_map[df_pc$session_f], " (", df_pc$pct, "%)")
  } else {
    label_map <- paste0(label_map, " (n/a)")
  }

  
  pd <- ggplot2::position_dodge(width = 0.35)

  p <- ggplot2::ggplot(df_rt, ggplot2::aes(x = session_f, y = emmean,
                                           color = trial_acc_cat, group = trial_acc_cat)) +
    ggplot2::geom_point(position = pd) +
    ggplot2::geom_errorbar(ggplot2::aes(ymin = emmean - SE, ymax = emmean + SE),
                           width = 0.15, position = pd) +
    ggplot2::scale_x_discrete(labels = label_map) +
    ggplot2::labs(title = "RT across difficulty levels",
                  subtitle = overall_subtitle,
                  x = "difficulty",
                  y = "Estimated RT (in ms)",
                  color = "Correctness") +
    ggplot2::theme_minimal(base_size = 12) +
    ggplot2::theme(panel.grid = ggplot2::element_blank())

  if (show_plot) print(p)

  invisible(list(m_rt = mdl_rt, em_rt = em_rt,
                 xaxis_labels = label_map, plot = p))
}

# RUN (training-only figure)
plot_rt_training_blocks(df_acc_base)
NOTE: Results may be misleading due to involvement in interactions

# === Training-only plots: Blocks 1–3 ===
# 1) Correct vs wrong (dodged points) with overall % faster computed on Blocks 1–3
# 2) Correct-only plot (EMMs by block)
# Needs: dplyr, tidyr, ggplot2, lme4, emmeans, car
if (!exists("safe_fit")) {
  safe_fit <- function(formula, data) {
    m <- tryCatch(lme4::lmer(formula, data = data), error = function(e) NULL)
    if (is.null(m)) {
      message("⚠️ Falling back to lm (random effect not identifiable).")
      m <- stats::lm(update(formula, . ~ . - (1 | subject)), data = data)
    }
    m
  }
}
if (!exists("as_block_factor")) {
  as_block_factor <- function(x) factor(x, levels = 1:5, labels = paste("Block", 1:5))
}

plot_rt_training_blocks <- function(df_acc_all, total_trials_per_block = 48, show_plots = TRUE, digits = 0) {

  df_trial_all <- df_acc_all %>%
    dplyr::distinct(subject, session, trial, .keep_all = TRUE) %>%
    dplyr::transmute(subject,
                     session_f = as_block_factor(session),
                     rt = trial.RT,
                     trial_acc_cat) %>%
    dplyr::filter(session_f %in% c("Block 1","Block 2","Block 3")) %>%
    dplyr::mutate(session_f = factor(session_f, levels = c("Block 1","Block 2","Block 3")))

  # Model & EMMs (training only, correct vs wrong)
  mdl_rt <- safe_fit(rt ~ trial_acc_cat * session_f + (1 | subject), data = df_trial_all)
  em_rt  <- emmeans::emmeans(mdl_rt, ~ session_f | trial_acc_cat)
  df_rt  <- as.data.frame(em_rt)

  # Overall % faster from training only
  overall_subtitle <- NULL
  em_overall <- tryCatch(emmeans::emmeans(mdl_rt, ~ trial_acc_cat) %>% as.data.frame(), error = function(e) NULL)
  if (!is.null(em_overall) && all(c("correct","wrong") %in% em_overall$trial_acc_cat)) {
    mc <- em_overall$emmean[em_overall$trial_acc_cat == "correct"]
    mw <- em_overall$emmean[em_overall$trial_acc_cat == "wrong"]
    pct_faster_overall <- 100 * (1 - mc / mw)
    overall_subtitle <- sprintf("Overall %% faster (correct vs wrong): %.2f%%", pct_faster_overall)
  }

  # ---------- % correct per training block for x-axis labels ----------
  correct_counts <- df_acc_all %>%
    dplyr::filter(trial_acc_cat == "correct", session %in% 1:3) %>%
    dplyr::distinct(subject, session, trial) %>%
    dplyr::count(subject, session, name = "correct_trials") %>%
    dplyr::mutate(session_f = factor(as_block_factor(session),
                                     levels = c("Block 1","Block 2","Block 3")),
                  fail_trials = total_trials_per_block - correct_trials)

  label_map <- c("Block 1" = "6 Steps",
                 "Block 2" = "12 Steps",
                 "Block 3" = "18 Steps")

  if (nrow(correct_counts) > 0) {
    mdl_pc <- tryCatch(
      lme4::glmer(cbind(correct_trials, fail_trials) ~ session_f + (1 | subject),
                  data = correct_counts, family = binomial),
      error = function(e) NULL
    )
    if (!is.null(mdl_pc)) {
      em_pc <- emmeans::emmeans(mdl_pc, ~ session_f, type = "response")
      df_pc <- as.data.frame(em_pc)
      val_col <- if ("prob" %in% names(df_pc)) "prob" else if ("response" %in% names(df_pc)) "response" else "emmean"
      df_pc <- df_pc %>% dplyr::transmute(session_f, pct = round(.data[[val_col]] * 100, digits))
    } else {
      df_pc <- correct_counts %>%
        dplyr::mutate(pct = 100 * correct_trials / total_trials_per_block) %>%
        dplyr::group_by(session_f) %>%
        dplyr::summarise(pct = round(mean(pct, na.rm = TRUE), digits), .groups = "drop")
    }
    label_map[df_pc$session_f] <- paste0(label_map[df_pc$session_f], " (", df_pc$pct, "%)")
  } else {
    label_map <- paste0(label_map, " (n/a)")
  }

  # ---------- Plot 1: correct vs wrong ----------
  pd <- ggplot2::position_dodge(width = 0.35)
  p_both <- ggplot2::ggplot(df_rt, ggplot2::aes(x = session_f, y = emmean,
                                                color = trial_acc_cat, group = trial_acc_cat)) +
    ggplot2::geom_point(position = pd) +
    ggplot2::geom_errorbar(ggplot2::aes(ymin = emmean - SE, ymax = emmean + SE),
                           width = 0.15, position = pd) +
    ggplot2::scale_x_discrete(labels = label_map) +
    ggplot2::labs(title = "RT across difficulty levels",
                  subtitle = overall_subtitle,
                  x = "Difficulty",
                  y = "Estimated RT (in ms)",
                  color = "Correctness") +
    ggplot2::theme_classic(base_size = 12) +                 # APA7: visible axes
    ggplot2::theme(
      panel.grid = ggplot2::element_blank(),
      axis.line = ggplot2::element_line(),
      axis.ticks = ggplot2::element_line()
    )

  if (show_plots) print(p_both)

  # ---------- Plot 2: correct-only ----------
  df_correct <- df_trial_all %>% dplyr::filter(trial_acc_cat == "correct")
  p_correct <- NULL
  if (nrow(df_correct) > 0) {
    mdl_corr <- safe_fit(rt ~ session_f + (1 | subject), data = df_correct)
    em_corr  <- emmeans::emmeans(mdl_corr, ~ session_f)
    df_corr  <- as.data.frame(em_corr)

    p_correct <- ggplot2::ggplot(df_corr, ggplot2::aes(x = session_f, y = emmean, group = 1)) +
      ggplot2::geom_point() +
      ggplot2::geom_errorbar(ggplot2::aes(ymin = emmean - SE, ymax = emmean + SE), width = 0.15) +
      ggplot2::scale_x_discrete(labels = label_map) +
      ggplot2::labs(title = "RT across difficulty levels — Correct Trials",
                    x = "Difficulty (correct trials)",
                    y = "Estimated RT (in ms)") +
      ggplot2::theme_classic(base_size = 12) +               # APA7: visible axes
      ggplot2::theme(
        panel.grid = ggplot2::element_blank(),
        axis.line = ggplot2::element_line(),
        axis.ticks = ggplot2::element_line()
      )

    if (show_plots) print(p_correct)
  } else {
    message("No correct trials found for Blocks 1–3.")
  }

  invisible(list(
    m_rt = mdl_rt, em_rt = em_rt, plot_both = p_both,
    plot_correct = p_correct,
    xaxis_labels = label_map
  ))
}

# RUN (training-only figure + correct-only figure)
plot_rt_training_blocks(df_acc_base)
NOTE: Results may be misleading due to involvement in interactions

# 2.1 — Statistical output 
suppressPackageStartupMessages({
  library(dplyr); library(tidyr); library(lme4); library(car); library(emmeans)
})

# Training blocks (1–3): trial-level data
df_train <- df_acc_base %>%
  dplyr::distinct(subject, session, trial, .keep_all = TRUE) %>%
  dplyr::filter(session %in% 1:3) %>%
  dplyr::transmute(
    subject,
    session_f = factor(session, levels = 1:3, labels = paste("Block", 1:3)),
    rt = trial.RT,
    trial_acc_cat
  )

# --- 2.1A: RT ~ correctness × block (Blocks 1–3) ---
mdl_rt_all <- tryCatch(
  lme4::lmer(rt ~ trial_acc_cat * session_f + (1 | subject), data = df_train),
  error = function(e) stats::lm(rt ~ trial_acc_cat * session_f, data = df_train)
)
cat("\n## 2.1A RT model (correct vs wrong × block)\n")

## 2.1A RT model (correct vs wrong × block)
print(summary(mdl_rt_all))
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ trial_acc_cat * session_f + (1 | subject)
   Data: df_train

REML criterion at convergence: 35859.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.8327 -0.4429 -0.0856  0.2722 16.7623 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 57688    240.2   
 Residual             58826    242.5   
Number of obs: 2592, groups:  subject, 18

Fixed effects:
                                    Estimate Std. Error t value
(Intercept)                           497.02      57.35   8.667
trial_acc_catwrong                    370.33      21.42  17.290
session_fBlock 2                      -11.00      13.80  -0.797
session_fBlock 3                       25.18      14.56   1.729
trial_acc_catwrong:session_fBlock 2  -164.19      27.70  -5.928
trial_acc_catwrong:session_fBlock 3  -242.64      27.31  -8.884

Correlation of Fixed Effects:
            (Intr) trl_c_ sss_B2 sss_B3 t__:_2
trl_cc_ctwr -0.070                            
sssn_fBlck2 -0.106  0.288                     
sssn_fBlck3 -0.100  0.269  0.426              
trl_cc_:_B2  0.054 -0.772 -0.508 -0.221       
trl_cc_:_B3  0.054 -0.778 -0.235 -0.545  0.616
cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl_rt_all, type = 2))

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                          Chisq Df Pr(>Chisq)    
trial_acc_cat           402.407  1  < 2.2e-16 ***
session_f                17.823  2  0.0001348 ***
trial_acc_cat:session_f  79.253  2  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
em_rt_all <- emmeans::emmeans(mdl_rt_all, ~ session_f | trial_acc_cat)
cat("\nEMMs by block within correctness:\n"); print(summary(em_rt_all))

EMMs by block within correctness:
trial_acc_cat = correct:
 session_f emmean   SE   df lower.CL upper.CL
 Block 1      497 57.3 17.6      376      618
 Block 2      486 57.5 17.9      365      607
 Block 3      522 57.7 18.1      401      643

trial_acc_cat = wrong:
 session_f emmean   SE   df lower.CL upper.CL
 Block 1      867 59.8 20.9      743      992
 Block 2      692 58.3 18.9      570      814
 Block 3      650 58.0 18.4      528      771

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\nPairwise (Tukey) for blocks within correctness:\n"); print(pairs(em_rt_all, adjust = "tukey"))

Pairwise (Tukey) for blocks within correctness:
trial_acc_cat = correct:
 contrast          estimate   SE   df t.ratio p.value
 Block 1 - Block 2     11.0 13.8 2569   0.797  0.7047
 Block 1 - Block 3    -25.2 14.6 2570  -1.729  0.1945
 Block 2 - Block 3    -36.2 15.2 2569  -2.379  0.0459

trial_acc_cat = wrong:
 contrast          estimate   SE   df t.ratio p.value
 Block 1 - Block 2    175.2 23.9 2570   7.343  <.0001
 Block 1 - Block 3    217.5 22.9 2570   9.494  <.0001
 Block 2 - Block 3     42.3 18.6 2569   2.273  0.0598

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
em_acc <- emmeans::emmeans(mdl_rt_all, ~ trial_acc_cat)
NOTE: Results may be misleading due to involvement in interactions
cat("\nEMMs (correct vs wrong):\n"); print(summary(em_acc))

EMMs (correct vs wrong):
 trial_acc_cat emmean   SE   df lower.CL upper.CL
 correct          502 56.9 17.1      382      622
 wrong            736 57.3 17.6      616      857

Results are averaged over the levels of: session_f 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\nPairwise (correct vs wrong):\n"); print(pairs(em_acc))

Pairwise (correct vs wrong):
 contrast        estimate SE   df t.ratio p.value
 correct - wrong     -235 11 2572 -21.274  <.0001

Results are averaged over the levels of: session_f 
Degrees-of-freedom method: kenward-roger 
# --- 2.1B: RT ~ block (correct trials only, Blocks 1–3) ---
df_train_corr <- df_train %>% dplyr::filter(trial_acc_cat == "correct")
if (nrow(df_train_corr) > 0 && dplyr::n_distinct(df_train_corr$session_f) > 1) {
  mdl_rt_corr <- tryCatch(
    lme4::lmer(rt ~ session_f + (1 | subject), data = df_train_corr),
    error = function(e) stats::lm(rt ~ session_f, data = df_train_corr)
  )
  cat("\n## 2.1B RT model (correct-only)\n")
  print(summary(mdl_rt_corr))
  cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl_rt_corr, type = 2))
  em_rt_corr <- emmeans::emmeans(mdl_rt_corr, ~ session_f)
  cat("\nEMMs by block (correct-only):\n"); print(summary(em_rt_corr))
  cat("\nPairwise (Tukey) between blocks (correct-only):\n"); print(pairs(em_rt_corr, adjust = "tukey"))
} else {
  cat("\n[Correct-only model skipped: insufficient data]\n")
}

## 2.1B RT model (correct-only)
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ session_f + (1 | subject)
   Data: df_train_corr

REML criterion at convergence: 22560

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.0473 -0.5630 -0.1433  0.3475 10.7922 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 51782    227.6   
 Residual             24952    158.0   
Number of obs: 1735, groups:  subject, 18

Fixed effects:
                 Estimate Std. Error t value
(Intercept)       497.596     53.968   9.220
session_fBlock 2  -13.996      9.010  -1.553
session_fBlock 3   20.260      9.531   2.126

Correlation of Fixed Effects:
            (Intr) sss_B2
sssn_fBlck2 -0.073       
sssn_fBlck3 -0.069  0.428

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
           Chisq Df Pr(>Chisq)   
session_f 11.947  2   0.002546 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs by block (correct-only):
 session_f emmean   SE   df lower.CL upper.CL
 Block 1      498 54.0 17.2      384      611
 Block 2      484 54.1 17.4      370      597
 Block 3      518 54.1 17.5      404      632

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey) between blocks (correct-only):
 contrast          estimate   SE   df t.ratio p.value
 Block 1 - Block 2     14.0 9.01 1715   1.553  0.2664
 Block 1 - Block 3    -20.3 9.53 1716  -2.126  0.0850
 Block 2 - Block 3    -34.3 9.93 1715  -3.451  0.0017

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
# --- 2.1C: Accuracy per block (binomial GLMM, Blocks 1–3) ---
total_trials_per_block <- 48L
counts_train <- df_acc_base %>%
  dplyr::distinct(subject, session, trial, .keep_all = TRUE) %>%
  dplyr::filter(session %in% 1:3) %>%
  dplyr::filter(trial_acc_cat == "correct") %>%
  dplyr::count(subject, session, name = "correct_trials") %>%
  dplyr::mutate(
    session_f = factor(session, levels = 1:3, labels = paste("Block", 1:3)),
    fail_trials = total_trials_per_block - correct_trials
  )

if (nrow(counts_train) > 0) {
  mdl_acc <- lme4::glmer(cbind(correct_trials, fail_trials) ~ session_f + (1 | subject),
                         data = counts_train, family = binomial)
  cat("\n## 2.1C Accuracy model (binomial, Blocks 1–3)\n")
  print(summary(mdl_acc))
  cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl_acc, type = 2))
  em_acc_blk <- emmeans::emmeans(mdl_acc, ~ session_f, type = "response")
  cat("\nEMMs (prob correct) by block:\n"); print(summary(em_acc_blk))
  cat("\nPairwise (Tukey) between blocks (prob correct):\n"); print(pairs(em_acc_blk, adjust = "tukey"))
} else {
  cat("\n[Accuracy model skipped: no counts available]\n")
}

## 2.1C Accuracy model (binomial, Blocks 1–3)
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: cbind(correct_trials, fail_trials) ~ session_f + (1 | subject)
   Data: counts_train

     AIC      BIC   logLik deviance df.resid 
   401.8    409.7   -196.9    393.8       50 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.9722 -1.1243  0.2848  1.0188  3.4491 

Random effects:
 Groups  Name        Variance Std.Dev.
 subject (Intercept) 0.4233   0.6506  
Number of obs: 54, groups:  subject, 18

Fixed effects:
                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)        1.5991     0.1787   8.951  < 2e-16 ***
session_fBlock 2  -0.9251     0.1168  -7.924 2.31e-15 ***
session_fBlock 3  -1.3892     0.1156 -12.014  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) sss_B2
sssn_fBlck2 -0.393       
sssn_fBlck3 -0.402  0.606

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: cbind(correct_trials, fail_trials)
           Chisq Df Pr(>Chisq)    
session_f 144.98  2  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs (prob correct) by block:
 session_f  prob     SE  df asymp.LCL asymp.UCL
 Block 1   0.832 0.0250 Inf     0.777     0.875
 Block 2   0.662 0.0382 Inf     0.584     0.733
 Block 3   0.552 0.0419 Inf     0.470     0.632

Confidence level used: 0.95 
Intervals are back-transformed from the logit scale 

Pairwise (Tukey) between blocks (prob correct):
 contrast          odds.ratio    SE  df null z.ratio p.value
 Block 1 / Block 2       2.52 0.294 Inf    1   7.924  <.0001
 Block 1 / Block 3       4.01 0.464 Inf    1  12.014  <.0001
 Block 2 / Block 3       1.59 0.164 Inf    1   4.499  <.0001

P value adjustment: tukey method for comparing a family of 3 estimates 
Tests are performed on the log odds ratio scale 
# === NEW ANALYSIS (single model): Overall RT per block, ALL trials (Blocks 1–3) ===
# Fixed effects:      rt ~ session_f
# Random effects:     (1 | subject) + (1 + trial_acc_cat || subject:session_f)
# -> correctness (wrong – correct) varies randomly per participant × block
# -> no fixed correctness effect is included

suppressPackageStartupMessages({
  library(dplyr); library(tidyr); library(lme4); library(car); library(emmeans); library(ggplot2)
})

# --- Data (Blocks 1–3; one row per trial) ---
df_overall_train <- df_acc_base %>%
  dplyr::distinct(subject, session, trial, .keep_all = TRUE) %>%
  dplyr::filter(session %in% 1:3) %>%
  dplyr::transmute(
    subject,
    session_f = factor(session, levels = 1:3, labels = paste("Block", 1:3)),
    rt = trial.RT,
    trial_acc_cat = factor(trial_acc_cat, levels = c("correct","wrong")) 
  )

# --- Single, explicit model  ---
form_model <- rt ~ session_f + (1 | subject) + (1 + trial_acc_cat | subject:session_f)

mdl_overall <- lme4::lmer(
  formula = form_model,
  data    = df_overall_train,
  REML    = TRUE,
  control = lme4::lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e5))
)

cat("\n=== NEW ANALYSIS: Overall RT per block (ALL trials) ===\n")

=== NEW ANALYSIS: Overall RT per block (ALL trials) ===
cat("Formula:\nrt ~ session_f + (1 | subject) + (1 + trial_acc_cat | subject:session_f)\n\n")
Formula:
rt ~ session_f + (1 | subject) + (1 + trial_acc_cat | subject:session_f)
# (Optional) Note if the fit is singular; we still proceed because this is the chosen model
if (lme4::isSingular(mdl_overall, tol = 1e-6)) {
  cat("⚠️ Note: Fit is singular (some variance components ~ 0). Proceeding with the specified model.\n\n")
}

# --- Inference on overall block means (all trials) ---
cat("Model summary:\n"); print(summary(mdl_overall))
Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: 
rt ~ session_f + (1 | subject) + (1 + trial_acc_cat | subject:session_f)
   Data: df_overall_train
Control: 
lme4::lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

REML criterion at convergence: 35686.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.5914 -0.3965 -0.1017  0.2285 15.5099 

Random effects:
 Groups            Name               Variance Std.Dev. Corr 
 subject:session_f (Intercept)         5865     76.58        
                   trial_acc_catwrong 91590    302.64   -0.03
 subject           (Intercept)        48880    221.09        
 Residual                             50080    223.79        
Number of obs: 2592, groups:  subject:session_f, 54; subject, 18

Fixed effects:
                 Estimate Std. Error t value
(Intercept)        506.06      55.78   9.073
session_fBlock 2   -13.14      28.51  -0.461
session_fBlock 3    23.49      29.03   0.809

Correlation of Fixed Effects:
            (Intr) sss_B2
sssn_fBlck2 -0.249       
sssn_fBlck3 -0.244  0.479
cat("\nType II Chi-square ANOVA for session_f:\n"); print(car::Anova(mdl_overall, type = 2))

Type II Chi-square ANOVA for session_f:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
           Chisq Df Pr(>Chisq)
session_f 1.5901  2     0.4516
em_overall <- emmeans::emmeans(mdl_overall, ~ session_f)
cat("\nEstimated marginal means (overall RT by block):\n"); print(summary(em_overall))

Estimated marginal means (overall RT by block):
 session_f emmean   SE   df lower.CL upper.CL
 Block 1      506 56.0 20.1      389      623
 Block 2      493 56.2 20.4      376      610
 Block 3      530 56.5 20.8      412      647

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\nPairwise (Tukey) between blocks:\n"); print(pairs(em_overall, adjust = "tukey"))

Pairwise (Tukey) between blocks:
 contrast          estimate   SE   df t.ratio p.value
 Block 1 - Block 2     13.1 29.3 32.1   0.448  0.8956
 Block 1 - Block 3    -23.5 29.9 34.0  -0.787  0.7137
 Block 2 - Block 3    -36.6 30.2 35.5  -1.213  0.4535

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
# --- Plot: Overall RT per block (all trials) ---
df_em <- as.data.frame(em_overall)
p_overall_train <- ggplot(df_em, aes(x = session_f, y = emmean, group = 1)) +
  geom_point() +
  geom_errorbar(aes(ymin = emmean - SE, ymax = emmean + SE), width = 0.15) +
  labs(title = "Overall RT across difficulty levels (Blocks 1–3, ALL trials)",
       subtitle = "No fixed correctness; subject×block random correctness slope ",
       x = "Difficulty", y = "Estimated RT (ms)") +
  theme_minimal(base_size = 12) +
  theme(panel.grid = element_blank())
print(p_overall_train)

#A2.2 Correct Trials per block × sequence length — Test phase (Blocks 4–5)

# Test phase (Blocks 4–5)
if (!exists("safe_fit")) {
  safe_fit <- function(formula, data) {
    m <- tryCatch(lme4::lmer(formula, data = data), error = function(e) NULL)
    if (is.null(m)) { message("⚠️ Falling back to lm."); m <- stats::lm(update(formula, . ~ . - (1 | subject)), data = data) }
    m
  }
}

plot_test_RT_by_length <- function(df_acc_all, total_trials_per_block = 48, digits = 0, show_plots = TRUE) {
  trials_per_length <- total_trials_per_block / 3  # 48/3 = 16

  df_len <- df_acc_all %>%
    dplyr::group_by(subject, session, trial) %>%
    dplyr::mutate(seq_length_trial = dplyr::n_distinct(sub.trial.number)) %>%
    dplyr::ungroup() %>%
    dplyr::filter(session %in% c(4, 5)) %>%
    dplyr::mutate(
      session_f        = factor(session, levels = c(4, 5), labels = c("Familiar", "Unfamiliar")),
      seq_length_trial = factor(seq_length_trial, levels = c(6, 12, 18))
    )
  if (nrow(df_len) == 0) { message("No test-phase data (Blocks 4–5)."); return(invisible(NULL)) }

  # % correct per block (denom = 16 per length) -> facet strip labels
  corr_len <- df_len %>%
    dplyr::filter(trial_acc_cat == "correct") %>%
    dplyr::distinct(subject, session_f, trial, seq_length_trial) %>%
    dplyr::count(subject, session_f, seq_length_trial, name = "n_correct_len") %>%
    dplyr::mutate(n_fail_len = trials_per_length - n_correct_len)

  strip_labels <- setNames(levels(df_len$session_f), levels(df_len$session_f))
  if (nrow(corr_len) > 0) {
    mdl_pc <- tryCatch(
      lme4::glmer(cbind(n_correct_len, n_fail_len) ~ session_f + (1 | subject) + (1 | seq_length_trial),
                  data = corr_len, family = binomial),
      error = function(e) NULL
    )
    pc_tbl <- if (!is.null(mdl_pc)) {
      em <- emmeans::emmeans(mdl_pc, ~ session_f, type = "response") %>% as.data.frame()
      val <- if ("prob" %in% names(em)) "prob" else if ("response" %in% names(em)) "response" else "emmean"
      dplyr::transmute(em, session_f, pct = round(.data[[val]] * 100, digits))
    } else {
      corr_len %>%
        dplyr::mutate(pct_len = 100 * n_correct_len / trials_per_length) %>%
        dplyr::group_by(session_f) %>%
        dplyr::summarise(pct = round(mean(pct_len, na.rm = TRUE), digits), .groups = "drop")
    }
    strip_labels[pc_tbl$session_f] <- paste0(pc_tbl$session_f, " (", pc_tbl$pct, "%)")
  }
  strip_labeller <- ggplot2::as_labeller(strip_labels)

  # helper: draw ONE dotted line exactly at the right edge of the left facet
  add_separator <- function() {
    ggplot2::geom_segment(
      data = data.frame(session_f = "Familiar"),
      ggplot2::aes(x = Inf, xend = Inf, y = -Inf, yend = Inf),
      inherit.aes = FALSE, linetype = "dotted"
    )
  }

  # ===== 1) Combined (correct vs wrong) =====
  df_rt_trials <- df_len %>%
    dplyr::distinct(subject, session_f, trial, seq_length_trial, .keep_all = TRUE) %>%
    dplyr::transmute(subject, session_f, seq_length_trial, trial_acc_cat, rt = trial.RT)

  mdl_rt <- safe_fit(rt ~ trial_acc_cat * session_f * seq_length_trial + (1 | subject), data = df_rt_trials)
  em_rt  <- emmeans::emmeans(mdl_rt, ~ seq_length_trial | session_f * trial_acc_cat)
  df_em  <- as.data.frame(em_rt)

  pd <- ggplot2::position_dodge(width = 0.5)
  p_combined <- ggplot2::ggplot(
    df_em,
    ggplot2::aes(x = seq_length_trial, y = emmean,
                 color = trial_acc_cat, shape = trial_acc_cat, group = trial_acc_cat)
  ) +
    add_separator() +
    ggplot2::geom_point(position = pd) +
    ggplot2::geom_errorbar(ggplot2::aes(ymin = emmean - SE, ymax = emmean + SE), width = 0.2, position = pd) +
    ggplot2::facet_wrap(~ session_f, nrow = 1, labeller = strip_labeller) +
    ggplot2::labs(title = "RT across sequence lengths — test phase",
                  x = "Sequence length", y = "Estimated RT (in ms)",
                  color = "Correctness", shape = "Correctness") +
    ggplot2::theme_classic(base_size = 12) +
    ggplot2::theme(
      panel.grid = ggplot2::element_blank(),
      axis.line = ggplot2::element_line(),
      axis.ticks = ggplot2::element_line()
    )
  if (show_plots) print(p_combined)

  # ===== 2) Correct-only =====
  p_correct <- NULL
  df_rt_corr <- df_rt_trials %>% dplyr::filter(trial_acc_cat == "correct")
  if (nrow(df_rt_corr) > 0) {
    mdl_rt_corr <- safe_fit(rt ~ session_f * seq_length_trial + (1 | subject), data = df_rt_corr)
    em_rt_corr  <- emmeans::emmeans(mdl_rt_corr, ~ seq_length_trial | session_f)
    df_rt_em    <- as.data.frame(em_rt_corr)

    # % correct per length (denom = 16) -> per-facet tick labels
    mdl_pc_len <- tryCatch(
      lme4::glmer(cbind(n_correct_len, n_fail_len) ~ session_f * seq_length_trial + (1 | subject),
                  data = corr_len, family = binomial),
      error = function(e) NULL
    )
    lab_tbl <- if (!is.null(mdl_pc_len)) {
      em <- emmeans::emmeans(mdl_pc_len, ~ seq_length_trial | session_f, type = "response") %>% as.data.frame()
      val <- if ("prob" %in% names(em)) "prob" else if ("response" %in% names(em)) "response" else "emmean"
      dplyr::transmute(em, session_f, seq_length_trial,
                       tick = paste0(seq_length_trial, " (", round(.data[[val]] * 100, digits), "%)"))
    } else {
      corr_len %>%
        dplyr::mutate(pct = round(100 * n_correct_len / trials_per_length, digits)) %>%
        dplyr::group_by(session_f, seq_length_trial) %>%
        dplyr::summarise(pct = round(mean(pct, na.rm = TRUE), digits), .groups = "drop") %>%
        dplyr::mutate(tick = paste0(seq_length_trial, " (", pct, "%)"))
    }

    df_rt_em <- df_rt_em %>%
      dplyr::left_join(lab_tbl, by = c("session_f", "seq_length_trial")) %>%
      dplyr::group_by(session_f) %>%
      dplyr::mutate(seq_lab = factor(tick, levels = unique(tick))) %>%
      dplyr::ungroup()

    p_correct <- ggplot2::ggplot(df_rt_em, ggplot2::aes(x = seq_lab, y = emmean, group = 1)) +
      add_separator() +
      ggplot2::geom_point() +
      ggplot2::geom_errorbar(ggplot2::aes(ymin = emmean - SE, ymax = emmean + SE), width = 0.2) +
      ggplot2::facet_wrap(~ session_f, nrow = 1, scales = "free_x", labeller = strip_labeller) +
      ggplot2::labs(title = "RT across Sequence Lengths — Correct Trials only (Test Phase)",
                    x = "Sequence length (Correct Trials)", y = "Estimated RT (in ms)") +
      ggplot2::theme_classic(base_size = 12) +
      ggplot2::theme(
        panel.grid = ggplot2::element_blank(),
        axis.line = ggplot2::element_line(),
        axis.ticks = ggplot2::element_line()
      )
    if (show_plots) print(p_correct)
  } else {
    message("No correct trials available for the correct-only plot.")
  }

  invisible(list(m_rt = mdl_rt, em_rt = em_rt,
                 plot_combined = p_combined, plot_correct = p_correct,
                 facet_labels = strip_labels))
}

# RUN
plot_test_RT_by_length(df_acc_base)

# 2.2 — Statistical output (inline)
suppressPackageStartupMessages({
  library(dplyr); library(tidyr); library(lme4); library(car); library(emmeans)
})



df_test <- df_acc_base %>%
  dplyr::group_by(subject, session, trial) %>%
  dplyr::mutate(seq_length_trial = dplyr::n_distinct(sub.trial.number)) %>%  # TRUE length per trial
  dplyr::ungroup() %>%
  dplyr::distinct(subject, session, trial, .keep_all = TRUE) %>%
  dplyr::filter(session %in% 4:5) %>%
  dplyr::mutate(
    session_f        = factor(session, levels = c(4, 5), labels = paste("Block", 4:5)),
    seq_length_trial = factor(seq_length_trial, levels = c(6, 12, 18)),
    rt               = trial.RT
  )

# --- 2.2A: RT ~ block × length × correctness (Blocks 4–5) ---
mdl_rt_test <- tryCatch(
  lme4::lmer(rt ~ session_f * seq_length_trial * trial_acc_cat + (1 | subject), data = df_test),
  error = function(e) stats::lm(rt ~ session_f * seq_length_trial * trial_acc_cat, data = df_test)
)
cat("\n## 2.2A RT model (block × length × correctness)\n")

## 2.2A RT model (block × length × correctness)
print(summary(mdl_rt_test))
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ session_f * seq_length_trial * trial_acc_cat + (1 | subject)
   Data: df_test

REML criterion at convergence: 22875.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.9916 -0.5338 -0.0872  0.4120 10.1695 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 32914    181.4   
 Residual             33321    182.5   
Number of obs: 1728, groups:  subject, 18

Fixed effects:
                                                       Estimate Std. Error
(Intercept)                                             447.163     44.291
session_fBlock 5                                        103.205     16.960
seq_length_trial12                                       20.515     16.793
seq_length_trial18                                       25.478     17.939
trial_acc_catwrong                                      246.071     32.480
session_fBlock 5:seq_length_trial12                      38.251     26.179
session_fBlock 5:seq_length_trial18                       3.666     27.839
session_fBlock 5:trial_acc_catwrong                      33.737     41.344
seq_length_trial12:trial_acc_catwrong                  -109.485     41.456
seq_length_trial18:trial_acc_catwrong                  -124.187     39.263
session_fBlock 5:seq_length_trial12:trial_acc_catwrong  -27.321     53.138
session_fBlock 5:seq_length_trial18:trial_acc_catwrong   26.747     51.517
                                                       t value
(Intercept)                                             10.096
session_fBlock 5                                         6.085
seq_length_trial12                                       1.222
seq_length_trial18                                       1.420
trial_acc_catwrong                                       7.576
session_fBlock 5:seq_length_trial12                      1.461
session_fBlock 5:seq_length_trial18                      0.132
session_fBlock 5:trial_acc_catwrong                      0.816
seq_length_trial12:trial_acc_catwrong                   -2.641
seq_length_trial18:trial_acc_catwrong                   -3.163
session_fBlock 5:seq_length_trial12:trial_acc_catwrong  -0.514
session_fBlock 5:seq_length_trial18:trial_acc_catwrong   0.519

Correlation of Fixed Effects:
            (Intr) sss_B5 sq__12 sq__18 trl_c_ ss_B5:__12 ss_B5:__18 ss_B5:__
sssn_fBlck5 -0.177                                                           
sq_lngth_12 -0.179  0.466                                                    
sq_lngth_18 -0.167  0.434  0.442                                             
trl_cc_ctwr -0.094  0.245  0.244  0.226                                      
sss_B5:__12  0.115 -0.643 -0.641 -0.283 -0.158                               
sss_B5:__18  0.107 -0.602 -0.284 -0.642 -0.142  0.394                        
sssn_fB5:__  0.074 -0.421 -0.191 -0.174 -0.783  0.264      0.241             
sq_ln_12:__  0.073 -0.190 -0.408 -0.179 -0.776  0.262      0.114      0.608  
sq_ln_18:__  0.077 -0.198 -0.203 -0.460 -0.819  0.130      0.292      0.638  
s_B5:__12:_ -0.057  0.322  0.318  0.138  0.605 -0.495     -0.193     -0.767  
s_B5:__18:_ -0.058  0.330  0.154  0.347  0.620 -0.214     -0.540     -0.787  
            s__12: s__18: s_B5:__12:
sssn_fBlck5                         
sq_lngth_12                         
sq_lngth_18                         
trl_cc_ctwr                         
sss_B5:__12                         
sss_B5:__18                         
sssn_fB5:__                         
sq_ln_12:__                         
sq_ln_18:__  0.641                  
s_B5:__12:_ -0.779 -0.498           
s_B5:__18:_ -0.486 -0.756  0.612    
cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl_rt_test, type = 2))

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                                            Chisq Df Pr(>Chisq)    
session_f                                203.5009  1  < 2.2e-16 ***
seq_length_trial                           0.5873  2    0.74552    
trial_acc_cat                            296.8455  1  < 2.2e-16 ***
session_f:seq_length_trial                 1.6037  2    0.44850    
session_f:trial_acc_cat                    2.8424  1    0.09181 .  
seq_length_trial:trial_acc_cat            26.4726  2  1.785e-06 ***
session_f:seq_length_trial:trial_acc_cat   1.3761  2    0.50255    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# --- Overall correct vs wrong (averaged over block and length) ---
em_rt_acc_overall <- emmeans::emmeans(mdl_rt_test, ~ trial_acc_cat)
NOTE: Results may be misleading due to involvement in interactions
cat("\nEMMs (correct vs wrong), averaged over block and length:\n")

EMMs (correct vs wrong), averaged over block and length:
print(summary(em_rt_acc_overall))
 trial_acc_cat emmean   SE   df lower.CL upper.CL
 correct          521 43.2 17.3      430      612
 wrong            706 43.6 18.0      614      798

Results are averaged over the levels of: session_f, seq_length_trial 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\nPairwise (correct vs wrong):\n")

Pairwise (correct vs wrong):
print(pairs(em_rt_acc_overall))
 contrast        estimate   SE   df t.ratio p.value
 correct - wrong     -185 10.6 1701 -17.488  <.0001

Results are averaged over the levels of: session_f, seq_length_trial 
Degrees-of-freedom method: kenward-roger 
em_rt_acc_byblock <- emmeans::emmeans(mdl_rt_test, ~ trial_acc_cat | session_f)
NOTE: Results may be misleading due to involvement in interactions
cat("\nEMMs (correct vs wrong) within each block:\n")

EMMs (correct vs wrong) within each block:
print(summary(em_rt_acc_byblock))
session_f = Block 4:
 trial_acc_cat emmean   SE   df lower.CL upper.CL
 correct          462 43.4 17.6      371      554
 wrong            631 45.0 20.4      537      724

session_f = Block 5:
 trial_acc_cat emmean   SE   df lower.CL upper.CL
 correct          580 43.7 18.1      488      671
 wrong            781 44.0 18.6      689      874

Results are averaged over the levels of: seq_length_trial 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\nPairwise (correct vs wrong) within each block:\n")

Pairwise (correct vs wrong) within each block:
print(pairs(em_rt_acc_byblock))
session_f = Block 4:
 contrast        estimate   SE   df t.ratio p.value
 correct - wrong     -168 16.0 1701 -10.512  <.0001

session_f = Block 5:
 contrast        estimate   SE   df t.ratio p.value
 correct - wrong     -202 13.9 1702 -14.539  <.0001

Results are averaged over the levels of: seq_length_trial 
Degrees-of-freedom method: kenward-roger 
# EMMs and within-block (length) pairwise
em_rt_len <- emmeans::emmeans(mdl_rt_test, ~ seq_length_trial | session_f * trial_acc_cat)
cat("\nEMMs by length within block × correctness:\n"); print(summary(em_rt_len))

EMMs by length within block × correctness:
session_f = Block 4, trial_acc_cat = correct:
 seq_length_trial emmean   SE   df lower.CL upper.CL
 6                   447 44.3 19.1      355      540
 12                  468 44.5 19.5      375      561
 18                  473 44.9 20.3      379      566

session_f = Block 5, trial_acc_cat = correct:
 seq_length_trial emmean   SE   df lower.CL upper.CL
 6                   550 44.5 19.6      457      643
 12                  609 45.6 21.6      514      704
 18                  580 46.2 22.6      484      675

session_f = Block 4, trial_acc_cat = wrong:
 seq_length_trial emmean   SE   df lower.CL upper.CL
 6                   693 52.4 37.4      587      799
 12                  604 48.6 27.6      505      704
 18                  595 46.2 22.8      499      690

session_f = Block 5, trial_acc_cat = wrong:
 seq_length_trial emmean   SE   df lower.CL upper.CL
 6                   830 48.2 26.8      731      929
 12                  752 45.3 20.9      658      846
 18                  762 45.0 20.3      668      856

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\nPairwise (Tukey) across lengths within block × correctness:\n"); print(pairs(em_rt_len, adjust = "tukey"))

Pairwise (Tukey) across lengths within block × correctness:
session_f = Block 4, trial_acc_cat = correct:
 contrast                                estimate   SE   df t.ratio p.value
 seq_length_trial6 - seq_length_trial12    -20.52 16.8 1699  -1.222  0.4405
 seq_length_trial6 - seq_length_trial18    -25.48 17.9 1699  -1.420  0.3306
 seq_length_trial12 - seq_length_trial18    -4.96 18.4 1699  -0.270  0.9606

session_f = Block 5, trial_acc_cat = correct:
 contrast                                estimate   SE   df t.ratio p.value
 seq_length_trial6 - seq_length_trial12    -58.77 20.1 1699  -2.926  0.0097
 seq_length_trial6 - seq_length_trial18    -29.14 21.3 1699  -1.366  0.3591
 seq_length_trial12 - seq_length_trial18    29.62 23.4 1699   1.263  0.4162

session_f = Block 4, trial_acc_cat = wrong:
 contrast                                estimate   SE   df t.ratio p.value
 seq_length_trial6 - seq_length_trial12     88.97 37.9 1699   2.351  0.0494
 seq_length_trial6 - seq_length_trial18     98.71 34.9 1699   2.831  0.0130
 seq_length_trial12 - seq_length_trial18     9.74 28.8 1699   0.338  0.9390

session_f = Block 5, trial_acc_cat = wrong:
 contrast                                estimate   SE   df t.ratio p.value
 seq_length_trial6 - seq_length_trial12     78.04 26.5 1700   2.945  0.0092
 seq_length_trial6 - seq_length_trial18     68.30 26.0 1700   2.623  0.0239
 seq_length_trial12 - seq_length_trial18    -9.74 20.2 1699  -0.483  0.8795

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
# Cross-block contrasts within each length × correctness (Block 4 vs Block 5)
em_rt_blk <- emmeans::emmeans(mdl_rt_test, ~ session_f | seq_length_trial * trial_acc_cat)
cat("\nBlock comparisons (RT) within each length × correctness (Block 4 vs Block 5):\n")

Block comparisons (RT) within each length × correctness (Block 4 vs Block 5):
print(pairs(em_rt_blk))
seq_length_trial = 6, trial_acc_cat = correct:
 contrast          estimate   SE   df t.ratio p.value
 Block 4 - Block 5     -103 17.0 1699  -6.085  <.0001

seq_length_trial = 12, trial_acc_cat = correct:
 contrast          estimate   SE   df t.ratio p.value
 Block 4 - Block 5     -141 20.1 1699  -7.054  <.0001

seq_length_trial = 18, trial_acc_cat = correct:
 contrast          estimate   SE   df t.ratio p.value
 Block 4 - Block 5     -107 22.2 1700  -4.807  <.0001

seq_length_trial = 6, trial_acc_cat = wrong:
 contrast          estimate   SE   df t.ratio p.value
 Block 4 - Block 5     -137 37.5 1700  -3.651  0.0003

seq_length_trial = 12, trial_acc_cat = wrong:
 contrast          estimate   SE   df t.ratio p.value
 Block 4 - Block 5     -148 27.4 1700  -5.406  <.0001

seq_length_trial = 18, trial_acc_cat = wrong:
 contrast          estimate   SE   df t.ratio p.value
 Block 4 - Block 5     -167 22.4 1700  -7.472  <.0001

Degrees-of-freedom method: kenward-roger 
cat("\nEMMs (RT) by block within length × correctness:\n")

EMMs (RT) by block within length × correctness:
print(summary(em_rt_blk))
seq_length_trial = 6, trial_acc_cat = correct:
 session_f emmean   SE   df lower.CL upper.CL
 Block 4      447 44.3 19.1      355      540
 Block 5      550 44.5 19.6      457      643

seq_length_trial = 12, trial_acc_cat = correct:
 session_f emmean   SE   df lower.CL upper.CL
 Block 4      468 44.5 19.5      375      561
 Block 5      609 45.6 21.6      514      704

seq_length_trial = 18, trial_acc_cat = correct:
 session_f emmean   SE   df lower.CL upper.CL
 Block 4      473 44.9 20.3      379      566
 Block 5      580 46.2 22.6      484      675

seq_length_trial = 6, trial_acc_cat = wrong:
 session_f emmean   SE   df lower.CL upper.CL
 Block 4      693 52.4 37.4      587      799
 Block 5      830 48.2 26.8      731      929

seq_length_trial = 12, trial_acc_cat = wrong:
 session_f emmean   SE   df lower.CL upper.CL
 Block 4      604 48.6 27.6      505      704
 Block 5      752 45.3 20.9      658      846

seq_length_trial = 18, trial_acc_cat = wrong:
 session_f emmean   SE   df lower.CL upper.CL
 Block 4      595 46.2 22.8      499      690
 Block 5      762 45.0 20.3      668      856

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
# --- 2.2B: RT ~ block × length (correct-only, Blocks 4–5) ---
df_test_corr <- df_test %>% dplyr::filter(trial_acc_cat == "correct")
if (nrow(df_test_corr) > 0) {
  mdl_rt_test_corr <- tryCatch(
    lme4::lmer(rt ~ session_f * seq_length_trial + (1 | subject), data = df_test_corr),
    error = function(e) stats::lm(rt ~ session_f * seq_length_trial, data = df_test_corr)
  )
  cat("\n## 2.2B RT model (correct-only)\n")
  print(summary(mdl_rt_test_corr))
  cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl_rt_test_corr, type = 2))

  em_rt_len_corr <- emmeans::emmeans(mdl_rt_test_corr, ~ seq_length_trial | session_f)
  cat("\nEMMs by length within block (correct-only):\n"); print(summary(em_rt_len_corr))
  cat("\nPairwise (Tukey) across lengths within block (correct-only):\n"); print(pairs(em_rt_len_corr, adjust = "tukey"))

  # Cross-block contrasts within each length (correct-only)
  em_rt_blk_corr <- emmeans::emmeans(mdl_rt_test_corr, ~ session_f | seq_length_trial)
  cat("\nBlock comparisons (RT, correct-only) within each length (Block 4 vs Block 5):\n")
  print(pairs(em_rt_blk_corr))
  cat("\nEMMs (RT, correct-only) by block within length:\n")
  print(summary(em_rt_blk_corr))
} else {
  cat("\n[Correct-only RT model skipped: insufficient data]\n")
}

## 2.2B RT model (correct-only)
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ session_f * seq_length_trial + (1 | subject)
   Data: df_test_corr

REML criterion at convergence: 14254.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5853 -0.5408 -0.1110  0.4088  7.5602 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 29756    172.5   
 Residual             19832    140.8   
Number of obs: 1117, groups:  subject, 18

Fixed effects:
                                    Estimate Std. Error t value
(Intercept)                         447.2439    41.6235  10.745
session_fBlock 5                    105.3359    13.1253   8.025
seq_length_trial12                   21.1635    12.9629   1.633
seq_length_trial18                   23.7453    13.8623   1.713
session_fBlock 5:seq_length_trial12  35.2801    20.2159   1.745
session_fBlock 5:seq_length_trial18   0.3142    21.5168   0.015

Correlation of Fixed Effects:
            (Intr) sss_B5 sq__12 sq__18 s_B5:__12
sssn_fBlck5 -0.145                               
sq_lngth_12 -0.146  0.464                        
sq_lngth_18 -0.137  0.429  0.441                 
sss_B5:__12  0.094 -0.640 -0.641 -0.282          
sss_B5:__18  0.088 -0.597 -0.284 -0.641  0.394   

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                              Chisq Df Pr(>Chisq)    
session_f                  174.7094  1    < 2e-16 ***
seq_length_trial            13.5533  2    0.00114 ** 
session_f:seq_length_trial   3.5825  2    0.16675    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs by length within block (correct-only):
session_f = Block 4:
 seq_length_trial emmean   SE   df lower.CL upper.CL
 6                   447 41.6 18.3      360      535
 12                  468 41.7 18.5      381      556
 18                  471 42.0 19.0      383      559

session_f = Block 5:
 seq_length_trial emmean   SE   df lower.CL upper.CL
 6                   553 41.8 18.6      465      640
 12                  609 42.5 19.8      520      698
 18                  577 42.9 20.5      487      666

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey) across lengths within block (correct-only):
session_f = Block 4:
 contrast                                estimate   SE   df t.ratio p.value
 seq_length_trial6 - seq_length_trial12    -21.16 13.0 1094  -1.633  0.2323
 seq_length_trial6 - seq_length_trial18    -23.75 13.9 1094  -1.713  0.2008
 seq_length_trial12 - seq_length_trial18    -2.58 14.2 1094  -0.182  0.9819

session_f = Block 5:
 contrast                                estimate   SE   df t.ratio p.value
 seq_length_trial6 - seq_length_trial12    -56.44 15.5 1094  -3.638  0.0008
 seq_length_trial6 - seq_length_trial18    -24.06 16.5 1094  -1.457  0.3123
 seq_length_trial12 - seq_length_trial18    32.38 18.1 1094   1.787  0.1744

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Block comparisons (RT, correct-only) within each length (Block 4 vs Block 5):
seq_length_trial = 6:
 contrast          estimate   SE   df t.ratio p.value
 Block 4 - Block 5     -105 13.1 1094  -8.025  <.0001

seq_length_trial = 12:
 contrast          estimate   SE   df t.ratio p.value
 Block 4 - Block 5     -141 15.5 1095  -9.051  <.0001

seq_length_trial = 18:
 contrast          estimate   SE   df t.ratio p.value
 Block 4 - Block 5     -106 17.3 1095  -6.117  <.0001

Degrees-of-freedom method: kenward-roger 

EMMs (RT, correct-only) by block within length:
seq_length_trial = 6:
 session_f emmean   SE   df lower.CL upper.CL
 Block 4      447 41.6 18.3      360      535
 Block 5      553 41.8 18.6      465      640

seq_length_trial = 12:
 session_f emmean   SE   df lower.CL upper.CL
 Block 4      468 41.7 18.5      381      556
 Block 5      609 42.5 19.8      520      698

seq_length_trial = 18:
 session_f emmean   SE   df lower.CL upper.CL
 Block 4      471 42.0 19.0      383      559
 Block 5      577 42.9 20.5      487      666

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
# --- 2.2C: Accuracy per block × length (binomial GLMM, Blocks 4–5) ---

counts_test <- df_acc_base %>%
  dplyr::group_by(subject, session, trial) %>%
  dplyr::mutate(seq_length_trial = dplyr::n_distinct(sub.trial.number)) %>%  # TRUE length
  dplyr::ungroup() %>%
  dplyr::distinct(subject, session, trial, .keep_all = TRUE) %>%
  dplyr::filter(session %in% 4:5) %>%
  dplyr::mutate(
    session_f        = factor(session, levels = c(4, 5), labels = paste("Block", 4:5)),
    seq_length_trial = factor(seq_length_trial, levels = c(6, 12, 18))
  ) %>%
  dplyr::group_by(subject, session_f, seq_length_trial) %>%
  dplyr::summarise(
    total_trials   = dplyr::n(),  # actual denominator after any exclusions
    correct_trials = sum(trial_acc_cat == "correct", na.rm = TRUE),
    .groups = "drop"
  ) %>%
  dplyr::mutate(fail_trials = total_trials - correct_trials) %>%
  dplyr::filter(!is.na(seq_length_trial))

if (nrow(counts_test) > 0) {
  mdl_acc_test <- lme4::glmer(
    cbind(correct_trials, fail_trials) ~ session_f * seq_length_trial + (1 | subject),
    data = counts_test, family = binomial
  )
  cat("\n## 2.2C Accuracy model (binomial, block × length)\n")
  print(summary(mdl_acc_test))
  cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl_acc_test, type = 2))

  # EMMs on probability (response) scale
  em_acc_test <- emmeans::emmeans(mdl_acc_test, ~ seq_length_trial | session_f, type = "response")
  cat("\nEMMs (prob correct) by length within block:\n"); print(summary(em_acc_test))
  cat("\nPairwise (Tukey) across lengths within block (prob correct):\n"); print(pairs(em_acc_test, adjust = "tukey"))

  # Cross-block contrasts within each length (prob correct; response scale)
  em_acc_blk <- emmeans::emmeans(mdl_acc_test, ~ session_f | seq_length_trial, type = "response")
  cat("\nBlock comparisons (prob correct) within each length (Block 4 vs Block 5):\n")
  print(pairs(em_acc_blk))
  cat("\nEMMs (prob correct) by block within length:\n")
  print(summary(em_acc_blk))
} else {
  cat("\n[Accuracy model skipped: no counts available]\n")
}

## 2.2C Accuracy model (binomial, block × length)
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: cbind(correct_trials, fail_trials) ~ session_f * seq_length_trial +  
    (1 | subject)
   Data: counts_test

     AIC      BIC   logLik deviance df.resid 
   584.0    602.8   -285.0    570.0      101 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.9843 -0.8720  0.1909  0.9885  4.0483 

Random effects:
 Groups  Name        Variance Std.Dev.
 subject (Intercept) 0.3185   0.5644  
Number of obs: 108, groups:  subject, 18

Fixed effects:
                                    Estimate Std. Error z value Pr(>|z|)    
(Intercept)                           2.0307     0.2245   9.044  < 2e-16 ***
session_fBlock 5                     -0.8171     0.2284  -3.577 0.000347 ***
seq_length_trial12                   -0.6935     0.2310  -3.002 0.002682 ** 
seq_length_trial18                   -1.5158     0.2196  -6.903  5.1e-12 ***
session_fBlock 5:seq_length_trial12  -0.6721     0.2973  -2.261 0.023789 *  
session_fBlock 5:seq_length_trial18  -0.1854     0.2890  -0.641 0.521275    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) sss_B5 sq__12 sq__18 s_B5:__12
sssn_fBlck5 -0.631                               
sq_lngth_12 -0.623  0.610                        
sq_lngth_18 -0.660  0.644  0.636                 
sss_B5:__12  0.477 -0.766 -0.775 -0.489          
sss_B5:__18  0.493 -0.788 -0.481 -0.753  0.607   

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: cbind(correct_trials, fail_trials)
                              Chisq Df Pr(>Chisq)    
session_f                   98.2015  1    < 2e-16 ***
seq_length_trial           130.4703  2    < 2e-16 ***
session_f:seq_length_trial   5.9554  2    0.05091 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs (prob correct) by length within block:
session_f = Block 4:
 seq_length_trial  prob     SE  df asymp.LCL asymp.UCL
 6                0.884 0.0230 Inf     0.831     0.922
 12               0.792 0.0326 Inf     0.721     0.849
 18               0.626 0.0429 Inf     0.539     0.706

session_f = Block 5:
 seq_length_trial  prob     SE  df asymp.LCL asymp.UCL
 6                0.771 0.0344 Inf     0.697     0.831
 12               0.462 0.0450 Inf     0.376     0.550
 18               0.380 0.0431 Inf     0.300     0.468

Confidence level used: 0.95 
Intervals are back-transformed from the logit scale 

Pairwise (Tukey) across lengths within block (prob correct):
session_f = Block 4:
 contrast                                odds.ratio    SE  df null z.ratio
 seq_length_trial6 / seq_length_trial12        2.00 0.462 Inf    1   3.002
 seq_length_trial6 / seq_length_trial18        4.55 1.000 Inf    1   6.903
 seq_length_trial12 / seq_length_trial18       2.28 0.438 Inf    1   4.272
 p.value
  0.0076
  <.0001
  0.0001

session_f = Block 5:
 contrast                                odds.ratio    SE  df null z.ratio
 seq_length_trial6 / seq_length_trial12        3.92 0.736 Inf    1   7.268
 seq_length_trial6 / seq_length_trial18        5.48 1.040 Inf    1   8.947
 seq_length_trial12 / seq_length_trial18       1.40 0.245 Inf    1   1.917
 p.value
  <.0001
  <.0001
  0.1339

P value adjustment: tukey method for comparing a family of 3 estimates 
Tests are performed on the log odds ratio scale 

Block comparisons (prob correct) within each length (Block 4 vs Block 5):
seq_length_trial = 6:
 contrast          odds.ratio    SE  df null z.ratio p.value
 Block 4 / Block 5       2.26 0.517 Inf    1   3.577  0.0003

seq_length_trial = 12:
 contrast          odds.ratio    SE  df null z.ratio p.value
 Block 4 / Block 5       4.43 0.848 Inf    1   7.786  <.0001

seq_length_trial = 18:
 contrast          odds.ratio    SE  df null z.ratio p.value
 Block 4 / Block 5       2.72 0.484 Inf    1   5.639  <.0001

Tests are performed on the log odds ratio scale 

EMMs (prob correct) by block within length:
seq_length_trial = 6:
 session_f  prob     SE  df asymp.LCL asymp.UCL
 Block 4   0.884 0.0230 Inf     0.831     0.922
 Block 5   0.771 0.0344 Inf     0.697     0.831

seq_length_trial = 12:
 session_f  prob     SE  df asymp.LCL asymp.UCL
 Block 4   0.792 0.0326 Inf     0.721     0.849
 Block 5   0.462 0.0450 Inf     0.376     0.550

seq_length_trial = 18:
 session_f  prob     SE  df asymp.LCL asymp.UCL
 Block 4   0.626 0.0429 Inf     0.539     0.706
 Block 5   0.380 0.0431 Inf     0.300     0.468

Confidence level used: 0.95 
Intervals are back-transformed from the logit scale 

#A3 Stepwise RT — Training blocks (1–3)

suppressPackageStartupMessages({
  library(dplyr); library(lme4); library(car); library(emmeans)
})

# fallback in case safe_fit wasn't defined earlier
if (!exists("safe_fit")) {
  safe_fit <- function(formula, data) {
    tryCatch(lmer(formula, data = data),
             error = function(e) { stop("Model failed: ", conditionMessage(e)) })
  }
}

stepwise_rt_training_with_correctness <- function(df_acc_all) {
  cat("\n\n========== Stepwise RT — Training (1–3) ==========\n")

  for (blk in 1:3) {
    cat(glue::glue("\n--- Block {blk} ---\n"))
    # Per-step dataset (do not collapse steps)
    df_blk_all <- df_acc_all %>%
      filter(session == blk) %>%
      group_by(subject, trial, step = as.integer(as.character(sub.trial.number)), trial_acc_cat) %>%
      summarise(rt = mean(feedback.RT, na.rm = TRUE), .groups = "drop")

    if (nrow(df_blk_all) == 0) { cat("No data\n"); next }

    df_blk_all$step <- factor(df_blk_all$step, levels = sort(unique(df_blk_all$step)), ordered = TRUE)

    # Combined model with correctness factor
    has_two_steps <- n_distinct(df_blk_all$step) >= 2
    has_two_corr  <- n_distinct(df_blk_all$trial_acc_cat) >= 2
    if (has_two_steps && has_two_corr) {
      fmla <- rt ~ step * trial_acc_cat + (1 | subject)
    } else if (has_two_steps) {
      fmla <- rt ~ step + (1 | subject)
    } else if (has_two_corr) {
      fmla <- rt ~ trial_acc_cat + (1 | subject)
    } else {
      cat("⚠️ Not enough levels to model.\n"); next
    }

    cat("\n[Combined] Model summary:\n")
    mdl_all <- safe_fit(fmla, data = df_blk_all)
    print(summary(mdl_all))
    cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl_all, type = 2))

    # EMMs depending on formula
    if (has_two_steps && has_two_corr) {
      em <- emmeans(mdl_all, ~ step | trial_acc_cat)
      cat("\nEMMs (step | correctness):\n"); print(summary(em))

      # Pairwise (Tukey) across steps | correctness — print CORRECT only
      pw_by <- pairs(em, by = "trial_acc_cat", adjust = "tukey")
      if ("correct" %in% names(pw_by)) {
        cat("\nPairwise (Tukey) across steps | correctness — correct only:\n")
        print(pw_by[["correct"]])
      }

      # Adjacent-step (“consec”) | correctness — print CORRECT only
      adj_by <- contrast(em, method = "consec", by = "trial_acc_cat", adjust = "holm")
      if ("correct" %in% names(adj_by)) {
        cat("\nAdjacent-step contrasts (consecutive) | correctness — correct only:\n")
        print(adj_by[["correct"]])
      }

    } else if (has_two_steps) {
      em <- emmeans(mdl_all, ~ step)
      print(summary(em))
      
    } else {
      em <- emmeans(mdl_all, ~ trial_acc_cat); print(summary(em))
    }

    # Split outputs
    for (lab in c("correct","wrong")) {
      df_blk <- df_blk_all %>% filter(trial_acc_cat == lab)
      if (nrow(df_blk) == 0) { cat("\n⚠️ No data for", lab, "\n"); next }
      has_two_steps_lab <- n_distinct(df_blk$step) >= 2
      if (!has_two_steps_lab) { cat("\n⚠️ Only one step level for", lab, "— skipping.\n"); next }

      cat("\n[", toupper(lab), "] Model summary:\n", sep = "")
      mdl <- safe_fit(rt ~ step + (1 | subject), data = df_blk)
      print(summary(mdl))
      cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl, type = 2))
      em_lab <- emmeans(mdl, ~ step); print(summary(em_lab))

      # >>> Pairwise comparisons ONLY for CORRECT trials <<<
      if (lab == "correct") {
        cat("\nPairwise (Tukey) across steps — correct:\n")
        print(pairs(em_lab, adjust = "tukey"))

        cat("\nAdjacent-step contrasts (consecutive) — correct:\n")
        print(contrast(em_lab, "consec", adjust = "holm"))
      }
    }
  }
}


stepwise_rt_training_with_correctness(df_acc_base)


========== Stepwise RT — Training (1–3) ==========
--- Block 1 ---
[Combined] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * trial_acc_cat + (1 | subject)
   Data: data

REML criterion at convergence: 83308.2

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-3.053 -0.228 -0.068  0.118 33.226 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  72318   268.9   
 Residual             564412   751.3   
Number of obs: 5184, groups:  subject, 18

Fixed effects:
                          Estimate Std. Error t value
(Intercept)                 495.49      64.44   7.689
step.L                     -186.72      28.33  -6.590
step.Q                      170.62      28.33   6.022
step.C                     -120.67      28.33  -4.259
step^4                       43.37      28.33   1.531
step^5                      -12.27      28.33  -0.433
trial_acc_catwrong          378.53      27.67  13.680
step.L:trial_acc_catwrong   701.50      65.64  10.687
step.Q:trial_acc_catwrong   690.47      65.64  10.519
step.C:trial_acc_catwrong   349.61      65.64   5.326
step^4:trial_acc_catwrong   186.16      65.64   2.836
step^5:trial_acc_catwrong    37.65      65.64   0.574

Correlation of Fixed Effects:
            (Intr) step.L step.Q step.C step^4 step^5 trl_c_ s.L:__ s.Q:__
step.L       0.000                                                        
step.Q       0.000  0.000                                                 
step.C       0.000  0.000  0.000                                          
step^4       0.000  0.000  0.000  0.000                                   
step^5       0.000  0.000  0.000  0.000  0.000                            
trl_cc_ctwr -0.080  0.000  0.000  0.000  0.000  0.000                     
stp.L:trl__  0.000 -0.432  0.000  0.000  0.000  0.000  0.000              
stp.Q:trl__  0.000  0.000 -0.432  0.000  0.000  0.000  0.000  0.000       
stp.C:trl__  0.000  0.000  0.000 -0.432  0.000  0.000  0.000  0.000  0.000
stp^4:trl__  0.000  0.000  0.000  0.000 -0.432  0.000  0.000  0.000  0.000
stp^5:trl__  0.000  0.000  0.000  0.000  0.000 -0.432  0.000  0.000  0.000
            s.C:__ s^4:__
step.L                   
step.Q                   
step.C                   
step^4                   
step^5                   
trl_cc_ctwr              
stp.L:trl__              
stp.Q:trl__              
stp.C:trl__              
stp^4:trl__  0.000       
stp^5:trl__  0.000  0.000

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                    Chisq Df Pr(>Chisq)    
step               156.01  5  < 2.2e-16 ***
trial_acc_cat      187.15  1  < 2.2e-16 ***
step:trial_acc_cat 261.61  5  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs (step | correctness):
trial_acc_cat = correct:
 step emmean   SE   df lower.CL upper.CL
 1       754 69.4 23.2      611      898
 2       452 69.4 23.2      309      596
 3       431 69.4 23.2      288      575
 4       443 69.4 23.2      300      587
 5       452 69.4 23.2      309      596
 6       439 69.4 23.2      296      583

trial_acc_cat = wrong:
 step emmean   SE   df lower.CL upper.CL
 1       993 86.9 56.8      819     1167
 2       593 86.9 56.8      419      767
 3       576 86.9 56.8      402      750
 4       594 86.9 56.8      420      768
 5       707 86.9 56.8      533      881
 6      1782 86.9 56.8     1608     1956

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

[CORRECT] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step + (1 | subject)
   Data: data

REML criterion at convergence: 60818.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.4444 -0.3995 -0.1412  0.2213 29.3410 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  66759   258.4   
 Residual             106031   325.6   
Number of obs: 4218, groups:  subject, 18

Fixed effects:
            Estimate Std. Error t value
(Intercept)   498.01      61.11   8.149
step.L       -186.72      12.28 -15.204
step.Q        170.62      12.28  13.893
step.C       -120.67      12.28  -9.826
step^4         43.37      12.28   3.532
step^5        -12.27      12.28  -0.999

Correlation of Fixed Effects:
       (Intr) step.L step.Q step.C step^4
step.L 0.000                             
step.Q 0.000  0.000                      
step.C 0.000  0.000  0.000               
step^4 0.000  0.000  0.000  0.000        
step^5 0.000  0.000  0.000  0.000  0.000 

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
     Chisq Df Pr(>Chisq)    
step 534.2  5  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 step emmean   SE   df lower.CL upper.CL
 1       757 62.1 18.2      626      887
 2       455 62.1 18.2      324      585
 3       434 62.1 18.2      304      564
 4       446 62.1 18.2      315      576
 5       455 62.1 18.2      324      585
 6       442 62.1 18.2      312      572

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey) across steps — correct:
 contrast      estimate   SE   df t.ratio p.value
 step1 - step2  301.691 17.4 4195  17.370  <.0001
 step1 - step3  322.613 17.4 4195  18.575  <.0001
 step1 - step4  310.754 17.4 4195  17.892  <.0001
 step1 - step5  301.947 17.4 4195  17.385  <.0001
 step1 - step6  314.669 17.4 4195  18.118  <.0001
 step2 - step3   20.922 17.4 4195   1.205  0.8348
 step2 - step4    9.063 17.4 4195   0.522  0.9953
 step2 - step5    0.256 17.4 4195   0.015  1.0000
 step2 - step6   12.977 17.4 4195   0.747  0.9759
 step3 - step4  -11.859 17.4 4195  -0.683  0.9839
 step3 - step5  -20.666 17.4 4195  -1.190  0.8419
 step3 - step6   -7.944 17.4 4195  -0.457  0.9975
 step4 - step5   -8.806 17.4 4195  -0.507  0.9959
 step4 - step6    3.915 17.4 4195   0.225  0.9999
 step5 - step6   12.721 17.4 4195   0.732  0.9780

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent-step contrasts (consecutive) — correct:
 contrast      estimate   SE   df t.ratio p.value
 step2 - step1  -301.69 17.4 4195 -17.370  <.0001
 step3 - step2   -20.92 17.4 4195  -1.205  0.9137
 step4 - step3    11.86 17.4 4195   0.683  1.0000
 step5 - step4     8.81 17.4 4195   0.507  1.0000
 step6 - step5   -12.72 17.4 4195  -0.732  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 5 tests 

[WRONG] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step + (1 | subject)
   Data: data

REML criterion at convergence: 16938.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.4700 -0.2600 -0.0791  0.0668 15.3544 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  129325   359.6  
 Residual             2548045  1596.3  
Number of obs: 966, groups:  subject, 18

Fixed effects:
            Estimate Std. Error t value
(Intercept)   885.50     101.42   8.731
step.L        514.77     125.80   4.092
step.Q        861.09     125.80   6.845
step.C        228.93     125.80   1.820
step^4        229.54     125.80   1.825
step^5         25.38     125.80   0.202

Correlation of Fixed Effects:
       (Intr) step.L step.Q step.C step^4
step.L 0.000                             
step.Q 0.000  0.000                      
step.C 0.000  0.000  0.000               
step^4 0.000  0.000  0.000  0.000        
step^5 0.000  0.000  0.000  0.000  0.000 

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
      Chisq Df Pr(>Chisq)    
step 70.275  5  8.981e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 step emmean  SE   df lower.CL upper.CL
 1      1004 153 84.2      699     1309
 2       604 153 84.2      299      909
 3       587 153 84.2      282      892
 4       606 153 84.2      301      911
 5       719 153 84.2      414     1023
 6      1793 153 84.2     1488     2098

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
--- Block 2 ---
[Combined] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * trial_acc_cat + (1 | subject)
   Data: data

REML criterion at convergence: 152133.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5910 -0.4328 -0.1421  0.1825 13.1480 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  73186   270.5   
 Residual             139488   373.5   
Number of obs: 10368, groups:  subject, 18

Fixed effects:
                           Estimate Std. Error t value
(Intercept)                 491.831     63.934   7.693
step.L                     -134.063     15.782  -8.494
step.Q                       78.716     15.782   4.988
step.C                     -183.800     15.782 -11.646
step^4                      130.544     15.782   8.271
step^5                      -59.893     15.782  -3.795
step^6                       31.494     15.782   1.996
step^7                       14.042     15.782   0.890
step^8                        2.778     15.782   0.176
step^9                      -32.254     15.782  -2.044
step^10                      22.473     15.782   1.424
step^11                     -44.771     15.782  -2.837
trial_acc_catwrong          189.621      8.128  23.329
step.L:trial_acc_catwrong   214.325     26.607   8.055
step.Q:trial_acc_catwrong   155.288     26.607   5.836
step.C:trial_acc_catwrong    51.468     26.607   1.934
step^4:trial_acc_catwrong   157.970     26.607   5.937
step^5:trial_acc_catwrong    24.774     26.607   0.931
step^6:trial_acc_catwrong    40.459     26.607   1.521
step^7:trial_acc_catwrong   -20.228     26.607  -0.760
step^8:trial_acc_catwrong   -18.810     26.607  -0.707
step^9:trial_acc_catwrong    66.831     26.607   2.512
step^10:trial_acc_catwrong   47.716     26.607   1.793
step^11:trial_acc_catwrong  -60.857     26.607  -2.287

Correlation matrix not shown by default, as p = 24 > 12.
Use print(summary(mdl_all), correlation=TRUE)  or
    vcov(summary(mdl_all))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                    Chisq Df Pr(>Chisq)    
step               582.81 11  < 2.2e-16 ***
trial_acc_cat      544.25  1  < 2.2e-16 ***
step:trial_acc_cat 156.96 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs (step | correctness):
trial_acc_cat = correct:
 step emmean   SE   df lower.CL upper.CL
 1       746 65.7 19.0      609      884
 2       470 65.7 19.0      333      608
 3       439 65.7 19.0      302      577
 4       414 65.7 19.0      277      552
 5       517 65.7 19.0      380      655
 6       480 65.7 19.0      343      618
 7       507 65.7 19.0      370      645
 8       484 65.7 19.0      347      622
 9       511 65.7 19.0      373      648
 10      471 65.7 19.0      334      609
 11      438 65.7 19.0      300      575
 12      424 65.7 19.0      286      561

trial_acc_cat = wrong:
 step emmean   SE   df lower.CL upper.CL
 1       950 67.3 20.9      810     1090
 2       564 67.3 20.9      424      704
 3       524 67.3 20.9      384      664
 4       547 67.3 20.9      407      687
 5       703 67.3 20.9      563      843
 6       573 67.3 20.9      433      713
 7       737 67.3 20.9      597      877
 8       701 67.3 20.9      561      841
 9       664 67.3 20.9      524      804
 10      666 67.3 20.9      526      806
 11      666 67.3 20.9      526      806
 12      884 67.3 20.9      744     1024

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

[CORRECT] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step + (1 | subject)
   Data: data

REML criterion at convergence: 92865.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.1593 -0.4831 -0.1817  0.2355 13.2133 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 60609    246.2   
 Residual             58656    242.2   
Number of obs: 6720, groups:  subject, 18

Fixed effects:
            Estimate Std. Error t value
(Intercept)  489.472     58.108   8.423
step.L      -134.063     10.234 -13.099
step.Q        78.716     10.234   7.691
step.C      -183.800     10.234 -17.959
step^4       130.544     10.234  12.755
step^5       -59.893     10.234  -5.852
step^6        31.494     10.234   3.077
step^7        14.042     10.234   1.372
step^8         2.778     10.234   0.271
step^9       -32.254     10.234  -3.152
step^10       22.473     10.234   2.196
step^11      -44.771     10.234  -4.375

Correlation of Fixed Effects:
        (Intr) step.L step.Q step.C step^4 step^5 step^6 step^7 step^8 step^9
step.L  0.000                                                                
step.Q  0.000  0.000                                                         
step.C  0.000  0.000  0.000                                                  
step^4  0.000  0.000  0.000  0.000                                           
step^5  0.000  0.000  0.000  0.000  0.000                                    
step^6  0.000  0.000  0.000  0.000  0.000  0.000                             
step^7  0.000  0.000  0.000  0.000  0.000  0.000  0.000                      
step^8  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000               
step^9  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000        
step^10 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
step^11 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
        stp^10
step.L        
step.Q        
step.C        
step^4        
step^5        
step^6        
step^7        
step^8        
step^9        
step^10       
step^11 0.000 

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
      Chisq Df Pr(>Chisq)    
step 795.54 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 step emmean   SE df lower.CL upper.CL
 1       744 58.9 18      620      868
 2       468 58.9 18      344      592
 3       437 58.9 18      313      561
 4       412 58.9 18      288      536
 5       515 58.9 18      391      639
 6       478 58.9 18      354      602
 7       505 58.9 18      381      629
 8       482 58.9 18      358      606
 9       508 58.9 18      385      632
 10      469 58.9 18      345      593
 11      435 58.9 18      312      559
 12      421 58.9 18      298      545

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey) across steps — correct:
 contrast        estimate   SE   df t.ratio p.value
 step1 - step2    275.707 14.5 6691  19.049  <.0001
 step1 - step3    306.861 14.5 6691  21.201  <.0001
 step1 - step4    331.834 14.5 6691  22.927  <.0001
 step1 - step5    228.984 14.5 6691  15.821  <.0001
 step1 - step6    265.964 14.5 6691  18.376  <.0001
 step1 - step7    238.716 14.5 6691  16.493  <.0001
 step1 - step8    261.957 14.5 6691  18.099  <.0001
 step1 - step9    235.332 14.5 6691  16.259  <.0001
 step1 - step10   274.986 14.5 6691  18.999  <.0001
 step1 - step11   308.355 14.5 6691  21.305  <.0001
 step1 - step12   322.405 14.5 6691  22.275  <.0001
 step2 - step3     31.154 14.5 6691   2.152  0.5846
 step2 - step4     56.127 14.5 6691   3.878  0.0060
 step2 - step5    -46.723 14.5 6691  -3.228  0.0567
 step2 - step6     -9.743 14.5 6691  -0.673  0.9999
 step2 - step7    -36.991 14.5 6691  -2.556  0.3055
 step2 - step8    -13.750 14.5 6691  -0.950  0.9986
 step2 - step9    -40.375 14.5 6691  -2.790  0.1845
 step2 - step10    -0.721 14.5 6691  -0.050  1.0000
 step2 - step11    32.648 14.5 6691   2.256  0.5088
 step2 - step12    46.698 14.5 6691   3.226  0.0570
 step3 - step4     24.973 14.5 6691   1.725  0.8567
 step3 - step5    -77.877 14.5 6691  -5.381  <.0001
 step3 - step6    -40.896 14.5 6691  -2.826  0.1693
 step3 - step7    -68.145 14.5 6691  -4.708  0.0002
 step3 - step8    -44.904 14.5 6691  -3.102  0.0819
 step3 - step9    -71.529 14.5 6691  -4.942  0.0001
 step3 - step10   -31.875 14.5 6691  -2.202  0.5480
 step3 - step11     1.495 14.5 6691   0.103  1.0000
 step3 - step12    15.545 14.5 6691   1.074  0.9957
 step4 - step5   -102.850 14.5 6691  -7.106  <.0001
 step4 - step6    -65.870 14.5 6691  -4.551  0.0003
 step4 - step7    -93.118 14.5 6691  -6.434  <.0001
 step4 - step8    -69.877 14.5 6691  -4.828  0.0001
 step4 - step9    -96.502 14.5 6691  -6.667  <.0001
 step4 - step10   -56.848 14.5 6691  -3.928  0.0049
 step4 - step11   -23.479 14.5 6691  -1.622  0.9013
 step4 - step12    -9.429 14.5 6691  -0.651  1.0000
 step5 - step6     36.980 14.5 6691   2.555  0.3059
 step5 - step7      9.732 14.5 6691   0.672  0.9999
 step5 - step8     32.973 14.5 6691   2.278  0.4924
 step5 - step9      6.348 14.5 6691   0.439  1.0000
 step5 - step10    46.002 14.5 6691   3.178  0.0657
 step5 - step11    79.371 14.5 6691   5.484  <.0001
 step5 - step12    93.421 14.5 6691   6.455  <.0001
 step6 - step7    -27.248 14.5 6691  -1.883  0.7703
 step6 - step8     -4.007 14.5 6691  -0.277  1.0000
 step6 - step9    -30.632 14.5 6691  -2.116  0.6109
 step6 - step10     9.021 14.5 6691   0.623  1.0000
 step6 - step11    42.391 14.5 6691   2.929  0.1309
 step6 - step12    56.441 14.5 6691   3.900  0.0055
 step7 - step8     23.241 14.5 6691   1.606  0.9074
 step7 - step9     -3.384 14.5 6691  -0.234  1.0000
 step7 - step10    36.270 14.5 6691   2.506  0.3361
 step7 - step11    69.639 14.5 6691   4.811  0.0001
 step7 - step12    83.689 14.5 6691   5.782  <.0001
 step8 - step9    -26.625 14.5 6691  -1.840  0.7961
 step8 - step10    13.029 14.5 6691   0.900  0.9991
 step8 - step11    46.398 14.5 6691   3.206  0.0606
 step8 - step12    60.448 14.5 6691   4.176  0.0018
 step9 - step10    39.654 14.5 6691   2.740  0.2070
 step9 - step11    73.023 14.5 6691   5.045  <.0001
 step9 - step12    87.073 14.5 6691   6.016  <.0001
 step10 - step11   33.370 14.5 6691   2.306  0.4726
 step10 - step12   47.420 14.5 6691   3.276  0.0489
 step11 - step12   14.050 14.5 6691   0.971  0.9983

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent-step contrasts (consecutive) — correct:
 contrast        estimate   SE   df t.ratio p.value
 step2 - step1     -275.7 14.5 6691 -19.049  <.0001
 step3 - step2      -31.2 14.5 6691  -2.152  0.1884
 step4 - step3      -25.0 14.5 6691  -1.725  0.2990
 step5 - step4      102.8 14.5 6691   7.106  <.0001
 step6 - step5      -37.0 14.5 6691  -2.555  0.0851
 step7 - step6       27.2 14.5 6691   1.883  0.2990
 step8 - step7      -23.2 14.5 6691  -1.606  0.2990
 step9 - step8       26.6 14.5 6691   1.840  0.2990
 step10 - step9     -39.7 14.5 6691  -2.740  0.0555
 step11 - step10    -33.4 14.5 6691  -2.306  0.1482
 step12 - step11    -14.1 14.5 6691  -0.971  0.3317

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 11 tests 

[WRONG] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step + (1 | subject)
   Data: data

REML criterion at convergence: 56105.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6066 -0.4986 -0.1921  0.1556  9.3032 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  90484   300.8   
 Residual             283253   532.2   
Number of obs: 3648, groups:  subject, 18

Fixed effects:
            Estimate Std. Error t value
(Intercept)  683.972     71.647   9.546
step.L        80.262     30.525   2.629
step.Q       234.004     30.525   7.666
step.C      -132.333     30.525  -4.335
step^4       288.514     30.525   9.452
step^5       -35.120     30.525  -1.151
step^6        71.953     30.525   2.357
step^7        -6.187     30.525  -0.203
step^8       -16.032     30.525  -0.525
step^9        34.576     30.525   1.133
step^10       70.189     30.525   2.299
step^11     -105.628     30.525  -3.460

Correlation of Fixed Effects:
        (Intr) step.L step.Q step.C step^4 step^5 step^6 step^7 step^8 step^9
step.L  0.000                                                                
step.Q  0.000  0.000                                                         
step.C  0.000  0.000  0.000                                                  
step^4  0.000  0.000  0.000  0.000                                           
step^5  0.000  0.000  0.000  0.000  0.000                                    
step^6  0.000  0.000  0.000  0.000  0.000  0.000                             
step^7  0.000  0.000  0.000  0.000  0.000  0.000  0.000                      
step^8  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000               
step^9  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000        
step^10 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
step^11 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
        stp^10
step.L        
step.Q        
step.C        
step^4        
step^5        
step^6        
step^7        
step^8        
step^9        
step^10       
step^11 0.000 

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
      Chisq Df Pr(>Chisq)    
step 199.56 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 step emmean   SE   df lower.CL upper.CL
 1       953 77.4 23.1      793     1113
 2       566 77.4 23.1      406      726
 3       527 77.4 23.1      367      687
 4       550 77.4 23.1      390      710
 5       705 77.4 23.1      545      865
 6       576 77.4 23.1      416      736
 7       739 77.4 23.1      579      899
 8       703 77.4 23.1      543      863
 9       666 77.4 23.1      506      826
 10      668 77.4 23.1      508      828
 11      668 77.4 23.1      508      828
 12      886 77.4 23.1      726     1046

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
--- Block 3 ---
[Combined] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * trial_acc_cat + (1 | subject)
   Data: data

REML criterion at convergence: 233065.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6317 -0.4232 -0.1656  0.1450 23.1355 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  45858   214.1   
 Residual             191532   437.6   
Number of obs: 15552, groups:  subject, 18

Fixed effects:
                            Estimate Std. Error t value
(Intercept)                 534.1761    50.7214  10.532
step.L                      -74.1687    20.1442  -3.682
step.Q                       52.8735    20.1442   2.625
step.C                     -212.6525    20.1442 -10.557
step^4                      148.2090    20.1442   7.357
step^5                      -72.2957    20.1442  -3.589
step^6                      143.7340    20.1442   7.135
step^7                      -39.4603    20.1442  -1.959
step^8                      -30.7602    20.1442  -1.527
step^9                      -68.5111    20.1442  -3.401
step^10                     -65.2846    20.1442  -3.241
step^11                       5.9738    20.1442   0.297
step^12                      97.7373    20.1442   4.852
step^13                      -3.5160    20.1442  -0.175
step^14                     -61.4153    20.1442  -3.049
step^15                     -91.9082    20.1442  -4.563
step^16                     -45.7208    20.1442  -2.270
step^17                     -24.5454    20.1442  -1.218
trial_acc_catwrong          101.2860     7.8532  12.897
step.L:trial_acc_catwrong   151.2608    29.9064   5.058
step.Q:trial_acc_catwrong    71.8196    29.9064   2.401
step.C:trial_acc_catwrong     6.5254    29.9064   0.218
step^4:trial_acc_catwrong   161.4595    29.9064   5.399
step^5:trial_acc_catwrong   -53.6791    29.9064  -1.795
step^6:trial_acc_catwrong    69.2605    29.9064   2.316
step^7:trial_acc_catwrong     4.7810    29.9064   0.160
step^8:trial_acc_catwrong   116.4322    29.9064   3.893
step^9:trial_acc_catwrong    63.9203    29.9064   2.137
step^10:trial_acc_catwrong   29.9286    29.9064   1.001
step^11:trial_acc_catwrong  -27.3549    29.9064  -0.915
step^12:trial_acc_catwrong  -18.6902    29.9064  -0.625
step^13:trial_acc_catwrong  -25.3792    29.9064  -0.849
step^14:trial_acc_catwrong   -1.3827    29.9064  -0.046
step^15:trial_acc_catwrong   66.9411    29.9064   2.238
step^16:trial_acc_catwrong   11.6012    29.9064   0.388
step^17:trial_acc_catwrong    0.2499    29.9064   0.008

Correlation matrix not shown by default, as p = 36 > 12.
Use print(summary(mdl_all), correlation=TRUE)  or
    vcov(summary(mdl_all))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                     Chisq Df Pr(>Chisq)    
step               742.457 17  < 2.2e-16 ***
trial_acc_cat      166.344  1  < 2.2e-16 ***
step:trial_acc_cat  96.992 17  3.201e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs (step | correctness):
trial_acc_cat = correct:
 step emmean   SE   df lower.CL upper.CL
 1       809 54.4 22.7      696      922
 2       501 54.4 22.7      388      613
 3       463 54.4 22.7      350      575
 4       451 54.4 22.7      339      564
 5       529 54.4 22.7      416      641
 6       525 54.4 22.7      413      638
 7       505 54.4 22.7      392      618
 8       493 54.4 22.7      381      606
 9       544 54.4 22.7      432      657
 10      570 54.4 22.7      457      682
 11      514 54.4 22.7      401      626
 12      480 54.4 22.7      367      592
 13      707 54.4 22.7      595      820
 14      565 54.4 22.7      453      678
 15      513 54.4 22.7      400      626
 16      449 54.4 22.7      337      562
 17      508 54.4 22.7      396      621
 18      489 54.4 22.7      376      602

trial_acc_cat = wrong:
 step emmean   SE   df lower.CL upper.CL
 1       992 55.1 24.0      878     1106
 2       486 55.1 24.0      372      600
 3       474 55.1 24.0      360      587
 4       488 55.1 24.0      374      601
 5       574 55.1 24.0      460      688
 6       625 55.1 24.0      511      739
 7       568 55.1 24.0      454      682
 8       588 55.1 24.0      474      702
 9       686 55.1 24.0      572      799
 10      682 55.1 24.0      568      796
 11      642 55.1 24.0      528      756
 12      610 55.1 24.0      496      723
 13      727 55.1 24.0      613      841
 14      655 55.1 24.0      542      769
 15      677 55.1 24.0      563      791
 16      607 55.1 24.0      494      721
 17      590 55.1 24.0      476      704
 18      769 55.1 24.0      655      883

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

[CORRECT] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step + (1 | subject)
   Data: data

REML criterion at convergence: 121086.8

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-2.579 -0.432 -0.161  0.192 33.518 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 40081    200.2   
 Residual             91189    302.0   
Number of obs: 8496, groups:  subject, 18

Fixed effects:
            Estimate Std. Error t value
(Intercept)  530.575     47.335  11.209
step.L       -74.169     13.900  -5.336
step.Q        52.873     13.900   3.804
step.C      -212.652     13.900 -15.299
step^4       148.209     13.900  10.663
step^5       -72.296     13.900  -5.201
step^6       143.734     13.900  10.341
step^7       -39.460     13.900  -2.839
step^8       -30.760     13.900  -2.213
step^9       -68.511     13.900  -4.929
step^10      -65.285     13.900  -4.697
step^11        5.974     13.900   0.430
step^12       97.737     13.900   7.032
step^13       -3.516     13.900  -0.253
step^14      -61.415     13.900  -4.419
step^15      -91.908     13.900  -6.612
step^16      -45.721     13.900  -3.289
step^17      -24.545     13.900  -1.766

Correlation matrix not shown by default, as p = 18 > 12.
Use print(summary(mdl), correlation=TRUE)  or
    vcov(summary(mdl))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
      Chisq Df Pr(>Chisq)    
step 710.88 17  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 step emmean   SE   df lower.CL upper.CL
 1       805 49.2 19.9      703      908
 2       497 49.2 19.9      395      600
 3       459 49.2 19.9      356      562
 4       448 49.2 19.9      345      551
 5       525 49.2 19.9      422      628
 6       522 49.2 19.9      419      624
 7       501 49.2 19.9      399      604
 8       490 49.2 19.9      387      592
 9       541 49.2 19.9      438      643
 10      566 49.2 19.9      463      669
 11      510 49.2 19.9      407      613
 12      476 49.2 19.9      373      579
 13      704 49.2 19.9      601      807
 14      562 49.2 19.9      459      664
 15      509 49.2 19.9      407      612
 16      446 49.2 19.9      343      548
 17      505 49.2 19.9      402      607
 18      485 49.2 19.9      383      588

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey) across steps — correct:
 contrast        estimate   SE   df t.ratio p.value
 step1 - step2    308.066 19.7 8461  15.672  <.0001
 step1 - step3    346.254 19.7 8461  17.615  <.0001
 step1 - step4    357.566 19.7 8461  18.190  <.0001
 step1 - step5    280.229 19.7 8461  14.256  <.0001
 step1 - step6    283.729 19.7 8461  14.434  <.0001
 step1 - step7    303.913 19.7 8461  15.461  <.0001
 step1 - step8    315.773 19.7 8461  16.064  <.0001
 step1 - step9    264.585 19.7 8461  13.460  <.0001
 step1 - step10   239.358 19.7 8461  12.177  <.0001
 step1 - step11   295.263 19.7 8461  15.021  <.0001
 step1 - step12   329.360 19.7 8461  16.755  <.0001
 step1 - step13   101.496 19.7 8461   5.163  <.0001
 step1 - step14   243.826 19.7 8461  12.404  <.0001
 step1 - step15   296.002 19.7 8461  15.058  <.0001
 step1 - step16   359.763 19.7 8461  18.302  <.0001
 step1 - step17   300.820 19.7 8461  15.303  <.0001
 step1 - step18   319.892 19.7 8461  16.274  <.0001
 step2 - step3     38.189 19.7 8461   1.943  0.8954
 step2 - step4     49.500 19.7 8461   2.518  0.5162
 step2 - step5    -27.837 19.7 8461  -1.416  0.9951
 step2 - step6    -24.337 19.7 8461  -1.238  0.9990
 step2 - step7     -4.152 19.7 8461  -0.211  1.0000
 step2 - step8      7.708 19.7 8461   0.392  1.0000
 step2 - step9    -43.481 19.7 8461  -2.212  0.7459
 step2 - step10   -68.708 19.7 8461  -3.495  0.0491
 step2 - step11   -12.803 19.7 8461  -0.651  1.0000
 step2 - step12    21.294 19.7 8461   1.083  0.9998
 step2 - step13  -206.570 19.7 8461 -10.509  <.0001
 step2 - step14   -64.239 19.7 8461  -3.268  0.0984
 step2 - step15   -12.064 19.7 8461  -0.614  1.0000
 step2 - step16    51.697 19.7 8461   2.630  0.4311
 step2 - step17    -7.246 19.7 8461  -0.369  1.0000
 step2 - step18    11.826 19.7 8461   0.602  1.0000
 step3 - step4     11.311 19.7 8461   0.575  1.0000
 step3 - step5    -66.025 19.7 8461  -3.359  0.0752
 step3 - step6    -62.525 19.7 8461  -3.181  0.1256
 step3 - step7    -42.341 19.7 8461  -2.154  0.7839
 step3 - step8    -30.481 19.7 8461  -1.551  0.9868
 step3 - step9    -81.669 19.7 8461  -4.155  0.0043
 step3 - step10  -106.896 19.7 8461  -5.438  <.0001
 step3 - step11   -50.992 19.7 8461  -2.594  0.4580
 step3 - step12   -16.894 19.7 8461  -0.859  1.0000
 step3 - step13  -244.758 19.7 8461 -12.451  <.0001
 step3 - step14  -102.428 19.7 8461  -5.211  <.0001
 step3 - step15   -50.252 19.7 8461  -2.556  0.4867
 step3 - step16    13.508 19.7 8461   0.687  1.0000
 step3 - step17   -45.434 19.7 8461  -2.311  0.6751
 step3 - step18   -26.362 19.7 8461  -1.341  0.9974
 step4 - step5    -77.337 19.7 8461  -3.934  0.0103
 step4 - step6    -73.837 19.7 8461  -3.756  0.0201
 step4 - step7    -53.653 19.7 8461  -2.729  0.3598
 step4 - step8    -41.792 19.7 8461  -2.126  0.8012
 step4 - step9    -92.981 19.7 8461  -4.730  0.0003
 step4 - step10  -118.208 19.7 8461  -6.014  <.0001
 step4 - step11   -62.303 19.7 8461  -3.170  0.1295
 step4 - step12   -28.206 19.7 8461  -1.435  0.9944
 step4 - step13  -256.070 19.7 8461 -13.027  <.0001
 step4 - step14  -113.739 19.7 8461  -5.786  <.0001
 step4 - step15   -61.564 19.7 8461  -3.132  0.1433
 step4 - step16     2.197 19.7 8461   0.112  1.0000
 step4 - step17   -56.746 19.7 8461  -2.887  0.2600
 step4 - step18   -37.674 19.7 8461  -1.917  0.9059
 step5 - step6      3.500 19.7 8461   0.178  1.0000
 step5 - step7     23.684 19.7 8461   1.205  0.9993
 step5 - step8     35.544 19.7 8461   1.808  0.9420
 step5 - step9    -15.644 19.7 8461  -0.796  1.0000
 step5 - step10   -40.871 19.7 8461  -2.079  0.8285
 step5 - step11    15.034 19.7 8461   0.765  1.0000
 step5 - step12    49.131 19.7 8461   2.499  0.5307
 step5 - step13  -178.733 19.7 8461  -9.093  <.0001
 step5 - step14   -36.403 19.7 8461  -1.852  0.9289
 step5 - step15    15.773 19.7 8461   0.802  1.0000
 step5 - step16    79.534 19.7 8461   4.046  0.0067
 step5 - step17    20.591 19.7 8461   1.048  0.9999
 step5 - step18    39.663 19.7 8461   2.018  0.8611
 step6 - step7     20.184 19.7 8461   1.027  0.9999
 step6 - step8     32.044 19.7 8461   1.630  0.9780
 step6 - step9    -19.144 19.7 8461  -0.974  1.0000
 step6 - step10   -44.371 19.7 8461  -2.257  0.7144
 step6 - step11    11.534 19.7 8461   0.587  1.0000
 step6 - step12    45.631 19.7 8461   2.321  0.6677
 step6 - step13  -182.233 19.7 8461  -9.271  <.0001
 step6 - step14   -39.903 19.7 8461  -2.030  0.8549
 step6 - step15    12.273 19.7 8461   0.624  1.0000
 step6 - step16    76.034 19.7 8461   3.868  0.0133
 step6 - step17    17.091 19.7 8461   0.869  1.0000
 step6 - step18    36.163 19.7 8461   1.840  0.9328
 step7 - step8     11.860 19.7 8461   0.603  1.0000
 step7 - step9    -39.328 19.7 8461  -2.001  0.8694
 step7 - step10   -64.555 19.7 8461  -3.284  0.0939
 step7 - step11    -8.650 19.7 8461  -0.440  1.0000
 step7 - step12    25.447 19.7 8461   1.295  0.9983
 step7 - step13  -202.417 19.7 8461 -10.297  <.0001
 step7 - step14   -60.087 19.7 8461  -3.057  0.1739
 step7 - step15    -7.911 19.7 8461  -0.402  1.0000
 step7 - step16    55.850 19.7 8461   2.841  0.2871
 step7 - step17    -3.093 19.7 8461  -0.157  1.0000
 step7 - step18    15.979 19.7 8461   0.813  1.0000
 step8 - step9    -51.189 19.7 8461  -2.604  0.4504
 step8 - step10   -76.415 19.7 8461  -3.887  0.0124
 step8 - step11   -20.511 19.7 8461  -1.043  0.9999
 step8 - step12    13.587 19.7 8461   0.691  1.0000
 step8 - step13  -214.278 19.7 8461 -10.901  <.0001
 step8 - step14   -71.947 19.7 8461  -3.660  0.0283
 step8 - step15   -19.771 19.7 8461  -1.006  0.9999
 step8 - step16    43.989 19.7 8461   2.238  0.7281
 step8 - step17   -14.953 19.7 8461  -0.761  1.0000
 step8 - step18     4.119 19.7 8461   0.210  1.0000
 step9 - step10   -25.227 19.7 8461  -1.283  0.9985
 step9 - step11    30.678 19.7 8461   1.561  0.9859
 step9 - step12    64.775 19.7 8461   3.295  0.0909
 step9 - step13  -163.089 19.7 8461  -8.297  <.0001
 step9 - step14   -20.759 19.7 8461  -1.056  0.9999
 step9 - step15    31.417 19.7 8461   1.598  0.9820
 step9 - step16    95.178 19.7 8461   4.842  0.0002
 step9 - step17    36.235 19.7 8461   1.843  0.9316
 step9 - step18    55.307 19.7 8461   2.814  0.3042
 step10 - step11   55.905 19.7 8461   2.844  0.2854
 step10 - step12   90.002 19.7 8461   4.579  0.0007
 step10 - step13 -137.862 19.7 8461  -7.013  <.0001
 step10 - step14    4.468 19.7 8461   0.227  1.0000
 step10 - step15   56.644 19.7 8461   2.882  0.2630
 step10 - step16  120.405 19.7 8461   6.125  <.0001
 step10 - step17   61.462 19.7 8461   3.127  0.1452
 step10 - step18   80.534 19.7 8461   4.097  0.0054
 step11 - step12   34.097 19.7 8461   1.735  0.9601
 step11 - step13 -193.767 19.7 8461  -9.857  <.0001
 step11 - step14  -51.436 19.7 8461  -2.617  0.4410
 step11 - step15    0.739 19.7 8461   0.038  1.0000
 step11 - step16   64.500 19.7 8461   3.281  0.0947
 step11 - step17    5.557 19.7 8461   0.283  1.0000
 step11 - step18   24.629 19.7 8461   1.253  0.9989
 step12 - step13 -227.864 19.7 8461 -11.592  <.0001
 step12 - step14  -85.534 19.7 8461  -4.351  0.0019
 step12 - step15  -33.358 19.7 8461  -1.697  0.9675
 step12 - step16   30.402 19.7 8461   1.547  0.9872
 step12 - step17  -28.540 19.7 8461  -1.452  0.9936
 step12 - step18   -9.468 19.7 8461  -0.482  1.0000
 step13 - step14  142.331 19.7 8461   7.241  <.0001
 step13 - step15  194.506 19.7 8461   9.895  <.0001
 step13 - step16  258.267 19.7 8461  13.139  <.0001
 step13 - step17  199.324 19.7 8461  10.140  <.0001
 step13 - step18  218.396 19.7 8461  11.110  <.0001
 step14 - step15   52.176 19.7 8461   2.654  0.4132
 step14 - step16  115.936 19.7 8461   5.898  <.0001
 step14 - step17   56.994 19.7 8461   2.899  0.2529
 step14 - step18   76.066 19.7 8461   3.870  0.0132
 step15 - step16   63.761 19.7 8461   3.244  0.1054
 step15 - step17    4.818 19.7 8461   0.245  1.0000
 step15 - step18   23.890 19.7 8461   1.215  0.9992
 step16 - step17  -58.943 19.7 8461  -2.999  0.2008
 step16 - step18  -39.871 19.7 8461  -2.028  0.8558
 step17 - step18   19.072 19.7 8461   0.970  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent-step contrasts (consecutive) — correct:
 contrast        estimate   SE   df t.ratio p.value
 step2 - step1     -308.1 19.7 8461 -15.672  <.0001
 step3 - step2      -38.2 19.7 8461  -1.943  0.4166
 step4 - step3      -11.3 19.7 8461  -0.575  1.0000
 step5 - step4       77.3 19.7 8461   3.934  0.0012
 step6 - step5       -3.5 19.7 8461  -0.178  1.0000
 step7 - step6      -20.2 19.7 8461  -1.027  1.0000
 step8 - step7      -11.9 19.7 8461  -0.603  1.0000
 step9 - step8       51.2 19.7 8461   2.604  0.0831
 step10 - step9      25.2 19.7 8461   1.283  1.0000
 step11 - step10    -55.9 19.7 8461  -2.844  0.0491
 step12 - step11    -34.1 19.7 8461  -1.735  0.5799
 step13 - step12    227.9 19.7 8461  11.592  <.0001
 step14 - step13   -142.3 19.7 8461  -7.241  <.0001
 step15 - step14    -52.2 19.7 8461  -2.654  0.0796
 step16 - step15    -63.8 19.7 8461  -3.244  0.0154
 step17 - step16     58.9 19.7 8461   2.999  0.0326
 step18 - step17    -19.1 19.7 8461  -0.970  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 17 tests 

[WRONG] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step + (1 | subject)
   Data: data

REML criterion at convergence: 109180.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.1545 -0.4740 -0.2235  0.1305 18.0003 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  54101   232.6   
 Residual             311631   558.2   
Number of obs: 7056, groups:  subject, 18

Fixed effects:
            Estimate Std. Error t value
(Intercept)  628.117     55.394  11.339
step.L        77.092     28.195   2.734
step.Q       124.693     28.195   4.422
step.C      -206.127     28.195  -7.311
step^4       309.668     28.195  10.983
step^5      -125.975     28.195  -4.468
step^6       212.995     28.195   7.554
step^7       -34.679     28.195  -1.230
step^8        85.672     28.195   3.039
step^9        -4.591     28.195  -0.163
step^10      -35.356     28.195  -1.254
step^11      -21.381     28.195  -0.758
step^12       79.047     28.195   2.804
step^13      -28.895     28.195  -1.025
step^14      -62.798     28.195  -2.227
step^15      -24.967     28.195  -0.886
step^16      -34.120     28.195  -1.210
step^17      -24.296     28.195  -0.862

Correlation matrix not shown by default, as p = 18 > 12.
Use print(summary(mdl), correlation=TRUE)  or
    vcov(summary(mdl))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
      Chisq Df Pr(>Chisq)    
step 307.92 17  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 step emmean   SE   df lower.CL upper.CL
 1       985 61.8 26.3      858     1112
 2       478 61.8 26.3      352      605
 3       466 61.8 26.3      339      593
 4       480 61.8 26.3      353      607
 5       567 61.8 26.3      440      694
 6       618 61.8 26.3      491      744
 7       561 61.8 26.3      434      688
 8       581 61.8 26.3      454      708
 9       678 61.8 26.3      551      805
 10      675 61.8 26.3      548      802
 11      634 61.8 26.3      507      761
 12      602 61.8 26.3      475      729
 13      719 61.8 26.3      592      846
 14      648 61.8 26.3      521      775
 15      670 61.8 26.3      543      797
 16      600 61.8 26.3      473      727
 17      583 61.8 26.3      456      709
 18      761 61.8 26.3      634      888

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
# === Stepwise RT — Training (Blocks 1–3), CORRECT trials only ===
suppressPackageStartupMessages({
  library(dplyr); library(ggplot2); library(emmeans); library(lme4); library(stringr)
})

if (!exists("safe_fit")) {
  safe_fit <- function(formula, data) {
    m <- tryCatch(lmer(formula, data = data), error = function(e) NULL)
    if (is.null(m)) { message("⚠️ Falling back to lm."); m <- stats::lm(update(formula, . ~ . - (1 | subject)), data = data) }
    m
  }
}

plot_stepwise_rt_training_correct_only <- function(df_acc_all, show_plot = TRUE, alpha = 0.05) {
  emms_list <- list()
  sig_list  <- list()

  for (blk in 1:3) {
    df_blk <- df_acc_all %>%
      filter(session == blk, trial_acc_cat == "correct") %>%
      group_by(subject, trial, step = as.integer(as.character(sub.trial.number))) %>%
      summarise(rt = mean(feedback.RT, na.rm = TRUE), .groups = "drop")
    if (nrow(df_blk) == 0) next

    df_blk <- df_blk %>% mutate(step = factor(step, levels = sort(unique(step)), ordered = TRUE))

    mdl     <- safe_fit(rt ~ step + (1 | subject), data = df_blk)
    em_grid <- emmeans(mdl, ~ step)

    # Store EMMs for plotting
    em <- as.data.frame(em_grid)
    em$block    <- blk
    em$step_num <- as.integer(as.character(em$step))
    emms_list[[blk]] <- em

    # Adjacent (consecutive) contrasts (Holm-adjusted)
    consec_df <- as.data.frame(contrast(em_grid, method = "consec", adjust = "holm"))

    nums <- stringr::str_extract_all(consec_df$contrast, "\\d+")
    n1   <- vapply(nums, function(v) as.integer(v[1]),  integer(1))   # first number in label
    n2   <- vapply(nums, function(v) as.integer(v[2]),  integer(1))   # second number in label

    # Ensure estimate refers to (next - prev); if label is lower - higher
    prev  <- pmin(n1, n2)
    nextv <- pmax(n1, n2)
    sign_adj <- ifelse(nextv == n1, 1, -1)
    est_adj  <- consec_df$estimate * sign_adj

    sig_df <- consec_df %>%
      mutate(step_prev = prev,
             step_next = nextv,
             estimate_adj = est_adj,
             sig = !is.na(p.value) & p.value < alpha) %>%
      filter(sig) %>%
      transmute(
        block    = blk,
        step_num = step_prev,                  # put star at the previous step (the one followed by a change)
        direction = ifelse(estimate_adj > 0, "up", "down"),
        p.value = p.value
      )

    if (nrow(sig_df)) sig_list[[blk]] <- sig_df
  }

  if (!length(emms_list)) { message("No correct-trial data for Blocks 1–3."); return(invisible(NULL)) }

  df_em <- bind_rows(emms_list) %>%
    mutate(
      seq_label = case_when(block == 1 ~ "6 Steps",
                            block == 2 ~ "12 Steps",
                            TRUE       ~ "18 Steps"),
      seq_label = factor(seq_label, levels = c("6 Steps","12 Steps","18 Steps"), ordered = TRUE)
    )

  # Star positions
  df_stars <- if (length(sig_list)) bind_rows(sig_list) else
    tibble(block = integer(), step_num = integer(), direction = character(), p.value = numeric())

  if (nrow(df_stars)) {
    df_stars <- df_stars %>%
      left_join(df_em %>% select(block, step_num, emmean, SE, seq_label), by = c("block","step_num")) %>%
      mutate(
        y_star = emmean + pmax(SE * 1.2, 35)
      )
  }
  df_stars_up   <- df_stars %>% filter(direction == "up")
  df_stars_down <- df_stars %>% filter(direction == "down")

  # separators at right edge of the first two panels
  sep_df <- data.frame(seq_label = factor(c("6 Steps","12 Steps"),
                                          levels = levels(df_em$seq_label), ordered = TRUE))

  pal <- c("6 Steps" = "#B22222", "12 Steps" = "#2E7D32", "18 Steps" = "#1E3A8A")

  p <- ggplot(df_em, aes(x = step_num, y = emmean, color = seq_label, fill = seq_label, group = 1)) +
    geom_segment(data = sep_df,
                 aes(x = Inf, xend = Inf, y = -Inf, yend = Inf),
                 inherit.aes = FALSE, linetype = "dotted") +
    geom_ribbon(aes(ymin = emmean - SE, ymax = emmean + SE), alpha = 0.15, color = NA) +
    geom_line(linewidth = 0.9) +
    geom_point(size = 2) +
    # star markers: red = following step ↑; blue = following step ↓
    { if (nrow(df_stars_up))   geom_text(data = df_stars_up,
                                         aes(x = step_num, y = y_star, label = "*"),
                                         inherit.aes = FALSE, size = 4.2, fontface = "bold",
                                         color = "#D32F2F") } +
    { if (nrow(df_stars_down)) geom_text(data = df_stars_down,
                                         aes(x = step_num, y = y_star, label = "*"),
                                         inherit.aes = FALSE, size = 4.2, fontface = "bold",
                                         color = "#1F6FEB") } +
    facet_grid(cols = vars(seq_label), scales = "free_x", space = "free_x") +
    scale_x_continuous(
      breaks = function(lims) seq(floor(lims[1]), ceiling(lims[2]), by = 1),
      expand = expansion(mult = c(0.02, 0.06))
    ) +
    scale_y_continuous(expand = expansion(mult = c(0.05, 0.10))) +
    scale_color_manual(values = pal, breaks = names(pal)) +
    scale_fill_manual(values = pal,  breaks = names(pal)) +
    labs(
      title = "RT for each Step across Difficulty levels (Training phase)",
      x = "Step", y = "Estimated RT (ms)",
      caption = "* Following step is significantly different (red = \u2191, blue = \u2193)"
    ) +
    theme_minimal(base_size = 12) +
    theme(panel.grid = element_blank(),
          legend.position = "none",
          plot.caption = element_text(hjust = 0))

  if (show_plot) print(p)

  invisible(list(emms = df_em, stars = df_stars, plot = p, palette = pal))
}

# RUN
plot_stepwise_rt_training_correct_only(df_acc_base)
Warning in geom_segment(data = sep_df, aes(x = Inf, xend = Inf, y = -Inf, : All aesthetics have length 1, but the data has 2 rows.
ℹ Please consider using `annotate()` or provide this layer with data containing
  a single row.

# === Stepwise RT — Training (Blocks 1–3), CORRECT trials only ===
suppressPackageStartupMessages({
  library(dplyr); library(ggplot2); library(emmeans); library(lme4); library(stringr)
})

if (!exists("safe_fit")) {
  safe_fit <- function(formula, data) {
    m <- tryCatch(lmer(formula, data = data), error = function(e) NULL)
    if (is.null(m)) { message("⚠️ Falling back to lm."); m <- stats::lm(update(formula, . ~ . - (1 | subject)), data = data) }
    m
  }
}

plot_stepwise_rt_training_correct_only <- function(df_acc_all, show_plot = TRUE, alpha = 0.05) {
  emms_list <- list()
  sig_list  <- list()

  for (blk in 1:3) {
    df_blk <- df_acc_all %>%
      filter(session == blk, trial_acc_cat == "correct") %>%
      group_by(subject, trial, step = as.integer(as.character(sub.trial.number))) %>%
      summarise(rt = mean(feedback.RT, na.rm = TRUE), .groups = "drop")
    if (nrow(df_blk) == 0) next

    df_blk <- df_blk %>% mutate(step = factor(step, levels = sort(unique(step)), ordered = TRUE))

    mdl     <- safe_fit(rt ~ step + (1 | subject), data = df_blk)
    em_grid <- emmeans(mdl, ~ step)

    # Store EMMs for plotting
    em <- as.data.frame(em_grid)
    em$block    <- blk
    em$step_num <- as.integer(as.character(em$step))
    emms_list[[blk]] <- em

    # Adjacent (consecutive) contrasts (Holm-adjusted)
    consec_df <- as.data.frame(contrast(em_grid, method = "consec", adjust = "holm"))

    nums <- stringr::str_extract_all(consec_df$contrast, "\\d+")
    n1   <- vapply(nums, function(v) as.integer(v[1]),  integer(1))   # first number in label
    n2   <- vapply(nums, function(v) as.integer(v[2]),  integer(1))   # second number in label

    # Ensure estimate refers to (next - prev); if label is lower - higher
    prev  <- pmin(n1, n2)
    nextv <- pmax(n1, n2)
    sign_adj <- ifelse(nextv == n1, 1, -1)
    est_adj  <- consec_df$estimate * sign_adj

    sig_df <- consec_df %>%
      mutate(step_prev = prev,
             step_next = nextv,
             estimate_adj = est_adj,
             sig = !is.na(p.value) & p.value < alpha) %>%
      filter(sig) %>%
      transmute(
        block    = blk,
        step_num = step_prev,                  # put star at the previous step (the one followed by a change)
        direction = ifelse(estimate_adj > 0, "up", "down"),
        p.value = p.value
      )

    if (nrow(sig_df)) sig_list[[blk]] <- sig_df
  }

  if (!length(emms_list)) { message("No correct-trial data for Blocks 1–3."); return(invisible(NULL)) }

  df_em <- bind_rows(emms_list) %>%
    mutate(
      seq_label = case_when(block == 1 ~ "6 Steps",
                            block == 2 ~ "12 Steps",
                            TRUE       ~ "18 Steps"),
      seq_label = factor(seq_label, levels = c("6 Steps","12 Steps","18 Steps"), ordered = TRUE)
    )

  # Star positions
  df_stars <- if (length(sig_list)) bind_rows(sig_list) else
    tibble(block = integer(), step_num = integer(), direction = character(), p.value = numeric())

  if (nrow(df_stars)) {
    df_stars <- df_stars %>%
      left_join(df_em %>% select(block, step_num, emmean, SE, seq_label), by = c("block","step_num")) %>%
      mutate(
        y_star = emmean + pmax(SE * 1.2, 35)
      )
  }
  df_stars_up   <- df_stars %>% filter(direction == "up")
  df_stars_down <- df_stars %>% filter(direction == "down")

  # separators at right edge of the first two panels
  sep_df <- data.frame(seq_label = factor(c("6 Steps","12 Steps"),
                                          levels = levels(df_em$seq_label), ordered = TRUE))

  pal <- c("6 Steps" = "#B22222", "12 Steps" = "#2E7D32", "18 Steps" = "#1E3A8A")

  p <- ggplot(df_em, aes(x = step_num, y = emmean, color = seq_label, fill = seq_label, group = 1)) +
    geom_segment(data = sep_df,
                 aes(x = Inf, xend = Inf, y = -Inf, yend = Inf),
                 inherit.aes = FALSE, linetype = "dotted") +
    geom_ribbon(aes(ymin = emmean - SE, ymax = emmean + SE), alpha = 0.15, color = NA) +
    geom_line(linewidth = 0.9) +
    geom_point(size = 2) +
    # star markers: red = following step ↑; blue = following step ↓
    { if (nrow(df_stars_up))   geom_text(data = df_stars_up,
                                         aes(x = step_num, y = y_star, label = "*"),
                                         inherit.aes = FALSE, size = 4.2, fontface = "bold",
                                         color = "#D32F2F") } +
    { if (nrow(df_stars_down)) geom_text(data = df_stars_down,
                                         aes(x = step_num, y = y_star, label = "*"),
                                         inherit.aes = FALSE, size = 4.2, fontface = "bold",
                                         color = "#1F6FEB") } +
    facet_grid(cols = vars(seq_label), scales = "free_x", space = "free_x") +
    scale_x_continuous(
      breaks = function(lims) seq(floor(lims[1]), ceiling(lims[2]), by = 1),
      expand = expansion(mult = c(0.02, 0.06))
    ) +
    scale_y_continuous(expand = expansion(mult = c(0.05, 0.10))) +
    scale_color_manual(values = pal, breaks = names(pal)) +
    scale_fill_manual(values = pal,  breaks = names(pal)) +
    labs(
      title = "RT for each Step across Difficulty levels (Training phase)",
      x = "Step", y = "Estimated RT (ms)",
      caption = "* Following step is significantly different (red = \u2191, blue = \u2193)"
    ) +
    ggplot2::theme_classic(base_size = 12) +     # APA7: visible axes
    ggplot2::theme(
      panel.grid = ggplot2::element_blank(),
      legend.position = "none",
      plot.caption = ggplot2::element_text(hjust = 0),
      axis.line = ggplot2::element_line(),
      axis.ticks = ggplot2::element_line()
    )

  if (show_plot) print(p)

  invisible(list(emms = df_em, stars = df_stars, plot = p, palette = pal))
}

# RUN
plot_stepwise_rt_training_correct_only(df_acc_base)
Warning in geom_segment(data = sep_df, aes(x = Inf, xend = Inf, y = -Inf, : All aesthetics have length 1, but the data has 2 rows.
ℹ Please consider using `annotate()` or provide this layer with data containing
  a single row.

#A4 Stepwise RT — Test blocks (4–5), split by sequence length

#4 Stepwise RT — Test blocks (4–5), split by sequence length
stepwise_rt_test_by_length_with_correctness <- function(df_acc_all) {
  cat("\n\n====== Stepwise RT — Test (4–5) by length ======\n")

  df_len <- df_acc_all %>%
    dplyr::group_by(subject, session, trial) %>%
    dplyr::mutate(seq_length_trial = dplyr::n_distinct(sub.trial.number)) %>%
    dplyr::ungroup()

  for (L in c(6,12,18)) {
    cat(glue::glue("\n--- Sequence length {L} ---\n"))
    df_seq_all <- df_len %>%
      dplyr::filter(session %in% c(4,5), seq_length_trial == L) %>%
      dplyr::group_by(subject, session, trial, step = as.integer(as.character(sub.trial.number)), trial_acc_cat) %>%
      dplyr::summarise(rt = mean(feedback.RT, na.rm = TRUE), .groups = "drop")

    if (nrow(df_seq_all) == 0) { cat("No data\n"); next }

    df_seq_all$session <- factor(df_seq_all$session, levels = c(4,5), labels = c("Block 4","Block 5"))
    df_seq_all$step    <- factor(df_seq_all$step, levels = sort(unique(df_seq_all$step)))

    has_two_sessions <- dplyr::n_distinct(df_seq_all$session) >= 2
    has_two_steps    <- dplyr::n_distinct(df_seq_all$step)    >= 2
    has_two_corr     <- dplyr::n_distinct(df_seq_all$trial_acc_cat) >= 2

    # Combined model with correctness
    if (has_two_sessions && has_two_steps && has_two_corr) {
      fmla <- rt ~ step * session * trial_acc_cat + (1 | subject)
    } else if (has_two_sessions && has_two_steps) {
      fmla <- rt ~ step * session + (1 | subject)
    } else if (has_two_steps && has_two_corr) {
      fmla <- rt ~ step * trial_acc_cat + (1 | subject)
    } else if (has_two_sessions && has_two_corr) {
      fmla <- rt ~ session * trial_acc_cat + (1 | subject)
    } else if (has_two_steps) {
      fmla <- rt ~ step + (1 | subject)
    } else if (has_two_sessions) {
      fmla <- rt ~ session + (1 | subject)
    } else if (has_two_corr) {
      fmla <- rt ~ trial_acc_cat + (1 | subject)
    } else {
      cat("⚠️ Not enough levels to model.\n"); next
    }

    cat("\n[Combined] Model summary:\n")
    mdl_all <- safe_fit(fmla, data = df_seq_all)
    print(summary(mdl_all))
    cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl_all, type = 2))

    # Sensible EMMs depending on fixed effects present
    if (grepl("step.*session.*trial_acc_cat", deparse(fmla))) {
      em <- emmeans::emmeans(mdl_all, ~ step | session * trial_acc_cat)
      print(summary(em))
    } else if (grepl("step.*session", deparse(fmla))) {
      em <- emmeans::emmeans(mdl_all, ~ step | session); print(summary(em))
    } else if (grepl("step.*trial_acc_cat", deparse(fmla))) {
      em <- emmeans::emmeans(mdl_all, ~ step | trial_acc_cat); print(summary(em))
    } else if (grepl("session.*trial_acc_cat", deparse(fmla))) {
      em <- emmeans::emmeans(mdl_all, ~ session | trial_acc_cat); print(summary(em))
    } else if (grepl("^rt ~ step", deparse(fmla))) {
      em <- emmeans::emmeans(mdl_all, ~ step); print(summary(em))
    } else if (grepl("^rt ~ session", deparse(fmla))) {
      em <- emmeans::emmeans(mdl_all, ~ session); print(summary(em))
    } else {
      em <- emmeans::emmeans(mdl_all, ~ trial_acc_cat); print(summary(em))
    }

    # --- Split outputs: add pairwise ONLY for correct
    for (lab in c("correct","wrong")) {
      df_seq <- df_seq_all %>% dplyr::filter(trial_acc_cat == lab)
      if (nrow(df_seq) == 0) { cat("\n⚠️ No data for", lab, "\n"); next }
      has_two_sessions <- dplyr::n_distinct(df_seq$session) >= 2
      has_two_steps    <- dplyr::n_distinct(df_seq$step)    >= 2
      if (!has_two_steps) { cat("\n⚠️ Not enough step levels for", lab, "\n"); next }

      fmla_s <- if (has_two_sessions) rt ~ step * session + (1 | subject) else rt ~ step + (1 | subject)

      cat("\n[", toupper(lab), "] Model summary:\n", sep = "")
      mdl <- safe_fit(fmla_s, data = df_seq)
      print(summary(mdl))
      cat("\nType II Chi-square ANOVA:\n"); print(car::Anova(mdl, type = 2))

      # EMMs (always by step)
      if (has_two_sessions) {
        em_s <- emmeans::emmeans(mdl, ~ step | session)
      } else {
        em_s <- emmeans::emmeans(mdl, ~ step)
      }
      print(summary(em_s))

      # Pairwise for CORRECT only
      if (lab == "correct") {
        if (has_two_sessions) {
          cat("\nPairwise (Tukey) across steps — correct | session:\n")
        } else {
          cat("\nPairwise (Tukey) across steps — correct:\n")
        }
        print(pairs(em_s, adjust = "tukey"))

        if (has_two_sessions) {
          cat("\nAdjacent-step contrasts (consecutive) — correct | session:\n")
        } else {
          cat("\nAdjacent-step contrasts (consecutive) — correct:\n")
        }
        print(emmeans::contrast(em_s, method = "consec", adjust = "holm"))
      }
    }
  }
}


stepwise_rt_test_by_length_with_correctness(df_acc_base)


====== Stepwise RT — Test (4–5) by length ======
--- Sequence length 6 ---
[Combined] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * session * trial_acc_cat + (1 | subject)
   Data: data

REML criterion at convergence: 51434.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.5669 -0.3601 -0.0877  0.1859 27.0864 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  33464   182.9   
 Residual             179548   423.7   
Number of obs: 3456, groups:  subject, 18

Fixed effects:
                                        Estimate Std. Error t value
(Intercept)                              764.911     50.749  15.073
step2                                   -348.940     37.824  -9.225
step3                                   -390.669     37.824 -10.329
step4                                   -402.183     37.824 -10.633
step5                                   -382.510     37.824 -10.113
step6                                   -376.163     37.824  -9.945
sessionBlock 5                            71.983     39.302   1.832
trial_acc_catwrong                        99.424     75.011   1.325
step2:sessionBlock 5                      13.248     55.479   0.239
step3:sessionBlock 5                      48.610     55.479   0.876
step4:sessionBlock 5                      56.422     55.479   1.017
step5:sessionBlock 5                      36.051     55.479   0.650
step6:sessionBlock 5                      29.439     55.479   0.531
step2:trial_acc_catwrong                  50.751    105.527   0.481
step3:trial_acc_catwrong                  94.048    105.527   0.891
step4:trial_acc_catwrong                 -75.519    105.527  -0.716
step5:trial_acc_catwrong                  63.591    105.527   0.603
step6:trial_acc_catwrong                 700.163    105.527   6.635
sessionBlock 5:trial_acc_catwrong        330.744     95.319   3.470
step2:sessionBlock 5:trial_acc_catwrong -430.244    133.840  -3.215
step3:sessionBlock 5:trial_acc_catwrong -366.302    133.840  -2.737
step4:sessionBlock 5:trial_acc_catwrong -274.605    133.840  -2.052
step5:sessionBlock 5:trial_acc_catwrong    8.282    133.840   0.062
step6:sessionBlock 5:trial_acc_catwrong -682.424    133.840  -5.099

Correlation matrix not shown by default, as p = 24 > 12.
Use print(summary(mdl_all), correlation=TRUE)  or
    vcov(summary(mdl_all))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                              Chisq Df Pr(>Chisq)    
step                       394.1445  5  < 2.2e-16 ***
session                     56.3310  1  6.124e-14 ***
trial_acc_cat              172.6516  1  < 2.2e-16 ***
step:session                 8.5065  5     0.1304    
step:trial_acc_cat          92.9202  5  < 2.2e-16 ***
session:trial_acc_cat        0.9797  1     0.3223    
step:session:trial_acc_cat  39.3891  5  1.983e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
session = Block 4, trial_acc_cat = correct:
 step emmean   SE    df lower.CL upper.CL
 1       765 50.7  30.8      661      868
 2       416 50.7  30.8      312      519
 3       374 50.7  30.8      271      478
 4       363 50.7  30.8      259      466
 5       382 50.7  30.8      279      486
 6       389 50.7  30.8      285      492

session = Block 5, trial_acc_cat = correct:
 step emmean   SE    df lower.CL upper.CL
 1       837 51.8  33.6      731      942
 2       501 51.8  33.6      396      607
 3       495 51.8  33.6      389      600
 4       491 51.8  33.6      386      597
 5       490 51.8  33.6      385      596
 6       490 51.8  33.6      385      596

session = Block 4, trial_acc_cat = wrong:
 step emmean   SE    df lower.CL upper.CL
 1       864 82.2 205.5      702     1026
 2       566 82.2 205.5      404      728
 3       568 82.2 205.5      406      730
 4       387 82.2 205.5      225      549
 5       545 82.2 205.5      383      707
 6      1188 82.2 205.5     1026     1350

session = Block 5, trial_acc_cat = wrong:
 step emmean   SE    df lower.CL upper.CL
 1      1267 66.9  92.2     1134     1400
 2       552 66.9  92.2      419      685
 3       653 66.9  92.2      520      786
 4       571 66.9  92.2      438      704
 5       992 66.9  92.2      860     1125
 6       938 66.9  92.2      805     1071

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

[CORRECT] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * session + (1 | subject)
   Data: data

REML criterion at convergence: 39822.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.7780 -0.4318 -0.1148  0.2646 20.8747 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 28464    168.7   
 Residual             83002    288.1   
Number of obs: 2814, groups:  subject, 18

Fixed effects:
                     Estimate Std. Error t value
(Intercept)            764.27      43.73  17.475
step2                 -348.94      25.72 -13.568
step3                 -390.67      25.72 -15.191
step4                 -402.18      25.72 -15.639
step5                 -382.51      25.72 -14.874
step6                 -376.16      25.72 -14.627
sessionBlock 5          74.40      26.75   2.781
step2:sessionBlock 5    13.25      37.72   0.351
step3:sessionBlock 5    48.61      37.72   1.289
step4:sessionBlock 5    56.42      37.72   1.496
step5:sessionBlock 5    36.05      37.72   0.956
step6:sessionBlock 5    29.44      37.72   0.780

Correlation of Fixed Effects:
            (Intr) step2  step3  step4  step5  step6  sssnB5 st2:B5 st3:B5
step2       -0.294                                                        
step3       -0.294  0.500                                                 
step4       -0.294  0.500  0.500                                          
step5       -0.294  0.500  0.500  0.500                                   
step6       -0.294  0.500  0.500  0.500  0.500                            
sessinBlck5 -0.283  0.481  0.481  0.481  0.481  0.481                     
stp2:sssnB5  0.200 -0.682 -0.341 -0.341 -0.341 -0.341 -0.705              
stp3:sssnB5  0.200 -0.341 -0.682 -0.341 -0.341 -0.341 -0.705  0.500       
stp4:sssnB5  0.200 -0.341 -0.341 -0.682 -0.341 -0.341 -0.705  0.500  0.500
stp5:sssnB5  0.200 -0.341 -0.341 -0.341 -0.682 -0.341 -0.705  0.500  0.500
stp6:sssnB5  0.200 -0.341 -0.341 -0.341 -0.341 -0.682 -0.705  0.500  0.500
            st4:B5 st5:B5
step2                    
step3                    
step4                    
step5                    
step6                    
sessinBlck5              
stp2:sssnB5              
stp3:sssnB5              
stp4:sssnB5              
stp5:sssnB5  0.500       
stp6:sssnB5  0.500  0.500

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                Chisq Df Pr(>Chisq)    
step         623.9439  5     <2e-16 ***
session       89.7160  1     <2e-16 ***
step:session   3.1762  5     0.6728    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
session = Block 4:
 step emmean   SE   df lower.CL upper.CL
 1       764 43.7 23.9      674      855
 2       415 43.7 23.9      325      506
 3       374 43.7 23.9      283      464
 4       362 43.7 23.9      272      452
 5       382 43.7 23.9      291      472
 6       388 43.7 23.9      298      478

session = Block 5:
 step emmean   SE   df lower.CL upper.CL
 1       839 44.3 25.3      747      930
 2       503 44.3 25.3      412      594
 3       497 44.3 25.3      405      588
 4       493 44.3 25.3      402      584
 5       492 44.3 25.3      401      583
 6       492 44.3 25.3      401      583

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey) across steps — correct | session:
session = Block 4:
 contrast      estimate   SE   df t.ratio p.value
 step1 - step2  348.940 25.7 2785  13.568  <.0001
 step1 - step3  390.669 25.7 2785  15.191  <.0001
 step1 - step4  402.183 25.7 2785  15.639  <.0001
 step1 - step5  382.510 25.7 2785  14.874  <.0001
 step1 - step6  376.163 25.7 2785  14.627  <.0001
 step2 - step3   41.729 25.7 2785   1.623  0.5835
 step2 - step4   53.243 25.7 2785   2.070  0.3032
 step2 - step5   33.570 25.7 2785   1.305  0.7822
 step2 - step6   27.223 25.7 2785   1.059  0.8976
 step3 - step4   11.514 25.7 2785   0.448  0.9977
 step3 - step5   -8.159 25.7 2785  -0.317  0.9996
 step3 - step6  -14.506 25.7 2785  -0.564  0.9933
 step4 - step5  -19.673 25.7 2785  -0.765  0.9733
 step4 - step6  -26.020 25.7 2785  -1.012  0.9142
 step5 - step6   -6.347 25.7 2785  -0.247  0.9999

session = Block 5:
 contrast      estimate   SE   df t.ratio p.value
 step1 - step2  335.693 27.6 2785  12.165  <.0001
 step1 - step3  342.060 27.6 2785  12.396  <.0001
 step1 - step4  345.762 27.6 2785  12.530  <.0001
 step1 - step5  346.459 27.6 2785  12.555  <.0001
 step1 - step6  346.725 27.6 2785  12.565  <.0001
 step2 - step3    6.367 27.6 2785   0.231  0.9999
 step2 - step4   10.069 27.6 2785   0.365  0.9992
 step2 - step5   10.766 27.6 2785   0.390  0.9988
 step2 - step6   11.032 27.6 2785   0.400  0.9987
 step3 - step4    3.702 27.6 2785   0.134  1.0000
 step3 - step5    4.399 27.6 2785   0.159  1.0000
 step3 - step6    4.665 27.6 2785   0.169  1.0000
 step4 - step5    0.697 27.6 2785   0.025  1.0000
 step4 - step6    0.963 27.6 2785   0.035  1.0000
 step5 - step6    0.266 27.6 2785   0.010  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent-step contrasts (consecutive) — correct | session:
session = Block 4:
 contrast      estimate   SE   df t.ratio p.value
 step2 - step1 -348.940 25.7 2785 -13.568  <.0001
 step3 - step2  -41.729 25.7 2785  -1.623  0.4191
 step4 - step3  -11.514 25.7 2785  -0.448  1.0000
 step5 - step4   19.673 25.7 2785   0.765  1.0000
 step6 - step5    6.347 25.7 2785   0.247  1.0000

session = Block 5:
 contrast      estimate   SE   df t.ratio p.value
 step2 - step1 -335.693 27.6 2785 -12.165  <.0001
 step3 - step2   -6.367 27.6 2785  -0.231  1.0000
 step4 - step3   -3.702 27.6 2785  -0.134  1.0000
 step5 - step4   -0.697 27.6 2785  -0.025  1.0000
 step6 - step5   -0.266 27.6 2785  -0.010  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 5 tests 

[WRONG] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * session + (1 | subject)
   Data: data

REML criterion at convergence: 10242.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.5788 -0.4499 -0.1617  0.1451 14.6358 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  68405   261.5   
 Residual             600745   775.1   
Number of obs: 642, groups:  subject, 18

Fixed effects:
                     Estimate Std. Error t value
(Intercept)            863.22     143.94   5.997
step2                 -298.19     180.20  -1.655
step3                 -296.62     180.20  -1.646
step4                 -477.70     180.20  -2.651
step5                 -318.92     180.20  -1.770
step6                  324.00     180.20   1.798
sessionBlock 5         395.00     160.56   2.460
step2:sessionBlock 5  -417.00     222.79  -1.872
step3:sessionBlock 5  -317.69     222.79  -1.426
step4:sessionBlock 5  -218.18     222.79  -0.979
step5:sessionBlock 5    44.33     222.79   0.199
step6:sessionBlock 5  -652.99     222.79  -2.931

Correlation of Fixed Effects:
            (Intr) step2  step3  step4  step5  step6  sssnB5 st2:B5 st3:B5
step2       -0.626                                                        
step3       -0.626  0.500                                                 
step4       -0.626  0.500  0.500                                          
step5       -0.626  0.500  0.500  0.500                                   
step6       -0.626  0.500  0.500  0.500  0.500                            
sessinBlck5 -0.726  0.561  0.561  0.561  0.561  0.561                     
stp2:sssnB5  0.506 -0.809 -0.404 -0.404 -0.404 -0.404 -0.694              
stp3:sssnB5  0.506 -0.404 -0.809 -0.404 -0.404 -0.404 -0.694  0.500       
stp4:sssnB5  0.506 -0.404 -0.404 -0.809 -0.404 -0.404 -0.694  0.500  0.500
stp5:sssnB5  0.506 -0.404 -0.404 -0.404 -0.809 -0.404 -0.694  0.500  0.500
stp6:sssnB5  0.506 -0.404 -0.404 -0.404 -0.404 -0.809 -0.694  0.500  0.500
            st4:B5 st5:B5
step2                    
step3                    
step4                    
step5                    
step6                    
sessinBlck5              
stp2:sssnB5              
stp3:sssnB5              
stp4:sssnB5              
stp5:sssnB5  0.500       
stp6:sssnB5  0.500  0.500

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
               Chisq Df Pr(>Chisq)    
step         59.2825  5   1.71e-11 ***
session       3.5623  1    0.05911 .  
step:session 13.8760  5    0.01642 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
session = Block 4:
 step emmean  SE  df lower.CL upper.CL
 1       863 144 206      579     1147
 2       565 144 206      281      849
 3       567 144 206      282      851
 4       386 144 206      101      670
 5       544 144 206      260      828
 6      1187 144 206      903     1471

session = Block 5:
 step emmean  SE  df lower.CL upper.CL
 1      1258 114  97     1032     1485
 2       543 114  97      317      769
 3       644 114  97      418      870
 4       562 114  97      336      789
 5       984 114  97      757     1210
 6       929 114  97      703     1156

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
--- Sequence length 12 ---
[Combined] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * session * trial_acc_cat + (1 | subject)
   Data: data

REML criterion at convergence: 104004.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.2353 -0.4181 -0.1554  0.1457 19.2708 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  36507   191.1   
 Residual             213173   461.7   
Number of obs: 6912, groups:  subject, 18

Fixed effects:
                                         Estimate Std. Error t value
(Intercept)                               739.049     54.599  13.536
step2                                    -303.513     43.627  -6.957
step3                                    -343.759     43.627  -7.879
step4                                    -341.710     43.627  -7.833
step5                                    -300.915     43.627  -6.897
step6                                    -266.804     43.627  -6.116
step7                                    -154.647     43.627  -3.545
step8                                    -333.433     43.627  -7.643
step9                                    -247.138     43.627  -5.665
step10                                   -286.696     43.627  -6.572
step11                                   -317.045     43.627  -7.267
step12                                   -334.058     43.627  -7.657
sessionBlock 5                            229.706     50.498   4.549
trial_acc_catwrong                         21.904     65.621   0.334
step2:sessionBlock 5                     -130.300     71.309  -1.827
step3:sessionBlock 5                     -110.547     71.309  -1.550
step4:sessionBlock 5                      -90.380     71.309  -1.267
step5:sessionBlock 5                     -127.450     71.309  -1.787
step6:sessionBlock 5                     -106.868     71.309  -1.499
step7:sessionBlock 5                      -98.166     71.309  -1.377
step8:sessionBlock 5                      -21.619     71.309  -0.303
step9:sessionBlock 5                       45.623     71.309   0.640
step10:sessionBlock 5                     -85.281     71.309  -1.196
step11:sessionBlock 5                    -202.784     71.309  -2.844
step12:sessionBlock 5                    -127.218     71.309  -1.784
step2:trial_acc_catwrong                  -14.940     92.547  -0.161
step3:trial_acc_catwrong                    8.118     92.547   0.088
step4:trial_acc_catwrong                   22.663     92.547   0.245
step5:trial_acc_catwrong                   69.400     92.547   0.750
step6:trial_acc_catwrong                  -15.196     92.547  -0.164
step7:trial_acc_catwrong                   43.491     92.547   0.470
step8:trial_acc_catwrong                  273.339     92.547   2.954
step9:trial_acc_catwrong                   53.717     92.547   0.580
step10:trial_acc_catwrong                  90.493     92.547   0.978
step11:trial_acc_catwrong                 316.967     92.547   3.425
step12:trial_acc_catwrong                 407.855     92.547   4.407
sessionBlock 5:trial_acc_catwrong         209.009     85.445   2.446
step2:sessionBlock 5:trial_acc_catwrong  -133.286    120.479  -1.106
step3:sessionBlock 5:trial_acc_catwrong  -153.663    120.479  -1.275
step4:sessionBlock 5:trial_acc_catwrong  -111.495    120.479  -0.925
step5:sessionBlock 5:trial_acc_catwrong  -134.047    120.479  -1.113
step6:sessionBlock 5:trial_acc_catwrong  -165.366    120.479  -1.373
step7:sessionBlock 5:trial_acc_catwrong  -111.892    120.479  -0.929
step8:sessionBlock 5:trial_acc_catwrong  -399.417    120.479  -3.315
step9:sessionBlock 5:trial_acc_catwrong  -216.890    120.479  -1.800
step10:sessionBlock 5:trial_acc_catwrong -265.373    120.479  -2.203
step11:sessionBlock 5:trial_acc_catwrong -256.846    120.479  -2.132
step12:sessionBlock 5:trial_acc_catwrong -420.046    120.479  -3.486

Correlation matrix not shown by default, as p = 48 > 12.
Use print(summary(mdl_all), correlation=TRUE)  or
    vcov(summary(mdl_all))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                              Chisq Df Pr(>Chisq)    
step                       424.9073 11  < 2.2e-16 ***
session                    153.1544  1  < 2.2e-16 ***
trial_acc_cat              111.2216  1  < 2.2e-16 ***
step:session                45.6047 11  3.797e-06 ***
step:trial_acc_cat          53.1721 11  1.670e-07 ***
session:trial_acc_cat        0.2094  1    0.64725    
step:session:trial_acc_cat  22.5471 11    0.02046 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
session = Block 4, trial_acc_cat = correct:
 step emmean   SE    df lower.CL upper.CL
 1       739 54.6  35.6      628      850
 2       436 54.6  35.6      325      546
 3       395 54.6  35.6      285      506
 4       397 54.6  35.6      287      508
 5       438 54.6  35.6      327      549
 6       472 54.6  35.6      361      583
 7       584 54.6  35.6      474      695
 8       406 54.6  35.6      295      516
 9       492 54.6  35.6      381      603
 10      452 54.6  35.6      342      563
 11      422 54.6  35.6      311      533
 12      405 54.6  35.6      294      516

session = Block 5, trial_acc_cat = correct:
 step emmean   SE    df lower.CL upper.CL
 1       969 60.2  52.6      848     1090
 2       535 60.2  52.6      414      656
 3       514 60.2  52.6      394      635
 4       537 60.2  52.6      416      657
 5       540 60.2  52.6      420      661
 6       595 60.2  52.6      474      716
 7       716 60.2  52.6      595      837
 8       614 60.2  52.6      493      735
 9       767 60.2  52.6      646      888
 10      597 60.2  52.6      476      718
 11      449 60.2  52.6      328      570
 12      507 60.2  52.6      387      628

session = Block 4, trial_acc_cat = wrong:
 step emmean   SE    df lower.CL upper.CL
 1       761 73.3 115.0      616      906
 2       442 73.3 115.0      297      588
 3       425 73.3 115.0      280      571
 4       442 73.3 115.0      297      587
 5       529 73.3 115.0      384      675
 6       479 73.3 115.0      334      624
 7       650 73.3 115.0      505      795
 8       701 73.3 115.0      556      846
 9       568 73.3 115.0      422      713
 10      565 73.3 115.0      420      710
 11      761 73.3 115.0      616      906
 12      835 73.3 115.0      690      980

session = Block 5, trial_acc_cat = wrong:
 step emmean   SE    df lower.CL upper.CL
 1      1200 58.5  46.8     1082     1317
 2       618 58.5  46.8      500      735
 3       600 58.5  46.8      482      717
 4       679 58.5  46.8      561      796
 5       707 58.5  46.8      589      824
 6       645 58.5  46.8      528      763
 7       878 58.5  46.8      761      996
 8       719 58.5  46.8      601      836
 9       835 58.5  46.8      717      953
 10      653 58.5  46.8      535      770
 11      740 58.5  46.8      622      858
 12      726 58.5  46.8      609      844

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

[CORRECT] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * session + (1 | subject)
   Data: data

REML criterion at convergence: 62279.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.3071 -0.3963 -0.1505  0.1613 25.8645 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  34623   186.1   
 Residual             119957   346.3   
Number of obs: 4296, groups:  subject, 18

Fixed effects:
                      Estimate Std. Error t value
(Intercept)             738.71      49.60  14.893
step2                  -303.51      32.73  -9.274
step3                  -343.76      32.73 -10.504
step4                  -341.71      32.73 -10.441
step5                  -300.92      32.73  -9.195
step6                  -266.80      32.73  -8.152
step7                  -154.65      32.73  -4.725
step8                  -333.43      32.73 -10.188
step9                  -247.14      32.73  -7.552
step10                 -286.70      32.73  -8.760
step11                 -317.04      32.73  -9.688
step12                 -334.06      32.73 -10.207
sessionBlock 5          231.17      37.92   6.096
step2:sessionBlock 5   -130.30      53.49  -2.436
step3:sessionBlock 5   -110.55      53.49  -2.067
step4:sessionBlock 5    -90.38      53.49  -1.690
step5:sessionBlock 5   -127.45      53.49  -2.383
step6:sessionBlock 5   -106.87      53.49  -1.998
step7:sessionBlock 5    -98.17      53.49  -1.835
step8:sessionBlock 5    -21.62      53.49  -0.404
step9:sessionBlock 5     45.62      53.49   0.853
step10:sessionBlock 5   -85.28      53.49  -1.594
step11:sessionBlock 5  -202.78      53.49  -3.791
step12:sessionBlock 5  -127.22      53.49  -2.378

Correlation matrix not shown by default, as p = 24 > 12.
Use print(summary(mdl), correlation=TRUE)  or
    vcov(summary(mdl))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
              Chisq Df Pr(>Chisq)    
step         424.13 11  < 2.2e-16 ***
session      162.02  1  < 2.2e-16 ***
step:session  34.28 11  0.0003255 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
session = Block 4:
 step emmean   SE   df lower.CL upper.CL
 1       739 49.6 27.0      637      840
 2       435 49.6 27.0      333      537
 3       395 49.6 27.0      293      497
 4       397 49.6 27.0      295      499
 5       438 49.6 27.0      336      540
 6       472 49.6 27.0      370      574
 7       584 49.6 27.0      482      686
 8       405 49.6 27.0      303      507
 9       492 49.6 27.0      390      593
 10      452 49.6 27.0      350      554
 11      422 49.6 27.0      320      523
 12      405 49.6 27.0      303      506

session = Block 5:
 step emmean   SE   df lower.CL upper.CL
 1       970 53.2 35.5      862     1078
 2       536 53.2 35.5      428      644
 3       516 53.2 35.5      408      623
 4       538 53.2 35.5      430      646
 5       542 53.2 35.5      434      649
 6       596 53.2 35.5      488      704
 7       717 53.2 35.5      609      825
 8       615 53.2 35.5      507      723
 9       768 53.2 35.5      661      876
 10      598 53.2 35.5      490      706
 11      450 53.2 35.5      342      558
 12      509 53.2 35.5      401      616

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey) across steps — correct | session:
session = Block 4:
 contrast        estimate   SE   df t.ratio p.value
 step1 - step2    303.513 32.7 4255   9.274  <.0001
 step1 - step3    343.759 32.7 4255  10.504  <.0001
 step1 - step4    341.710 32.7 4255  10.441  <.0001
 step1 - step5    300.915 32.7 4255   9.195  <.0001
 step1 - step6    266.804 32.7 4255   8.152  <.0001
 step1 - step7    154.647 32.7 4255   4.725  0.0001
 step1 - step8    333.433 32.7 4255  10.188  <.0001
 step1 - step9    247.138 32.7 4255   7.552  <.0001
 step1 - step10   286.696 32.7 4255   8.760  <.0001
 step1 - step11   317.045 32.7 4255   9.688  <.0001
 step1 - step12   334.058 32.7 4255  10.207  <.0001
 step2 - step3     40.245 32.7 4255   1.230  0.9867
 step2 - step4     38.196 32.7 4255   1.167  0.9913
 step2 - step5     -2.598 32.7 4255  -0.079  1.0000
 step2 - step6    -36.710 32.7 4255  -1.122  0.9938
 step2 - step7   -148.866 32.7 4255  -4.549  0.0003
 step2 - step8     29.920 32.7 4255   0.914  0.9990
 step2 - step9    -56.375 32.7 4255  -1.723  0.8581
 step2 - step10   -16.817 32.7 4255  -0.514  1.0000
 step2 - step11    13.531 32.7 4255   0.413  1.0000
 step2 - step12    30.545 32.7 4255   0.933  0.9988
 step3 - step4     -2.049 32.7 4255  -0.063  1.0000
 step3 - step5    -42.844 32.7 4255  -1.309  0.9781
 step3 - step6    -76.955 32.7 4255  -2.351  0.4399
 step3 - step7   -189.112 32.7 4255  -5.778  <.0001
 step3 - step8    -10.326 32.7 4255  -0.316  1.0000
 step3 - step9    -96.621 32.7 4255  -2.952  0.1234
 step3 - step10   -57.062 32.7 4255  -1.744  0.8478
 step3 - step11   -26.714 32.7 4255  -0.816  0.9997
 step3 - step12    -9.701 32.7 4255  -0.296  1.0000
 step4 - step5    -40.795 32.7 4255  -1.247  0.9851
 step4 - step6    -74.906 32.7 4255  -2.289  0.4847
 step4 - step7   -187.062 32.7 4255  -5.716  <.0001
 step4 - step8     -8.277 32.7 4255  -0.253  1.0000
 step4 - step9    -94.571 32.7 4255  -2.890  0.1448
 step4 - step10   -55.013 32.7 4255  -1.681  0.8771
 step4 - step11   -24.665 32.7 4255  -0.754  0.9998
 step4 - step12    -7.652 32.7 4255  -0.234  1.0000
 step5 - step6    -34.112 32.7 4255  -1.042  0.9967
 step5 - step7   -146.268 32.7 4255  -4.469  0.0005
 step5 - step8     32.518 32.7 4255   0.994  0.9979
 step5 - step9    -53.777 32.7 4255  -1.643  0.8930
 step5 - step10   -14.219 32.7 4255  -0.434  1.0000
 step5 - step11    16.130 32.7 4255   0.493  1.0000
 step5 - step12    33.143 32.7 4255   1.013  0.9975
 step6 - step7   -112.156 32.7 4255  -3.427  0.0303
 step6 - step8     66.629 32.7 4255   2.036  0.6686
 step6 - step9    -19.665 32.7 4255  -0.601  1.0000
 step6 - step10    19.893 32.7 4255   0.608  1.0000
 step6 - step11    50.241 32.7 4255   1.535  0.9309
 step6 - step12    67.254 32.7 4255   2.055  0.6551
 step7 - step8    178.786 32.7 4255   5.463  <.0001
 step7 - step9     92.491 32.7 4255   2.826  0.1693
 step7 - step10   132.049 32.7 4255   4.035  0.0032
 step7 - step11   162.397 32.7 4255   4.962  <.0001
 step7 - step12   179.411 32.7 4255   5.482  <.0001
 step8 - step9    -86.295 32.7 4255  -2.637  0.2593
 step8 - step10   -46.737 32.7 4255  -1.428  0.9582
 step8 - step11   -16.388 32.7 4255  -0.501  1.0000
 step8 - step12     0.625 32.7 4255   0.019  1.0000
 step9 - step10    39.558 32.7 4255   1.209  0.9884
 step9 - step11    69.906 32.7 4255   2.136  0.5966
 step9 - step12    86.920 32.7 4255   2.656  0.2490
 step10 - step11   30.348 32.7 4255   0.927  0.9989
 step10 - step12   47.362 32.7 4255   1.447  0.9540
 step11 - step12   17.013 32.7 4255   0.520  1.0000

session = Block 5:
 contrast        estimate   SE   df t.ratio p.value
 step1 - step2    433.813 42.3 4255  10.252  <.0001
 step1 - step3    454.306 42.3 4255  10.737  <.0001
 step1 - step4    432.090 42.3 4255  10.212  <.0001
 step1 - step5    428.366 42.3 4255  10.124  <.0001
 step1 - step6    373.672 42.3 4255   8.831  <.0001
 step1 - step7    252.813 42.3 4255   5.975  <.0001
 step1 - step8    355.052 42.3 4255   8.391  <.0001
 step1 - step9    201.515 42.3 4255   4.762  0.0001
 step1 - step10   371.978 42.3 4255   8.791  <.0001
 step1 - step11   519.828 42.3 4255  12.285  <.0001
 step1 - step12   461.276 42.3 4255  10.901  <.0001
 step2 - step3     20.492 42.3 4255   0.484  1.0000
 step2 - step4     -1.724 42.3 4255  -0.041  1.0000
 step2 - step5     -5.448 42.3 4255  -0.129  1.0000
 step2 - step6    -60.142 42.3 4255  -1.421  0.9596
 step2 - step7   -181.000 42.3 4255  -4.278  0.0012
 step2 - step8    -78.761 42.3 4255  -1.861  0.7832
 step2 - step9   -232.298 42.3 4255  -5.490  <.0001
 step2 - step10   -61.836 42.3 4255  -1.461  0.9507
 step2 - step11    86.015 42.3 4255   2.033  0.6708
 step2 - step12    27.463 42.3 4255   0.649  1.0000
 step3 - step4    -22.216 42.3 4255  -0.525  1.0000
 step3 - step5    -25.940 42.3 4255  -0.613  1.0000
 step3 - step6    -80.634 42.3 4255  -1.906  0.7559
 step3 - step7   -201.493 42.3 4255  -4.762  0.0001
 step3 - step8    -99.254 42.3 4255  -2.346  0.4440
 step3 - step9   -252.791 42.3 4255  -5.974  <.0001
 step3 - step10   -82.328 42.3 4255  -1.946  0.7302
 step3 - step11    65.522 42.3 4255   1.549  0.9268
 step3 - step12     6.970 42.3 4255   0.165  1.0000
 step4 - step5     -3.724 42.3 4255  -0.088  1.0000
 step4 - step6    -58.418 42.3 4255  -1.381  0.9673
 step4 - step7   -179.276 42.3 4255  -4.237  0.0014
 step4 - step8    -77.037 42.3 4255  -1.821  0.8069
 step4 - step9   -230.575 42.3 4255  -5.449  <.0001
 step4 - step10   -60.112 42.3 4255  -1.421  0.9597
 step4 - step11    87.739 42.3 4255   2.074  0.6419
 step4 - step12    29.187 42.3 4255   0.690  0.9999
 step5 - step6    -54.694 42.3 4255  -1.293  0.9802
 step5 - step7   -175.552 42.3 4255  -4.149  0.0020
 step5 - step8    -73.313 42.3 4255  -1.733  0.8532
 step5 - step9   -226.851 42.3 4255  -5.361  <.0001
 step5 - step10   -56.388 42.3 4255  -1.333  0.9749
 step5 - step11    91.463 42.3 4255   2.162  0.5779
 step5 - step12    32.910 42.3 4255   0.778  0.9998
 step6 - step7   -120.858 42.3 4255  -2.856  0.1573
 step6 - step8    -18.619 42.3 4255  -0.440  1.0000
 step6 - step9   -172.157 42.3 4255  -4.069  0.0028
 step6 - step10    -1.694 42.3 4255  -0.040  1.0000
 step6 - step11   146.157 42.3 4255   3.454  0.0277
 step6 - step12    87.605 42.3 4255   2.070  0.6442
 step7 - step8    102.239 42.3 4255   2.416  0.3950
 step7 - step9    -51.298 42.3 4255  -1.212  0.9881
 step7 - step10   119.164 42.3 4255   2.816  0.1733
 step7 - step11   267.015 42.3 4255   6.310  <.0001
 step7 - step12   208.463 42.3 4255   4.927  0.0001
 step8 - step9   -153.537 42.3 4255  -3.629  0.0152
 step8 - step10    16.925 42.3 4255   0.400  1.0000
 step8 - step11   164.776 42.3 4255   3.894  0.0056
 step8 - step12   106.224 42.3 4255   2.510  0.3334
 step9 - step10   170.463 42.3 4255   4.029  0.0033
 step9 - step11   318.313 42.3 4255   7.523  <.0001
 step9 - step12   259.761 42.3 4255   6.139  <.0001
 step10 - step11  147.851 42.3 4255   3.494  0.0242
 step10 - step12   89.299 42.3 4255   2.110  0.6153
 step11 - step12  -58.552 42.3 4255  -1.384  0.9667

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent-step contrasts (consecutive) — correct | session:
session = Block 4:
 contrast        estimate   SE   df t.ratio p.value
 step2 - step1    -303.51 32.7 4255  -9.274  <.0001
 step3 - step2     -40.25 32.7 4255  -1.230  1.0000
 step4 - step3       2.05 32.7 4255   0.063  1.0000
 step5 - step4      40.79 32.7 4255   1.247  1.0000
 step6 - step5      34.11 32.7 4255   1.042  1.0000
 step7 - step6     112.16 32.7 4255   3.427  0.0055
 step8 - step7    -178.79 32.7 4255  -5.463  <.0001
 step9 - step8      86.29 32.7 4255   2.637  0.0672
 step10 - step9    -39.56 32.7 4255  -1.209  1.0000
 step11 - step10   -30.35 32.7 4255  -0.927  1.0000
 step12 - step11   -17.01 32.7 4255  -0.520  1.0000

session = Block 5:
 contrast        estimate   SE   df t.ratio p.value
 step2 - step1    -433.81 42.3 4255 -10.252  <.0001
 step3 - step2     -20.49 42.3 4255  -0.484  1.0000
 step4 - step3      22.22 42.3 4255   0.525  1.0000
 step5 - step4       3.72 42.3 4255   0.088  1.0000
 step6 - step5      54.69 42.3 4255   1.293  0.8325
 step7 - step6     120.86 42.3 4255   2.856  0.0302
 step8 - step7    -102.24 42.3 4255  -2.416  0.0943
 step9 - step8     153.54 42.3 4255   3.629  0.0026
 step10 - step9   -170.46 42.3 4255  -4.029  0.0006
 step11 - step10  -147.85 42.3 4255  -3.494  0.0038
 step12 - step11    58.55 42.3 4255   1.384  0.8325

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 11 tests 

[WRONG] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * session + (1 | subject)
   Data: data

REML criterion at convergence: 40704.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.7587 -0.4847 -0.2199  0.1523 10.2604 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  44324   210.5   
 Residual             363999   603.3   
Number of obs: 2616, groups:  subject, 18

Fixed effects:
                        Estimate Std. Error t value
(Intercept)            759.62495   90.66198   8.379
step2                 -318.45313  106.65348  -2.986
step3                 -335.64063  106.65348  -3.147
step4                 -319.04688  106.65348  -2.991
step5                 -231.51563  106.65348  -2.171
step6                 -282.00000  106.65348  -2.644
step7                 -111.15625  106.65348  -1.042
step8                  -60.09375  106.65348  -0.563
step9                 -193.42188  106.65348  -1.814
step10                -196.20313  106.65348  -1.840
step11                  -0.07813  106.65348  -0.001
step12                  73.79687  106.65348   0.692
sessionBlock 5         436.34131   90.12844   4.841
step2:sessionBlock 5  -263.58584  126.89454  -2.077
step3:sessionBlock 5  -264.21002  126.89454  -2.082
step4:sessionBlock 5  -201.87520  126.89454  -1.591
step5:sessionBlock 5  -261.49736  126.89454  -2.061
step6:sessionBlock 5  -272.23377  126.89454  -2.145
step7:sessionBlock 5  -210.05804  126.89454  -1.655
step8:sessionBlock 5  -421.03612  126.89454  -3.318
step9:sessionBlock 5  -171.26644  126.89454  -1.350
step10:sessionBlock 5 -350.65402  126.89454  -2.763
step11:sessionBlock 5 -459.62967  126.89454  -3.622
step12:sessionBlock 5 -547.26441  126.89454  -4.313

Correlation matrix not shown by default, as p = 24 > 12.
Use print(summary(mdl), correlation=TRUE)  or
    vcov(summary(mdl))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
               Chisq Df Pr(>Chisq)    
step         135.160 11  < 2.2e-16 ***
session       30.716  1  2.986e-08 ***
step:session  28.615 11   0.002603 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
session = Block 4:
 step emmean   SE    df lower.CL upper.CL
 1       760 90.7 160.7      581      939
 2       441 90.7 160.7      262      620
 3       424 90.7 160.7      245      603
 4       441 90.7 160.7      262      620
 5       528 90.7 160.7      349      707
 6       478 90.7 160.7      299      657
 7       648 90.7 160.7      469      828
 8       700 90.7 160.7      520      879
 9       566 90.7 160.7      387      745
 10      563 90.7 160.7      384      742
 11      760 90.7 160.7      580      939
 12      833 90.7 160.7      654     1012

session = Block 5:
 step emmean   SE    df lower.CL upper.CL
 1      1196 69.7  57.6     1056     1335
 2       614 69.7  57.6      474      753
 3       596 69.7  57.6      457      736
 4       675 69.7  57.6      536      815
 5       703 69.7  57.6      563      842
 6       642 69.7  57.6      502      781
 7       875 69.7  57.6      735     1014
 8       715 69.7  57.6      575      854
 9       831 69.7  57.6      692      971
 10      649 69.7  57.6      510      789
 11      736 69.7  57.6      597      876
 12      722 69.7  57.6      583      862

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
--- Sequence length 18 ---
[Combined] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * session * trial_acc_cat + (1 | subject)
   Data: data

REML criterion at convergence: 160429.7

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-2.048 -0.373 -0.145  0.102 41.159 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  29887   172.9   
 Residual             328654   573.3   
Number of obs: 10368, groups:  subject, 18

Fixed effects:
                                         Estimate Std. Error t value
(Intercept)                                811.48      59.25  13.695
step2                                     -365.53      60.77  -6.015
step3                                     -412.41      60.77  -6.787
step4                                     -420.02      60.77  -6.912
step5                                     -371.73      60.77  -6.117
step6                                     -354.89      60.77  -5.840
step7                                     -311.91      60.77  -5.133
step8                                     -365.18      60.77  -6.009
step9                                     -325.52      60.77  -5.357
step10                                    -329.51      60.77  -5.422
step11                                    -359.24      60.77  -5.912
step12                                    -394.91      60.77  -6.499
step13                                    -235.35      60.77  -3.873
step14                                    -261.72      60.77  -4.307
step15                                    -393.92      60.77  -6.482
step16                                    -415.43      60.77  -6.836
step17                                    -424.13      60.77  -6.980
step18                                    -354.54      60.77  -5.834
sessionBlock 5                              37.15      69.26   0.536
trial_acc_catwrong                        -111.73      69.74  -1.602
step2:sessionBlock 5                         9.68      97.78   0.099
step3:sessionBlock 5                        70.97      97.78   0.726
step4:sessionBlock 5                       109.66      97.78   1.121
step5:sessionBlock 5                        78.91      97.78   0.807
step6:sessionBlock 5                        64.38      97.78   0.658
step7:sessionBlock 5                        88.42      97.78   0.904
step8:sessionBlock 5                        29.70      97.78   0.304
step9:sessionBlock 5                       222.83      97.78   2.279
step10:sessionBlock 5                      192.98      97.78   1.974
step11:sessionBlock 5                      -16.81      97.78  -0.172
step12:sessionBlock 5                       34.57      97.78   0.354
step13:sessionBlock 5                      257.23      97.78   2.631
step14:sessionBlock 5                       36.57      97.78   0.374
step15:sessionBlock 5                      -19.91      97.78  -0.204
step16:sessionBlock 5                       38.46      97.78   0.393
step17:sessionBlock 5                       93.07      97.78   0.952
step18:sessionBlock 5                      -22.04      97.78  -0.225
step2:trial_acc_catwrong                    80.78      98.33   0.822
step3:trial_acc_catwrong                   157.29      98.33   1.600
step4:trial_acc_catwrong                   241.25      98.33   2.454
step5:trial_acc_catwrong                   226.18      98.33   2.300
step6:trial_acc_catwrong                   154.77      98.33   1.574
step7:trial_acc_catwrong                   247.11      98.33   2.513
step8:trial_acc_catwrong                   313.71      98.33   3.190
step9:trial_acc_catwrong                   389.47      98.33   3.961
step10:trial_acc_catwrong                  184.42      98.33   1.876
step11:trial_acc_catwrong                  215.97      98.33   2.196
step12:trial_acc_catwrong                  232.25      98.33   2.362
step13:trial_acc_catwrong                  109.75      98.33   1.116
step14:trial_acc_catwrong                  110.25      98.33   1.121
step15:trial_acc_catwrong                  212.77      98.33   2.164
step16:trial_acc_catwrong                  305.60      98.33   3.108
step17:trial_acc_catwrong                  373.30      98.33   3.796
step18:trial_acc_catwrong                  642.13      98.33   6.531
sessionBlock 5:trial_acc_catwrong          477.49      98.47   4.849
step2:sessionBlock 5:trial_acc_catwrong   -312.80     138.82  -2.253
step3:sessionBlock 5:trial_acc_catwrong   -440.40     138.82  -3.172
step4:sessionBlock 5:trial_acc_catwrong   -476.65     138.82  -3.434
step5:sessionBlock 5:trial_acc_catwrong   -409.56     138.82  -2.950
step6:sessionBlock 5:trial_acc_catwrong   -302.10     138.82  -2.176
step7:sessionBlock 5:trial_acc_catwrong   -424.65     138.82  -3.059
step8:sessionBlock 5:trial_acc_catwrong   -478.26     138.82  -3.445
step9:sessionBlock 5:trial_acc_catwrong   -522.35     138.82  -3.763
step10:sessionBlock 5:trial_acc_catwrong  -478.88     138.82  -3.450
step11:sessionBlock 5:trial_acc_catwrong  -372.63     138.82  -2.684
step12:sessionBlock 5:trial_acc_catwrong  -329.98     138.82  -2.377
step13:sessionBlock 5:trial_acc_catwrong  -477.01     138.82  -3.436
step14:sessionBlock 5:trial_acc_catwrong  -352.75     138.82  -2.541
step15:sessionBlock 5:trial_acc_catwrong  -330.58     138.82  -2.381
step16:sessionBlock 5:trial_acc_catwrong  -496.37     138.82  -3.576
step17:sessionBlock 5:trial_acc_catwrong  -586.13     138.82  -4.222
step18:sessionBlock 5:trial_acc_catwrong  -734.34     138.82  -5.290

Correlation matrix not shown by default, as p = 72 > 12.
Use print(summary(mdl_all), correlation=TRUE)  or
    vcov(summary(mdl_all))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
                              Chisq Df Pr(>Chisq)    
step                       333.8643 17  < 2.2e-16 ***
session                    139.6673  1  < 2.2e-16 ***
trial_acc_cat              152.2053  1  < 2.2e-16 ***
step:session                61.4012 17  6.159e-07 ***
step:trial_acc_cat          57.9133 17  2.313e-06 ***
session:trial_acc_cat        5.9238  1   0.014937 *  
step:session:trial_acc_cat  39.5580 17   0.001493 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
session = Block 4, trial_acc_cat = correct:
 step emmean   SE    df lower.CL upper.CL
 1       811 59.3  73.0      693      930
 2       446 59.3  73.0      328      564
 3       399 59.3  73.0      281      517
 4       391 59.3  73.0      273      510
 5       440 59.3  73.0      322      558
 6       457 59.3  73.0      338      575
 7       500 59.3  73.0      381      618
 8       446 59.3  73.0      328      564
 9       486 59.3  73.0      368      604
 10      482 59.3  73.0      364      600
 11      452 59.3  73.0      334      570
 12      417 59.3  73.0      298      535
 13      576 59.3  73.0      458      694
 14      550 59.3  73.0      432      668
 15      418 59.3  73.0      299      536
 16      396 59.3  73.0      278      514
 17      387 59.3  73.0      269      505
 18      457 59.3  73.0      339      575

session = Block 5, trial_acc_cat = correct:
 step emmean   SE    df lower.CL upper.CL
 1       849 67.9 125.3      714      983
 2       493 67.9 125.3      358      627
 3       507 67.9 125.3      373      642
 4       538 67.9 125.3      404      673
 5       556 67.9 125.3      421      690
 6       558 67.9 125.3      424      692
 7       625 67.9 125.3      491      759
 8       513 67.9 125.3      379      647
 9       746 67.9 125.3      612      880
 10      712 67.9 125.3      578      846
 11      473 67.9 125.3      338      607
 12      488 67.9 125.3      354      623
 13      870 67.9 125.3      736     1005
 14      623 67.9 125.3      489      758
 15      435 67.9 125.3      300      569
 16      472 67.9 125.3      337      606
 17      518 67.9 125.3      383      652
 18      472 67.9 125.3      338      606

session = Block 4, trial_acc_cat = wrong:
 step emmean   SE    df lower.CL upper.CL
 1       700 68.3 128.2      565      835
 2       415 68.3 128.2      280      550
 3       445 68.3 128.2      310      580
 4       521 68.3 128.2      386      656
 5       554 68.3 128.2      419      689
 6       500 68.3 128.2      365      635
 7       635 68.3 128.2      500      770
 8       648 68.3 128.2      513      783
 9       764 68.3 128.2      629      899
 10      555 68.3 128.2      420      690
 11      556 68.3 128.2      421      692
 12      537 68.3 128.2      402      672
 13      574 68.3 128.2      439      709
 14      548 68.3 128.2      413      683
 15      519 68.3 128.2      384      654
 16      590 68.3 128.2      455      725
 17      649 68.3 128.2      514      784
 18      987 68.3 128.2      852     1122

session = Block 5, trial_acc_cat = wrong:
 step emmean   SE    df lower.CL upper.CL
 1      1214 59.4  73.9     1096     1333
 2       627 59.4  73.9      508      745
 3       590 59.4  73.9      471      708
 4       669 59.4  73.9      550      787
 5       738 59.4  73.9      620      857
 6       777 59.4  73.9      658      895
 7       813 59.4  73.9      695      932
 8       714 59.4  73.9      596      833
 9       979 59.4  73.9      860     1097
 10      783 59.4  73.9      665      902
 11      682 59.4  73.9      563      800
 12      756 59.4  73.9      638      875
 13      869 59.4  73.9      751      987
 14      747 59.4  73.9      628      865
 15      683 59.4  73.9      564      801
 16      647 59.4  73.9      528      765
 17      670 59.4  73.9      552      789
 18      746 59.4  73.9      627      864

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

[CORRECT] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * session + (1 | subject)
   Data: data

REML criterion at convergence: 76476

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.8632 -0.3708 -0.1344  0.1428 26.8933 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  31013   176.1   
 Residual             142434   377.4   
Number of obs: 5220, groups:  subject, 18

Fixed effects:
                      Estimate Std. Error t value
(Intercept)             814.17      50.27  16.195
step2                  -365.53      40.01  -9.137
step3                  -412.41      40.01 -10.309
step4                  -420.02      40.01 -10.499
step5                  -371.73      40.01  -9.292
step6                  -354.89      40.01  -8.871
step7                  -311.91      40.01  -7.797
step8                  -365.18      40.01  -9.128
step9                  -325.52      40.01  -8.137
step10                 -329.51      40.01  -8.237
step11                 -359.24      40.01  -8.980
step12                 -394.91      40.01  -9.872
step13                 -235.35      40.01  -5.883
step14                 -261.72      40.01  -6.542
step15                 -393.92      40.01  -9.847
step16                 -415.43      40.01 -10.385
step17                 -424.13      40.01 -10.602
step18                 -354.54      40.01  -8.862
sessionBlock 5           35.90      45.69   0.786
step2:sessionBlock 5      9.68      64.37   0.150
step3:sessionBlock 5     70.97      64.37   1.103
step4:sessionBlock 5    109.66      64.37   1.703
step5:sessionBlock 5     78.91      64.37   1.226
step6:sessionBlock 5     64.38      64.37   1.000
step7:sessionBlock 5     88.42      64.37   1.374
step8:sessionBlock 5     29.70      64.37   0.461
step9:sessionBlock 5    222.83      64.37   3.461
step10:sessionBlock 5   192.98      64.37   2.998
step11:sessionBlock 5   -16.81      64.37  -0.261
step12:sessionBlock 5    34.57      64.37   0.537
step13:sessionBlock 5   257.23      64.37   3.996
step14:sessionBlock 5    36.57      64.37   0.568
step15:sessionBlock 5   -19.91      64.37  -0.309
step16:sessionBlock 5    38.46      64.37   0.597
step17:sessionBlock 5    93.07      64.37   1.446
step18:sessionBlock 5   -22.04      64.37  -0.342

Correlation matrix not shown by default, as p = 36 > 12.
Use print(summary(mdl), correlation=TRUE)  or
    vcov(summary(mdl))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
               Chisq Df Pr(>Chisq)    
step         385.211 17  < 2.2e-16 ***
session       86.629  1  < 2.2e-16 ***
step:session  54.881 17  7.161e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
session = Block 4:
 step emmean   SE   df lower.CL upper.CL
 1       814 50.3 35.3      712      916
 2       449 50.3 35.3      347      551
 3       402 50.3 35.3      300      504
 4       394 50.3 35.3      292      496
 5       442 50.3 35.3      340      544
 6       459 50.3 35.3      357      561
 7       502 50.3 35.3      400      604
 8       449 50.3 35.3      347      551
 9       489 50.3 35.3      387      591
 10      485 50.3 35.3      383      587
 11      455 50.3 35.3      353      557
 12      419 50.3 35.3      317      521
 13      579 50.3 35.3      477      681
 14      552 50.3 35.3      450      654
 15      420 50.3 35.3      318      522
 16      399 50.3 35.3      297      501
 17      390 50.3 35.3      288      492
 18      460 50.3 35.3      358      562

session = Block 5:
 step emmean   SE   df lower.CL upper.CL
 1       850 54.8 49.9      740      960
 2       494 54.8 49.9      384      604
 3       509 54.8 49.9      398      619
 4       540 54.8 49.9      430      650
 5       557 54.8 49.9      447      667
 6       560 54.8 49.9      449      670
 7       627 54.8 49.9      516      737
 8       515 54.8 49.9      404      625
 9       747 54.8 49.9      637      858
 10      714 54.8 49.9      603      824
 11      474 54.8 49.9      364      584
 12      490 54.8 49.9      380      600
 13      872 54.8 49.9      762      982
 14      625 54.8 49.9      515      735
 15      436 54.8 49.9      326      546
 16      473 54.8 49.9      363      583
 17      519 54.8 49.9      409      629
 18      473 54.8 49.9      363      584

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise (Tukey) across steps — correct | session:
session = Block 4:
 contrast        estimate   SE   df t.ratio p.value
 step1 - step2    365.528 40.0 5167   9.137  <.0001
 step1 - step3    412.410 40.0 5167  10.309  <.0001
 step1 - step4    420.022 40.0 5167  10.499  <.0001
 step1 - step5    371.730 40.0 5167   9.292  <.0001
 step1 - step6    354.888 40.0 5167   8.871  <.0001
 step1 - step7    311.910 40.0 5167   7.797  <.0001
 step1 - step8    365.180 40.0 5167   9.128  <.0001
 step1 - step9    325.522 40.0 5167   8.137  <.0001
 step1 - step10   329.511 40.0 5167   8.237  <.0001
 step1 - step11   359.242 40.0 5167   8.980  <.0001
 step1 - step12   394.910 40.0 5167   9.872  <.0001
 step1 - step13   235.354 40.0 5167   5.883  <.0001
 step1 - step14   261.719 40.0 5167   6.542  <.0001
 step1 - step15   393.916 40.0 5167   9.847  <.0001
 step1 - step16   415.433 40.0 5167  10.385  <.0001
 step1 - step17   424.135 40.0 5167  10.602  <.0001
 step1 - step18   354.539 40.0 5167   8.862  <.0001
 step2 - step3     46.882 40.0 5167   1.172  0.9995
 step2 - step4     54.494 40.0 5167   1.362  0.9969
 step2 - step5      6.202 40.0 5167   0.155  1.0000
 step2 - step6    -10.640 40.0 5167  -0.266  1.0000
 step2 - step7    -53.618 40.0 5167  -1.340  0.9974
 step2 - step8     -0.348 40.0 5167  -0.009  1.0000
 step2 - step9    -40.006 40.0 5167  -1.000  0.9999
 step2 - step10   -36.017 40.0 5167  -0.900  1.0000
 step2 - step11    -6.287 40.0 5167  -0.157  1.0000
 step2 - step12    29.382 40.0 5167   0.734  1.0000
 step2 - step13  -130.174 40.0 5167  -3.254  0.1026
 step2 - step14  -103.809 40.0 5167  -2.595  0.4574
 step2 - step15    28.388 40.0 5167   0.710  1.0000
 step2 - step16    49.904 40.0 5167   1.247  0.9989
 step2 - step17    58.607 40.0 5167   1.465  0.9929
 step2 - step18   -10.989 40.0 5167  -0.275  1.0000
 step3 - step4      7.612 40.0 5167   0.190  1.0000
 step3 - step5    -40.680 40.0 5167  -1.017  0.9999
 step3 - step6    -57.523 40.0 5167  -1.438  0.9942
 step3 - step7   -100.500 40.0 5167  -2.512  0.5209
 step3 - step8    -47.230 40.0 5167  -1.181  0.9995
 step3 - step9    -86.888 40.0 5167  -2.172  0.7724
 step3 - step10   -82.899 40.0 5167  -2.072  0.8324
 step3 - step11   -53.169 40.0 5167  -1.329  0.9977
 step3 - step12   -17.500 40.0 5167  -0.437  1.0000
 step3 - step13  -177.056 40.0 5167  -4.426  0.0013
 step3 - step14  -150.691 40.0 5167  -3.767  0.0194
 step3 - step15   -18.494 40.0 5167  -0.462  1.0000
 step3 - step16     3.022 40.0 5167   0.076  1.0000
 step3 - step17    11.725 40.0 5167   0.293  1.0000
 step3 - step18   -57.871 40.0 5167  -1.447  0.9938
 step4 - step5    -48.292 40.0 5167  -1.207  0.9993
 step4 - step6    -65.135 40.0 5167  -1.628  0.9782
 step4 - step7   -108.112 40.0 5167  -2.702  0.3787
 step4 - step8    -54.843 40.0 5167  -1.371  0.9967
 step4 - step9    -94.500 40.0 5167  -2.362  0.6369
 step4 - step10   -90.511 40.0 5167  -2.263  0.7106
 step4 - step11   -60.781 40.0 5167  -1.519  0.9894
 step4 - step12   -25.112 40.0 5167  -0.628  1.0000
 step4 - step13  -184.668 40.0 5167  -4.616  0.0006
 step4 - step14  -158.303 40.0 5167  -3.957  0.0095
 step4 - step15   -26.107 40.0 5167  -0.653  1.0000
 step4 - step16    -4.590 40.0 5167  -0.115  1.0000
 step4 - step17     4.112 40.0 5167   0.103  1.0000
 step4 - step18   -65.483 40.0 5167  -1.637  0.9771
 step5 - step6    -16.843 40.0 5167  -0.421  1.0000
 step5 - step7    -59.820 40.0 5167  -1.495  0.9911
 step5 - step8     -6.551 40.0 5167  -0.164  1.0000
 step5 - step9    -46.208 40.0 5167  -1.155  0.9996
 step5 - step10   -42.219 40.0 5167  -1.055  0.9999
 step5 - step11   -12.489 40.0 5167  -0.312  1.0000
 step5 - step12    23.180 40.0 5167   0.579  1.0000
 step5 - step13  -136.376 40.0 5167  -3.409  0.0647
 step5 - step14  -110.011 40.0 5167  -2.750  0.3459
 step5 - step15    22.185 40.0 5167   0.555  1.0000
 step5 - step16    43.702 40.0 5167   1.092  0.9998
 step5 - step17    52.404 40.0 5167   1.310  0.9981
 step5 - step18   -17.191 40.0 5167  -0.430  1.0000
 step6 - step7    -42.977 40.0 5167  -1.074  0.9999
 step6 - step8     10.292 40.0 5167   0.257  1.0000
 step6 - step9    -29.365 40.0 5167  -0.734  1.0000
 step6 - step10   -25.376 40.0 5167  -0.634  1.0000
 step6 - step11     4.354 40.0 5167   0.109  1.0000
 step6 - step12    40.023 40.0 5167   1.000  0.9999
 step6 - step13  -119.534 40.0 5167  -2.988  0.2061
 step6 - step14   -93.168 40.0 5167  -2.329  0.6620
 step6 - step15    39.028 40.0 5167   0.976  1.0000
 step6 - step16    60.545 40.0 5167   1.513  0.9898
 step6 - step17    69.247 40.0 5167   1.731  0.9608
 step6 - step18    -0.348 40.0 5167  -0.009  1.0000
 step7 - step8     53.270 40.0 5167   1.332  0.9976
 step7 - step9     13.612 40.0 5167   0.340  1.0000
 step7 - step10    17.601 40.0 5167   0.440  1.0000
 step7 - step11    47.331 40.0 5167   1.183  0.9995
 step7 - step12    83.000 40.0 5167   2.075  0.8310
 step7 - step13   -76.556 40.0 5167  -1.914  0.9070
 step7 - step14   -50.191 40.0 5167  -1.255  0.9989
 step7 - step15    82.006 40.0 5167   2.050  0.8445
 step7 - step16   103.522 40.0 5167   2.588  0.4629
 step7 - step17   112.225 40.0 5167   2.805  0.3096
 step7 - step18    42.629 40.0 5167   1.066  0.9999
 step8 - step9    -39.657 40.0 5167  -0.991  1.0000
 step8 - step10   -35.669 40.0 5167  -0.892  1.0000
 step8 - step11    -5.938 40.0 5167  -0.148  1.0000
 step8 - step12    29.730 40.0 5167   0.743  1.0000
 step8 - step13  -129.826 40.0 5167  -3.245  0.1051
 step8 - step14  -103.461 40.0 5167  -2.586  0.4640
 step8 - step15    28.736 40.0 5167   0.718  1.0000
 step8 - step16    50.253 40.0 5167   1.256  0.9988
 step8 - step17    58.955 40.0 5167   1.474  0.9924
 step8 - step18   -10.640 40.0 5167  -0.266  1.0000
 step9 - step10     3.989 40.0 5167   0.100  1.0000
 step9 - step11    33.719 40.0 5167   0.843  1.0000
 step9 - step12    69.388 40.0 5167   1.734  0.9601
 step9 - step13   -90.168 40.0 5167  -2.254  0.7167
 step9 - step14   -63.803 40.0 5167  -1.595  0.9823
 step9 - step15    68.393 40.0 5167   1.710  0.9651
 step9 - step16    89.910 40.0 5167   2.247  0.7213
 step9 - step17    98.612 40.0 5167   2.465  0.5575
 step9 - step18    29.017 40.0 5167   0.725  1.0000
 step10 - step11   29.730 40.0 5167   0.743  1.0000
 step10 - step12   65.399 40.0 5167   1.635  0.9773
 step10 - step13  -94.157 40.0 5167  -2.354  0.6434
 step10 - step14  -67.792 40.0 5167  -1.695  0.9679
 step10 - step15   64.404 40.0 5167   1.610  0.9806
 step10 - step16   85.921 40.0 5167   2.148  0.7878
 step10 - step17   94.624 40.0 5167   2.365  0.6346
 step10 - step18   25.028 40.0 5167   0.626  1.0000
 step11 - step12   35.669 40.0 5167   0.892  1.0000
 step11 - step13 -123.888 40.0 5167  -3.097  0.1572
 step11 - step14  -97.522 40.0 5167  -2.438  0.5787
 step11 - step15   34.674 40.0 5167   0.867  1.0000
 step11 - step16   56.191 40.0 5167   1.405  0.9956
 step11 - step17   64.893 40.0 5167   1.622  0.9790
 step11 - step18   -4.702 40.0 5167  -0.118  1.0000
 step12 - step13 -159.556 40.0 5167  -3.988  0.0084
 step12 - step14 -133.191 40.0 5167  -3.329  0.0823
 step12 - step15   -0.994 40.0 5167  -0.025  1.0000
 step12 - step16   20.523 40.0 5167   0.513  1.0000
 step12 - step17   29.225 40.0 5167   0.731  1.0000
 step12 - step18  -40.371 40.0 5167  -1.009  0.9999
 step13 - step14   26.365 40.0 5167   0.659  1.0000
 step13 - step15  158.562 40.0 5167   3.964  0.0093
 step13 - step16  180.079 40.0 5167   4.501  0.0010
 step13 - step17  188.781 40.0 5167   4.719  0.0003
 step13 - step18  119.185 40.0 5167   2.979  0.2105
 step14 - step15  132.197 40.0 5167   3.305  0.0886
 step14 - step16  153.714 40.0 5167   3.842  0.0147
 step14 - step17  162.416 40.0 5167   4.060  0.0063
 step14 - step18   92.820 40.0 5167   2.320  0.6685
 step15 - step16   21.517 40.0 5167   0.538  1.0000
 step15 - step17   30.219 40.0 5167   0.755  1.0000
 step15 - step18  -39.376 40.0 5167  -0.984  1.0000
 step16 - step17    8.702 40.0 5167   0.218  1.0000
 step16 - step18  -60.893 40.0 5167  -1.522  0.9892
 step17 - step18  -69.596 40.0 5167  -1.740  0.9589

session = Block 5:
 contrast        estimate   SE   df t.ratio p.value
 step1 - step2    355.848 50.4 5167   7.056  <.0001
 step1 - step3    341.438 50.4 5167   6.770  <.0001
 step1 - step4    310.366 50.4 5167   6.154  <.0001
 step1 - step5    292.821 50.4 5167   5.806  <.0001
 step1 - step6    290.509 50.4 5167   5.760  <.0001
 step1 - step7    223.491 50.4 5167   4.431  0.0013
 step1 - step8    335.482 50.4 5167   6.652  <.0001
 step1 - step9    102.696 50.4 5167   2.036  0.8516
 step1 - step10   136.536 50.4 5167   2.707  0.3753
 step1 - step11   376.054 50.4 5167   7.457  <.0001
 step1 - step12   360.339 50.4 5167   7.145  <.0001
 step1 - step13   -21.875 50.4 5167  -0.434  1.0000
 step1 - step14   225.152 50.4 5167   4.464  0.0011
 step1 - step15   413.830 50.4 5167   8.206  <.0001
 step1 - step16   376.973 50.4 5167   7.475  <.0001
 step1 - step17   331.062 50.4 5167   6.564  <.0001
 step1 - step18   376.580 50.4 5167   7.467  <.0001
 step2 - step3    -14.411 50.4 5167  -0.286  1.0000
 step2 - step4    -45.482 50.4 5167  -0.902  1.0000
 step2 - step5    -63.027 50.4 5167  -1.250  0.9989
 step2 - step6    -65.339 50.4 5167  -1.296  0.9983
 step2 - step7   -132.357 50.4 5167  -2.624  0.4353
 step2 - step8    -20.366 50.4 5167  -0.404  1.0000
 step2 - step9   -253.152 50.4 5167  -5.020  0.0001
 step2 - step10  -219.312 50.4 5167  -4.349  0.0019
 step2 - step11    20.205 50.4 5167   0.401  1.0000
 step2 - step12     4.491 50.4 5167   0.089  1.0000
 step2 - step13  -377.723 50.4 5167  -7.490  <.0001
 step2 - step14  -130.696 50.4 5167  -2.591  0.4600
 step2 - step15    57.982 50.4 5167   1.150  0.9996
 step2 - step16    21.125 50.4 5167   0.419  1.0000
 step2 - step17   -24.786 50.4 5167  -0.491  1.0000
 step2 - step18    20.732 50.4 5167   0.411  1.0000
 step3 - step4    -31.071 50.4 5167  -0.616  1.0000
 step3 - step5    -48.616 50.4 5167  -0.964  1.0000
 step3 - step6    -50.929 50.4 5167  -1.010  0.9999
 step3 - step7   -117.946 50.4 5167  -2.339  0.6547
 step3 - step8     -5.955 50.4 5167  -0.118  1.0000
 step3 - step9   -238.741 50.4 5167  -4.734  0.0003
 step3 - step10  -204.902 50.4 5167  -4.063  0.0063
 step3 - step11    34.616 50.4 5167   0.686  1.0000
 step3 - step12    18.902 50.4 5167   0.375  1.0000
 step3 - step13  -363.312 50.4 5167  -7.204  <.0001
 step3 - step14  -116.286 50.4 5167  -2.306  0.6793
 step3 - step15    72.393 50.4 5167   1.435  0.9943
 step3 - step16    35.536 50.4 5167   0.705  1.0000
 step3 - step17   -10.375 50.4 5167  -0.206  1.0000
 step3 - step18    35.143 50.4 5167   0.697  1.0000
 step4 - step5    -17.545 50.4 5167  -0.348  1.0000
 step4 - step6    -19.857 50.4 5167  -0.394  1.0000
 step4 - step7    -86.875 50.4 5167  -1.723  0.9625
 step4 - step8     25.116 50.4 5167   0.498  1.0000
 step4 - step9   -207.670 50.4 5167  -4.118  0.0050
 step4 - step10  -173.830 50.4 5167  -3.447  0.0575
 step4 - step11    65.688 50.4 5167   1.302  0.9982
 step4 - step12    49.973 50.4 5167   0.991  1.0000
 step4 - step13  -332.241 50.4 5167  -6.588  <.0001
 step4 - step14   -85.214 50.4 5167  -1.690  0.9688
 step4 - step15   103.464 50.4 5167   2.052  0.8436
 step4 - step16    66.607 50.4 5167   1.321  0.9979
 step4 - step17    20.696 50.4 5167   0.410  1.0000
 step4 - step18    66.214 50.4 5167   1.313  0.9980
 step5 - step6     -2.312 50.4 5167  -0.046  1.0000
 step5 - step7    -69.330 50.4 5167  -1.375  0.9966
 step5 - step8     42.661 50.4 5167   0.846  1.0000
 step5 - step9   -190.125 50.4 5167  -3.770  0.0192
 step5 - step10  -156.286 50.4 5167  -3.099  0.1564
 step5 - step11    83.232 50.4 5167   1.650  0.9751
 step5 - step12    67.518 50.4 5167   1.339  0.9975
 step5 - step13  -314.696 50.4 5167  -6.240  <.0001
 step5 - step14   -67.670 50.4 5167  -1.342  0.9974
 step5 - step15   121.009 50.4 5167   2.399  0.6084
 step5 - step16    84.152 50.4 5167   1.669  0.9723
 step5 - step17    38.241 50.4 5167   0.758  1.0000
 step5 - step18    83.759 50.4 5167   1.661  0.9735
 step6 - step7    -67.018 50.4 5167  -1.329  0.9977
 step6 - step8     44.973 50.4 5167   0.892  1.0000
 step6 - step9   -187.812 50.4 5167  -3.724  0.0226
 step6 - step10  -153.973 50.4 5167  -3.053  0.1758
 step6 - step11    85.545 50.4 5167   1.696  0.9676
 step6 - step12    69.830 50.4 5167   1.385  0.9962
 step6 - step13  -312.384 50.4 5167  -6.194  <.0001
 step6 - step14   -65.357 50.4 5167  -1.296  0.9983
 step6 - step15   123.321 50.4 5167   2.445  0.5729
 step6 - step16    86.464 50.4 5167   1.714  0.9641
 step6 - step17    40.554 50.4 5167   0.804  1.0000
 step6 - step18    86.071 50.4 5167   1.707  0.9656
 step7 - step8    111.991 50.4 5167   2.221  0.7400
 step7 - step9   -120.795 50.4 5167  -2.395  0.6117
 step7 - step10   -86.955 50.4 5167  -1.724  0.9622
 step7 - step11   152.562 50.4 5167   3.025  0.1884
 step7 - step12   136.848 50.4 5167   2.713  0.3710
 step7 - step13  -245.366 50.4 5167  -4.865  0.0002
 step7 - step14     1.661 50.4 5167   0.033  1.0000
 step7 - step15   190.339 50.4 5167   3.774  0.0189
 step7 - step16   153.482 50.4 5167   3.043  0.1801
 step7 - step17   107.571 50.4 5167   2.133  0.7969
 step7 - step18   153.089 50.4 5167   3.036  0.1836
 step8 - step9   -232.786 50.4 5167  -4.616  0.0006
 step8 - step10  -198.946 50.4 5167  -3.945  0.0100
 step8 - step11    40.571 50.4 5167   0.804  1.0000
 step8 - step12    24.857 50.4 5167   0.493  1.0000
 step8 - step13  -357.357 50.4 5167  -7.086  <.0001
 step8 - step14  -110.330 50.4 5167  -2.188  0.7621
 step8 - step15    78.348 50.4 5167   1.554  0.9865
 step8 - step16    41.491 50.4 5167   0.823  1.0000
 step8 - step17    -4.420 50.4 5167  -0.088  1.0000
 step8 - step18    41.098 50.4 5167   0.815  1.0000
 step9 - step10    33.839 50.4 5167   0.671  1.0000
 step9 - step11   273.357 50.4 5167   5.420  <.0001
 step9 - step12   257.643 50.4 5167   5.109  <.0001
 step9 - step13  -124.571 50.4 5167  -2.470  0.5536
 step9 - step14   122.455 50.4 5167   2.428  0.5862
 step9 - step15   311.134 50.4 5167   6.169  <.0001
 step9 - step16   274.277 50.4 5167   5.438  <.0001
 step9 - step17   228.366 50.4 5167   4.528  0.0009
 step9 - step18   273.884 50.4 5167   5.431  <.0001
 step10 - step11  239.518 50.4 5167   4.749  0.0003
 step10 - step12  223.804 50.4 5167   4.438  0.0013
 step10 - step13 -158.411 50.4 5167  -3.141  0.1400
 step10 - step14   88.616 50.4 5167   1.757  0.9550
 step10 - step15  277.295 50.4 5167   5.498  <.0001
 step10 - step16  240.438 50.4 5167   4.767  0.0003
 step10 - step17  194.527 50.4 5167   3.857  0.0139
 step10 - step18  240.045 50.4 5167   4.760  0.0003
 step11 - step12  -15.714 50.4 5167  -0.312  1.0000
 step11 - step13 -397.929 50.4 5167  -7.890  <.0001
 step11 - step14 -150.902 50.4 5167  -2.992  0.2041
 step11 - step15   37.777 50.4 5167   0.749  1.0000
 step11 - step16    0.920 50.4 5167   0.018  1.0000
 step11 - step17  -44.991 50.4 5167  -0.892  1.0000
 step11 - step18    0.527 50.4 5167   0.010  1.0000
 step12 - step13 -382.214 50.4 5167  -7.579  <.0001
 step12 - step14 -135.188 50.4 5167  -2.681  0.3943
 step12 - step15   53.491 50.4 5167   1.061  0.9999
 step12 - step16   16.634 50.4 5167   0.330  1.0000
 step12 - step17  -29.277 50.4 5167  -0.581  1.0000
 step12 - step18   16.241 50.4 5167   0.322  1.0000
 step13 - step14  247.027 50.4 5167   4.898  0.0001
 step13 - step15  435.705 50.4 5167   8.639  <.0001
 step13 - step16  398.848 50.4 5167   7.909  <.0001
 step13 - step17  352.938 50.4 5167   6.998  <.0001
 step13 - step18  398.455 50.4 5167   7.901  <.0001
 step14 - step15  188.679 50.4 5167   3.741  0.0213
 step14 - step16  151.821 50.4 5167   3.010  0.1953
 step14 - step17  105.911 50.4 5167   2.100  0.8166
 step14 - step18  151.429 50.4 5167   3.003  0.1990
 step15 - step16  -36.857 50.4 5167  -0.731  1.0000
 step15 - step17  -82.768 50.4 5167  -1.641  0.9765
 step15 - step18  -37.250 50.4 5167  -0.739  1.0000
 step16 - step17  -45.911 50.4 5167  -0.910  1.0000
 step16 - step18   -0.393 50.4 5167  -0.008  1.0000
 step17 - step18   45.518 50.4 5167   0.903  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent-step contrasts (consecutive) — correct | session:
session = Block 4:
 contrast        estimate   SE   df t.ratio p.value
 step2 - step1    -365.53 40.0 5167  -9.137  <.0001
 step3 - step2     -46.88 40.0 5167  -1.172  1.0000
 step4 - step3      -7.61 40.0 5167  -0.190  1.0000
 step5 - step4      48.29 40.0 5167   1.207  1.0000
 step6 - step5      16.84 40.0 5167   0.421  1.0000
 step7 - step6      42.98 40.0 5167   1.074  1.0000
 step8 - step7     -53.27 40.0 5167  -1.332  1.0000
 step9 - step8      39.66 40.0 5167   0.991  1.0000
 step10 - step9     -3.99 40.0 5167  -0.100  1.0000
 step11 - step10   -29.73 40.0 5167  -0.743  1.0000
 step12 - step11   -35.67 40.0 5167  -0.892  1.0000
 step13 - step12   159.56 40.0 5167   3.988  0.0011
 step14 - step13   -26.37 40.0 5167  -0.659  1.0000
 step15 - step14  -132.20 40.0 5167  -3.305  0.0144
 step16 - step15   -21.52 40.0 5167  -0.538  1.0000
 step17 - step16    -8.70 40.0 5167  -0.218  1.0000
 step18 - step17    69.60 40.0 5167   1.740  1.0000

session = Block 5:
 contrast        estimate   SE   df t.ratio p.value
 step2 - step1    -355.85 50.4 5167  -7.056  <.0001
 step3 - step2      14.41 50.4 5167   0.286  1.0000
 step4 - step3      31.07 50.4 5167   0.616  1.0000
 step5 - step4      17.54 50.4 5167   0.348  1.0000
 step6 - step5       2.31 50.4 5167   0.046  1.0000
 step7 - step6      67.02 50.4 5167   1.329  1.0000
 step8 - step7    -111.99 50.4 5167  -2.221  0.2906
 step9 - step8     232.79 50.4 5167   4.616  0.0001
 step10 - step9    -33.84 50.4 5167  -0.671  1.0000
 step11 - step10  -239.52 50.4 5167  -4.749  <.0001
 step12 - step11    15.71 50.4 5167   0.312  1.0000
 step13 - step12   382.21 50.4 5167   7.579  <.0001
 step14 - step13  -247.03 50.4 5167  -4.898  <.0001
 step15 - step14  -188.68 50.4 5167  -3.741  0.0022
 step16 - step15    36.86 50.4 5167   0.731  1.0000
 step17 - step16    45.91 50.4 5167   0.910  1.0000
 step18 - step17   -45.52 50.4 5167  -0.903  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: holm method for 17 tests 

[WRONG] Model summary:
Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ step * session + (1 | subject)
   Data: data

REML criterion at convergence: 81979.1

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-1.605 -0.411 -0.196  0.089 32.890 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  33915   184.2   
 Residual             516197   718.5   
Number of obs: 5148, groups:  subject, 18

Fixed effects:
                      Estimate Std. Error t value
(Intercept)             705.95      81.32   8.682
step2                  -284.75      96.88  -2.939
step3                  -255.12      96.88  -2.633
step4                  -178.77      96.88  -1.845
step5                  -145.55      96.88  -1.502
step6                  -200.12      96.88  -2.066
step7                   -64.80      96.88  -0.669
step8                   -51.47      96.88  -0.531
step9                    63.95      96.88   0.660
step10                 -145.09      96.88  -1.498
step11                 -143.27      96.88  -1.479
step12                 -162.66      96.88  -1.679
step13                 -125.60      96.88  -1.296
step14                 -151.47      96.88  -1.564
step15                 -181.15      96.88  -1.870
step16                 -109.84      96.88  -1.134
step17                  -50.84      96.88  -0.525
step18                  287.59      96.88   2.969
sessionBlock 5          507.34      87.60   5.791
step2:sessionBlock 5   -303.12     123.50  -2.455
step3:sessionBlock 5   -369.43     123.50  -2.991
step4:sessionBlock 5   -366.99     123.50  -2.972
step5:sessionBlock 5   -330.66     123.50  -2.677
step6:sessionBlock 5   -237.72     123.50  -1.925
step7:sessionBlock 5   -336.23     123.50  -2.723
step8:sessionBlock 5   -448.56     123.50  -3.632
step9:sessionBlock 5   -299.52     123.50  -2.425
step10:sessionBlock 5  -285.91     123.50  -2.315
step11:sessionBlock 5  -389.44     123.50  -3.153
step12:sessionBlock 5  -295.40     123.50  -2.392
step13:sessionBlock 5  -219.79     123.50  -1.780
step14:sessionBlock 5  -316.18     123.50  -2.560
step15:sessionBlock 5  -350.49     123.50  -2.838
step16:sessionBlock 5  -457.91     123.50  -3.708
step17:sessionBlock 5  -493.06     123.50  -3.993
step18:sessionBlock 5  -756.38     123.50  -6.125

Correlation matrix not shown by default, as p = 36 > 12.
Use print(summary(mdl), correlation=TRUE)  or
    vcov(summary(mdl))        if you need it

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rt
               Chisq Df Pr(>Chisq)    
step         135.053 17  < 2.2e-16 ***
session       54.066  1  1.939e-13 ***
step:session  49.136 17  5.747e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
session = Block 4:
 step emmean   SE    df lower.CL upper.CL
 1       706 81.3 182.7      546      866
 2       421 81.3 182.7      261      582
 3       451 81.3 182.7      290      611
 4       527 81.3 182.7      367      688
 5       560 81.3 182.7      400      721
 6       506 81.3 182.7      345      666
 7       641 81.3 182.7      481      802
 8       654 81.3 182.7      494      815
 9       770 81.3 182.7      609      930
 10      561 81.3 182.7      400      721
 11      563 81.3 182.7      402      723
 12      543 81.3 182.7      383      704
 13      580 81.3 182.7      420      741
 14      554 81.3 182.7      394      715
 15      525 81.3 182.7      364      685
 16      596 81.3 182.7      436      757
 17      655 81.3 182.7      495      816
 18      994 81.3 182.7      833     1154

session = Block 5:
 step emmean   SE    df lower.CL upper.CL
 1      1213 69.5  98.8     1075     1351
 2       625 69.5  98.8      487      763
 3       589 69.5  98.8      451      727
 4       668 69.5  98.8      530      805
 5       737 69.5  98.8      599      875
 6       775 69.5  98.8      637      913
 7       812 69.5  98.8      674      950
 8       713 69.5  98.8      575      851
 9       978 69.5  98.8      840     1116
 10      782 69.5  98.8      644      920
 11      681 69.5  98.8      543      819
 12      755 69.5  98.8      617      893
 13      868 69.5  98.8      730     1006
 14      746 69.5  98.8      608      884
 15      682 69.5  98.8      544      820
 16      646 69.5  98.8      508      783
 17      669 69.5  98.8      531      807
 18      744 69.5  98.8      607      882

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
# helper (kept)
if (!exists("safe_fit")) {
  safe_fit <- function(formula, data) {
    m <- tryCatch(lme4::lmer(formula, data = data), error = function(e) NULL)
    if (is.null(m)) { message("⚠️ Falling back to lm."); m <- stats::lm(update(formula, . ~ . - (1 | subject)), data = data) }
    m
  }
}

# === Test phase (Blocks 4–5): Stepwise RT, CORRECT trials only ===
# Facets: rows = Familiar/Unfamiliar, cols = 6/12/18 (with adjacent-step stars)
plot_stepwise_rt_test_correct_only <- function(df_acc_all, show_plot = TRUE, alpha = 0.05) {
  df_len0 <- df_acc_all %>%
    dplyr::group_by(subject, session, trial) %>%
    dplyr::mutate(seq_length_trial = dplyr::n_distinct(sub.trial.number)) %>%
    dplyr::ungroup()

  df_len <- df_len0 %>%
    dplyr::filter(session %in% c(4, 5), trial_acc_cat == "correct") %>%
    dplyr::mutate(
      session_f        = factor(session, levels = c(4, 5), labels = c("Familiar", "Unfamiliar")),
      seq_length_trial = factor(seq_length_trial, levels = c(6, 12, 18))
    )
  if (nrow(df_len) == 0) { message("No correct-trial data for test phase (4–5)."); return(invisible(NULL)) }

  lengths   <- sort(unique(as.character(df_len$seq_length_trial)))
  emms_list <- list(); stars_list <- list()

  for (L in lengths) {
    df_seq <- df_len %>%
      dplyr::filter(as.character(seq_length_trial) == L) %>%
      dplyr::group_by(subject, session_f, trial,
                      step = as.integer(as.character(sub.trial.number))) %>%
      dplyr::summarise(rt = mean(feedback.RT, na.rm = TRUE), .groups = "drop") %>%
      dplyr::mutate(step = factor(step, levels = sort(unique(step))))
    if (nrow(df_seq) == 0) next

    has_two_cond <- dplyr::n_distinct(df_seq$session_f) >= 2
    has_two_step <- dplyr::n_distinct(df_seq$step)      >= 2
    if (!has_two_step) next

    fmla <- if (has_two_cond) rt ~ step * session_f + (1 | subject) else rt ~ step + (1 | subject)
    mdl  <- safe_fit(fmla, data = df_seq)

    # EMMs
    if (has_two_cond) {
      em <- emmeans::emmeans(mdl, ~ step | session_f) %>% as.data.frame()
    } else {
      em <- emmeans::emmeans(mdl, ~ step) %>% as.data.frame()
      one_lab <- as.character(unique(df_seq$session_f))
      em$session_f <- factor(rep(one_lab, nrow(em)), levels = c("Familiar","Unfamiliar"))
    }
    em$len_fac  <- factor(paste0(L, "-step"), levels = c("6-step","12-step","18-step"))
    em$step_num <- as.integer(as.character(em$step))
    emms_list[[L]] <- em

    # Adjacent-step tests (Holm) -> stars
    em_grid <- if (has_two_cond) emmeans::emmeans(mdl, ~ step | session_f) else emmeans::emmeans(mdl, ~ step)
    consec  <- as.data.frame(emmeans::contrast(em_grid, method = "consec", adjust = "holm"))

    nums <- stringr::str_extract_all(consec$contrast, "\\d+")
    n1   <- vapply(nums, function(v) as.integer(v[1]), integer(1))
    n2   <- vapply(nums, function(v) as.integer(v[2]), integer(1))
    prev <- pmin(n1, n2); nextv <- pmax(n1, n2)
    sign_adj <- ifelse(nextv == n1, 1, -1)
    est_adj  <- consec$estimate * sign_adj

    st <- consec %>%
      dplyr::mutate(step_prev = prev, step_next = nextv,
                    estimate_adj = est_adj,
                    sig = !is.na(p.value) & p.value < alpha) %>%
      dplyr::filter(sig) %>%
      dplyr::transmute(
        len_fac  = factor(paste0(L,"-step"), levels = c("6-step","12-step","18-step")),
        step_num = step_prev,
        session_f = if ("session_f" %in% names(.))
                      as.character(session_f)
                    else
                      rep(as.character(unique(df_seq$session_f)), dplyr::n()),
        direction = ifelse(estimate_adj > 0, "up", "down"),
        p.value   = p.value
      ) %>%
      dplyr::mutate(session_f = factor(session_f, levels = c("Familiar","Unfamiliar")))
    if (nrow(st)) stars_list[[length(stars_list)+1]] <- st
  }

  if (!length(emms_list)) { message("No estimable EMMs for test-phase correct trials."); return(invisible(NULL)) }

  df_em <- dplyr::bind_rows(emms_list) %>%
    dplyr::mutate(
      session_f = factor(session_f, levels = c("Familiar","Unfamiliar")),
      len_fac   = factor(len_fac,   levels = c("6-step","12-step","18-step"))
    )

  df_stars <- if (length(stars_list)) dplyr::bind_rows(stars_list) else
    dplyr::tibble(
      len_fac   = factor(character(), levels = levels(df_em$len_fac)),
      step_num  = integer(),
      session_f = factor(character(), levels = levels(df_em$session_f)),
      direction = character(),
      p.value   = numeric()
    )

  # y-positions for stars
  if (nrow(df_stars)) {
    df_stars <- df_stars %>%
      dplyr::left_join(df_em %>% dplyr::select(len_fac, session_f, step_num, emmean, SE),
                       by = c("len_fac","session_f","step_num")) %>%
      dplyr::mutate(y_star = emmean + pmax(SE * 1.2, 35))
  }
  df_stars_up   <- df_stars %>% dplyr::filter(direction == "up")
  df_stars_down <- df_stars %>% dplyr::filter(direction == "down")

  pal <- c("6-step"="#B22222","12-step"="#2E7D32","18-step"="#1E3A8A")

  # vertical separators
  sep_df <- expand.grid(
    session_f = levels(df_em$session_f),
    len_fac   = c("6-step","12-step"),
    KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE
  ) %>%
    dplyr::mutate(
      session_f = factor(session_f, levels = levels(df_em$session_f)),
      len_fac   = factor(len_fac,     levels = levels(df_em$len_fac))
    )

  p <- ggplot2::ggplot(df_em, ggplot2::aes(x = step_num, y = emmean)) +
    ggplot2::geom_segment(
      data = sep_df,
      ggplot2::aes(x = Inf, xend = Inf, y = -Inf, yend = Inf),
      inherit.aes = FALSE, linetype = "dotted"
    ) +
    ggplot2::geom_ribbon(
      ggplot2::aes(ymin = emmean - SE, ymax = emmean + SE, fill = len_fac),
      alpha = 0.15, color = NA
    ) +
    ggplot2::geom_line(ggplot2::aes(color = len_fac), linewidth = 0.9) +
    ggplot2::geom_point(ggplot2::aes(fill = len_fac), shape = 21, color = "black", size = 2, stroke = 0.5) +
    ggplot2::geom_text(data = df_stars_up,
                       ggplot2::aes(x = step_num, y = y_star, label = "*"),
                       inherit.aes = FALSE, size = 4.2, fontface = "bold", color = "#D32F2F") +
    ggplot2::geom_text(data = df_stars_down,
                       ggplot2::aes(x = step_num, y = y_star, label = "*"),
                       inherit.aes = FALSE, size = 4.2, fontface = "bold", color = "#1F6FEB") +
    ggplot2::facet_grid(rows = ggplot2::vars(session_f), cols = ggplot2::vars(len_fac),
                        scales = "free_x", space = "free_x", drop = FALSE) +
    ggplot2::scale_x_continuous(
      breaks = function(lims) seq(floor(lims[1]), ceiling(lims[2]), by = 1),
      expand = ggplot2::expansion(mult = c(0.02, 0.06))
    ) +
    ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0.05, 0.12))) +
    ggplot2::scale_color_manual(values = pal) +
    ggplot2::scale_fill_manual(values = pal) +
    ggplot2::labs(
      title = "RT Comparison for each step across Difficulty levels (Test phase)",
      x = "Step", y = "Estimated RT (ms)",
      caption = "* Following step is significantly different (red = ↑, blue = ↓); Holm-adjusted adjacent tests."
    ) +
    ggplot2::guides(color = "none", fill = "none") +
    ggplot2::theme_classic(base_size = 12) +
    ggplot2::theme(
      panel.grid = ggplot2::element_blank(),
      plot.caption = ggplot2::element_text(hjust = 0),
      axis.line = ggplot2::element_line(),
      axis.ticks = ggplot2::element_line()
    )

  if (show_plot) print(p)
  invisible(list(emms = df_em, stars = df_stars, plot = p, palette = pal))
}


# === Test phase (Blocks 4–5): Stepwise RT — Familiar & Unfamiliar overlaid ===
# Facets: cols = 6/12/18 (with adjacent-step stars)
plot_stepwise_rt_test_correct_combined <- function(df_acc_all, show_plot = TRUE, alpha = 0.05) {
  df_len0 <- df_acc_all %>%
    dplyr::group_by(subject, session, trial) %>%
    dplyr::mutate(seq_length_trial = dplyr::n_distinct(sub.trial.number)) %>%
    dplyr::ungroup()

  df_len <- df_len0 %>%
    dplyr::filter(session %in% c(4, 5), trial_acc_cat == "correct") %>%
    dplyr::mutate(
      session_f        = factor(session, levels = c(4, 5), labels = c("Familiar", "Unfamiliar")),
      seq_length_trial = factor(seq_length_trial, levels = c(6, 12, 18))
    )
  if (nrow(df_len) == 0) { message("No correct-trial data for test phase (4–5)."); return(invisible(NULL)) }

  lengths <- sort(unique(as.character(df_len$seq_length_trial)))
  emms_list <- list(); stars_list <- list()

  for (L in lengths) {
    df_seq <- df_len %>%
      dplyr::filter(as.character(seq_length_trial) == L) %>%
      dplyr::group_by(
        subject, session_f, trial,
        step = as.integer(as.character(sub.trial.number))
      ) %>%
      dplyr::summarise(rt = mean(feedback.RT, na.rm = TRUE), .groups = "drop") %>%
      dplyr::mutate(step = factor(step, levels = sort(unique(step))))
    if (nrow(df_seq) == 0) next

    has_two_cond <- dplyr::n_distinct(df_seq$session_f) >= 2
    has_two_step <- dplyr::n_distinct(df_seq$step)      >= 2
    if (!has_two_step) next

    fmla <- if (has_two_cond) rt ~ step * session_f + (1 | subject) else rt ~ step + (1 | subject)
    mdl  <- safe_fit(fmla, data = df_seq)

    if (has_two_cond) {
      em <- emmeans::emmeans(mdl, ~ step | session_f) %>% as.data.frame()
    } else {
      em <- emmeans::emmeans(mdl, ~ step) %>% as.data.frame()
      one_lab <- as.character(unique(df_seq$session_f))
      em$session_f <- factor(rep(one_lab, nrow(em)), levels = c("Familiar","Unfamiliar"))
    }
    em$len_fac  <- factor(paste0(L, "-step"), levels = c("6-step","12-step","18-step"))
    em$step_num <- as.integer(as.character(em$step))
    emms_list[[L]] <- em

    em_grid <- if (has_two_cond) emmeans::emmeans(mdl, ~ step | session_f) else emmeans::emmeans(mdl, ~ step)
    consec  <- as.data.frame(emmeans::contrast(em_grid, method = "consec", adjust = "holm"))

    nums <- stringr::str_extract_all(consec$contrast, "\\d+")
    n1   <- vapply(nums, function(v) as.integer(v[1]), integer(1))
    n2   <- vapply(nums, function(v) as.integer(v[2]), integer(1))
    prev <- pmin(n1, n2); nextv <- pmax(n1, n2)
    sign_adj <- ifelse(nextv == n1, 1, -1)
    est_adj  <- consec$estimate * sign_adj

    st <- consec %>%
      dplyr::mutate(step_prev = prev, step_next = nextv,
                    estimate_adj = est_adj,
                    sig = !is.na(p.value) & p.value < alpha) %>%
      dplyr::filter(sig) %>%
      dplyr::transmute(
        len_fac  = factor(paste0(L,"-step"), levels = c("6-step","12-step","18-step")),
        step_num = step_prev,
        session_f = if ("session_f" %in% names(.))
                      as.character(session_f)
                    else
                      rep(as.character(unique(df_seq$session_f)), dplyr::n()),
        direction = ifelse(estimate_adj > 0, "up", "down"),
        p.value   = p.value
      ) %>%
      dplyr::mutate(session_f = factor(session_f, levels = c("Familiar","Unfamiliar")))
    if (nrow(st)) stars_list[[length(stars_list)+1]] <- st
  }

  df_em <- dplyr::bind_rows(emms_list) %>%
    dplyr::mutate(
      len_fac   = factor(len_fac,   levels = c("6-step","12-step","18-step")),
      session_f = factor(session_f, levels = c("Familiar","Unfamiliar"))
    )

  df_stars <- if (length(stars_list)) dplyr::bind_rows(stars_list) else
    dplyr::tibble(
      len_fac   = factor(character(), levels = levels(df_em$len_fac)),
      step_num  = integer(),
      session_f = factor(character(), levels = levels(df_em$session_f)),
      direction = character(),
      p.value   = numeric()
    )

  if (nrow(df_stars)) {
    df_stars <- df_stars %>%
      dplyr::left_join(df_em %>% dplyr::select(len_fac, session_f, step_num, emmean, SE),
                       by = c("len_fac","session_f","step_num")) %>%
      dplyr::mutate(y_star = emmean + pmax(SE * 1.2, 35))
  }
  df_stars_up   <- df_stars %>% dplyr::filter(direction == "up")
  df_stars_down <- df_stars %>% dplyr::filter(direction == "down")

  pal_cond <- c("Familiar"="#1E3A8A", "Unfamiliar"="#C2410C")

  sep_df <- data.frame(len_fac = factor(c("6-step","12-step"),
                                        levels = c("6-step","12-step","18-step")))

  p <- ggplot2::ggplot(df_em, ggplot2::aes(x = step_num, y = emmean)) +
    ggplot2::geom_segment(
      data = sep_df,
      ggplot2::aes(x = Inf, xend = Inf, y = -Inf, yend = Inf),
      inherit.aes = FALSE, linetype = "dotted"
    ) +
    ggplot2::geom_ribbon(
      ggplot2::aes(ymin = emmean - SE, ymax = emmean + SE, fill = session_f, group = session_f),
      alpha = 0.15, color = NA
    ) +
    ggplot2::geom_line(ggplot2::aes(color = session_f, group = session_f), linewidth = 0.9) +
    ggplot2::geom_point(ggplot2::aes(fill = session_f), shape = 21, color = "black", size = 2, stroke = 0.5) +
    ggplot2::geom_text(data = df_stars_up,
                       ggplot2::aes(x = step_num, y = y_star, label = "*"),
                       inherit.aes = FALSE, size = 4.2, fontface = "bold", color = "#D32F2F") +
    ggplot2::geom_text(data = df_stars_down,
                       ggplot2::aes(x = step_num, y = y_star, label = "*"),
                       inherit.aes = FALSE, size = 4.2, fontface = "bold", color = "#1F6FEB") +
    ggplot2::facet_grid(cols = ggplot2::vars(len_fac), scales = "free_x", space = "free_x", drop = FALSE) +
    ggplot2::scale_x_continuous(
      breaks = function(lims) seq(floor(lims[1]), ceiling(lims[2]), by = 1),
      expand = ggplot2::expansion(mult = c(0.02, 0.06))
    ) +
    ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0.05, 0.12))) +
    ggplot2::scale_color_manual(values = pal_cond, name = NULL) +
    ggplot2::scale_fill_manual(values = pal_cond,  name = NULL) +
    ggplot2::labs(
      title = "RT for each Step across Difficulty levels (Test phase)",
      x = "Steps", y = "Estimated RT (ms)",
      caption = "* Following step is significantly different (red = ↑, blue = ↓)"
    ) +
    ggplot2::theme_classic(base_size = 12) +
    ggplot2::theme(
      panel.grid = ggplot2::element_blank(),
      legend.position = "bottom",
      legend.box = "horizontal",
      plot.caption = ggplot2::element_text(hjust = 0),
      axis.line = ggplot2::element_line(),
      axis.ticks = ggplot2::element_line()
    )

  if (show_plot) print(p)
  invisible(list(emms = df_em, stars = df_stars, plot = p, palette = pal_cond))
}


plot_stepwise_rt_test_correct_only(df_acc_base)
Warning in ggplot2::geom_segment(data = sep_df, ggplot2::aes(x = Inf, xend = Inf, : All aesthetics have length 1, but the data has 4 rows.
ℹ Please consider using `annotate()` or provide this layer with data containing
  a single row.

plot_stepwise_rt_test_correct_combined(df_acc_base)
Warning in ggplot2::geom_segment(data = sep_df, ggplot2::aes(x = Inf, xend = Inf, : All aesthetics have length 1, but the data has 2 rows.
ℹ Please consider using `annotate()` or provide this layer with data containing
  a single row.

#B: Movement variability analysis

suppressPackageStartupMessages({
  library(tidyverse)
  library(readr)
  library(lme4)
  library(lmerTest)
  library(emmeans)
  library(dplyr)
  library(tidyr)
  library(ggplot2)
  library(patchwork) 
  library(car)       
})

# Lighter-weight df method for emmeans on lmer (avoids huge memory from KR/Satt)
emm_options(lmer.df = "asymptotic")


options(
  dplyr.summarise.inform = FALSE,
  contrasts = c("contr.sum", "contr.poly")
)

# Axis labels helper
axis_labels <- c(x = "X", y = "Y", z = "Z")


data_dir <- "/Users/can/Documents/Uni/Thesis/Data/...v/merged/Cleaned"

# Step counts per block (nominal)
step_counts <- tibble(
  Block = c(1, 2, 3, 4, 5),
  Steps = c(6, 12, 18, 18, 18)
)

# binary Accuracy factor from trial.acc (1 -> 1, else -> 0)
mk_accuracy <- function(df) {
  df %>% mutate(Accuracy = factor(if_else(trial.acc == 1, 1L, 0L), levels = c(0, 1)))
}


normalize_ids <- function(df) {
  df %>%
    mutate(
      subject = if ("subject" %in% names(.)) subject else Subject,
      Block   = as.integer(Block),
      trial   = if ("trial" %in% names(.)) trial else Trial
    ) %>%
    mutate(trial_id = interaction(subject, Block, trial, drop = TRUE))
}


assign_steps_by_block <- function(df, steps_df = step_counts) {
  df %>%
    inner_join(steps_df, by = "Block") %>%
    group_by(subject, Block, trial) %>%
    mutate(Step = cut_number(row_number(), n = unique(Steps), labels = FALSE)) %>%
    ungroup()
}

# Tag trial phases using Marker.Text: start (27), end (26 or 25). Preparation = 1500 ms pre-start
# Requires columns: subject, Block, trial, ms, Marker.Text
tag_trial_phases <- function(df) {
  df %>%
    group_by(subject, Block, trial) %>%
    mutate(
      start_ms = ms[which(Marker.Text == 27)[1]],
      end_ms = {
        end_candidates <- which(Marker.Text %in% c(26, 25))
        if (length(end_candidates) > 0) ms[end_candidates[1]] else NA_real_
      },
      phase = case_when(
        !is.na(start_ms) & !is.na(end_ms) & ms >= start_ms & ms <= end_ms ~ "Execution",
        !is.na(start_ms) & ms >= (start_ms - 1500) & ms < start_ms ~ "Preparation",
        TRUE ~ NA_character_
      )
    ) %>%
    ungroup() %>%
    filter(!is.na(phase))
}

# Compute RMS per phase (Preparation / Execution) per subject × Block × trial
compute_phase_rms <- function(df) {
  df %>%
    group_by(subject, Block, trial, phase) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    )
}

# Detect per-step onsets (Marker.Text in {14,15,16,17}) and compute 7-sample window RMS (±3)
# Returns one row per detected step onset per trial with RMS per axis
compute_stepwise_rms <- function(tagged_exec_df, max_steps_keep = 18) {
  step_markers <- c(14L, 15L, 16L, 17L)

  # Keep only execution rows
  exec <- tagged_exec_df %>% filter(phase == "Execution") %>% arrange(subject, Block, trial, ms)

  # Detect step onset rows within each trial
  exec_mark <- exec %>%
    group_by(subject, Block, trial) %>%
    mutate(
      in_step = Marker.Text %in% step_markers,
      onset   = in_step & (is.na(lag(in_step)) | !lag(in_step) | (Marker.Text != lag(Marker.Text)))
    ) %>%
    filter(onset) %>%
    mutate(step_index = row_number()) %>%
    ungroup()

  # If there are no onsets, return empty tibble
  if (nrow(exec_mark) == 0) return(tibble())

  # Per-trial total step count
  step_counts_lookup <- exec_mark %>%
    group_by(subject, Block, trial) %>%
    summarise(step_count = max(step_index), .groups = "drop")

  # Join row indices to full exec to build windows
  exec_with_row <- exec %>% group_by(subject, Block, trial) %>% mutate(row_id = row_number()) %>% ungroup()
  onset_idx <- exec_mark %>% select(subject, Block, trial, ms, step_index) %>%
    left_join(exec_with_row %>% select(subject, Block, trial, ms, row_id), by = c("subject", "Block", "trial", "ms"))

  # Build ±3 row windows around each onset row and compute RMS
  win <- purrr::map_dfr(seq_len(nrow(onset_idx)), function(i) {
    r <- onset_idx$row_id[i]
    s <- onset_idx$step_index[i]
    grp <- onset_idx[i, c("subject", "Block", "trial")]

    tmp <- exec_with_row %>%
      dplyr::semi_join(grp, by = c("subject", "Block", "trial")) %>%
      dplyr::filter(row_id >= (r - 3), row_id <= (r + 3))

    if (nrow(tmp) == 0) return(NULL)

    tibble(
      subject = grp$subject, Block = grp$Block, trial = grp$trial,
      Step = s,
      RMS = c(
        sqrt(mean(tmp$CoM.acc.x^2, na.rm = TRUE)),
        sqrt(mean(tmp$CoM.acc.y^2, na.rm = TRUE)),
        sqrt(mean(tmp$CoM.acc.z^2, na.rm = TRUE))
      ),
      Axis = factor(c("x", "y", "z"), levels = c("x", "y", "z"))
    )
  })

  # Keep first N steps per trial and add step_count
  win %>%
    group_by(subject, Block, trial) %>%
    filter(Step <= max_steps_keep) %>%
    ungroup() %>%
    left_join(step_counts_lookup, by = c("subject", "Block", "trial"))
}

# Join trial-level Accuracy to a summary table (by subject × Block × trial)
add_accuracy_to <- function(df_core, df_lookup) {
  # Build accuracy lookup with consistent key types (character) to avoid factor/int join issues
  acc_tbl <- df_lookup %>%
    distinct(subject, Block, trial, trial.acc) %>%
    mk_accuracy() %>%
    transmute(
      subject = as.character(subject),
      Block   = as.character(Block),
      trial   = as.character(trial),
      Accuracy
    )

  df_core %>%
    mutate(
      subject = as.character(subject),
      Block   = as.character(Block),
      trial   = as.character(trial)
    ) %>%
    left_join(acc_tbl, by = c("subject", "Block", "trial")) %>%
    # Convert Block/trial back to numeric where appropriate
    mutate(
      Block = type.convert(Block, as.is = TRUE),
      trial = type.convert(trial, as.is = TRUE)
    )
}

# Generic LMM runner for phase × block per axis
run_phase_block_models <- function(rms_combined) {
  for (axis in c("x", "y", "z")) {
    cat("

=============================
")
    cat(paste("Axis:", toupper(axis), "
"))
    cat("=============================
")

    axis_col <- paste0("rms_", axis)

    # Trim to needed columns to reduce memory footprint
    df_axis <- rms_combined %>%
      dplyr::select(subject, Block, Trial, phase, Accuracy, !!sym(axis_col)) %>%
      droplevels()

    fml <- as.formula(paste(axis_col, "~ Block * phase + Accuracy + (1 | subject) + (1 | Trial)"))

    model <- lmer(fml, data = df_axis)
    cat("
Model Summary:
"); print(summary(model))

    emms <- emmeans(model, ~ Block * phase)
    cat("
Estimated Marginal Means (df=asymptotic):
"); print(summary(emms))

    cat("
Type II ANOVA (Chisq):
"); print(car::Anova(model, type = 2, test.statistic = "Chisq"))

    cat("
Pairwise (within phase; Tukey):
")
    pw <- contrast(emms, interaction = c("revpairwise"), by = "phase", adjust = "tukey")
    print(pw)

    rm(model, emms, df_axis); gc()
  }
}


# Generic LMM runner for stepwise RMS per block/axis with Accuracy
run_step_models <- function(step_df, block, n_steps) {
  d <- step_df %>% filter(Block == block, Step <= n_steps)
  for (ax in c("x", "y", "z")) {
    dd <- d %>% filter(Axis == ax)
    if (nrow(dd) == 0) next
    cat("\n\n--- Block", block, "Axis", toupper(ax), "---\n")
    m <- lmer(RMS ~ Step + Accuracy + (1 | subject) + (1 | trial_id), data = dd)
    print(car::Anova(m, type = 2, test.statistic = "Chisq"))
    e <- emmeans(m, ~ Step)
    cat("Estimated Marginal Means:\n"); print(summary(e))
    cat("Pairwise (Tukey):\n"); print(contrast(e, method = "pairwise", adjust = "tukey"))
  }
}

# Simple bar plot function: mean ± SE by Step × Block, faceted by Axis
plot_step_bars <- function(step_df, title_prefix = "") {
  se <- function(x) sd(x, na.rm = TRUE) / sqrt(sum(!is.na(x)))
  sum_df <- step_df %>% group_by(Block, Step, Axis) %>% summarise(mean_RMS = mean(RMS, na.rm = TRUE), se_RMS = se(RMS), .groups = "drop")
  ggplot(sum_df, aes(x = Step, y = mean_RMS, fill = factor(Block))) +
    geom_col(position = position_dodge(width = 0.8)) +
    geom_errorbar(aes(ymin = mean_RMS - se_RMS, ymax = mean_RMS + se_RMS), width = 0.2, position = position_dodge(width = 0.8)) +
    facet_wrap(~ Axis, nrow = 1, labeller = as_labeller(axis_labels)) +
    labs(title = paste0(title_prefix, " Step-wise RMS (mean ± SE)"), x = "Step", y = "RMS") +
    theme_minimal()
}
# Gather mixed files
mixed_files <- list.files("/Users/can/Documents/Uni/Thesis/Data/Xsens/cleaned_csv/merged/Cleaned", pattern = "_final\\.csv$", full.names = TRUE)
all_data_mixed <- map_dfr(mixed_files, read_csv)
Rows: 360534 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 379431 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 340045 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 342328 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 386760 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 355905 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 336982 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 434486 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 441207 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 368716 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 487396 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 435226 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 324591 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 372054 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 392294 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 412795 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 356869 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 350365 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Merge
all_data_mixed <- map_dfr(mixed_files, read_csv, show_col_types = FALSE) %>% normalize_ids() %>% mk_accuracy()

# Trial phases once
tagged_data  <- tag_trial_phases(all_data_mixed) %>% mutate(DataType = "Mixed")
tagged_data2 <- tagged_data
#Build step-wise table  

# Helper: robust step-onset finder for Execution phase (uses Marker.Text)

.build_exec_step_onsets <- function(df) {
  exec <- df %>% dplyr::filter(phase == "Execution")

  exec_step <- exec %>%
    dplyr::filter(
      !is.na(Marker.Text),
      suppressWarnings(!is.na(as.integer(Marker.Text))),
      as.integer(Marker.Text) >= 1,
      as.integer(Marker.Text) <= 18
    ) %>%
    dplyr::mutate(
      Step = as.integer(Marker.Text),
      # create trial_id if missing
      trial_id = if ("trial_id" %in% names(.)) trial_id else interaction(subject, Block, trial, drop = TRUE)
    ) %>%
    # NOTE: do NOT select `Trial` (capital T); your data has `trial` (lowercase)
    dplyr::select(subject, Block, trial, phase, ms, Step, trial_id)

  exec_step
}


.assign_exec_steps_evenly <- function(df) {
  df %>%
    dplyr::filter(phase == "Execution") %>%
    assign_steps_by_block() %>%  # uses your existing helper + step_counts
    dplyr::mutate(
      trial_id = if ("trial_id" %in% names(.)) trial_id else interaction(subject, Block, trial, drop = TRUE)
    ) %>%
    dplyr::select(subject, Block, trial, phase, ms, Step, trial_id)
}

# Try onsets first, else fallback
sw_all <- .build_exec_step_onsets(tagged_data)
if (nrow(sw_all) == 0) {
  message("No explicit step-onset markers found; assigning steps evenly within trials.")
  sw_all <- .assign_exec_steps_evenly(tagged_data)
}

# Per-trial step count (for mixed lengths in Blocks 4–5)
sw_all <- sw_all %>%
  dplyr::group_by(subject, Block, trial) %>%
  dplyr::mutate(step_count = max(Step, na.rm = TRUE)) %>%
  dplyr::ungroup()


sw_all <- sw_all %>%
  dplyr::select(subject, Block, trial, phase, Step, step_count, trial_id)

data preprocessing and creating models

trial_acc_summary <- tagged_data %>%
  select(subject, Block, trial, trial.acc) %>%
  distinct() %>%
  filter(trial.acc == 1) %>%
  group_by(subject, Block) %>%
  summarise(n_trials_with_acc1 = n(), .groups = "drop") %>%
  group_by(Block) %>%
  summarise(
    mean_trials_with_acc1 = mean(n_trials_with_acc1),
    sd_trials_with_acc1   = sd(n_trials_with_acc1),
    n_subjects            = n()
  )
print(trial_acc_summary)
# A tibble: 5 × 4
  Block mean_trials_with_acc1 sd_trials_with_acc1 n_subjects
  <int>                 <dbl>               <dbl>      <int>
1     1                  40.2                3.13         18
2     2                  34.2                7.19         18
3     3                  27.8                9.85         18
4     4                  39.2                4.51         18
5     5                  28.9               10.0          18
# Phase RMS
rms_data <- compute_phase_rms(tagged_data)
exec_data <- rms_data %>% filter(phase == "Execution")

for (axis in c("x", "y", "z")) {
  axis_col <- paste0("rms_", axis)
  print(
    ggplot(exec_data, aes(x = factor(Block), y = .data[[axis_col]], fill = phase)) +
      geom_boxplot(alpha = 0.7, outlier.shape = NA) +
      geom_jitter(width = 0.2, alpha = 0.4, size = 0.6) +
      geom_vline(xintercept = 3.5, linetype = "dashed") +
      coord_cartesian(ylim = c(0, 2.5)) +
      labs(title = paste("Execution Phase:", toupper(axis), "Axis"), x = "Block", y = "RMS") +
      theme_minimal()
  )
}

prep_data <- tagged_data %>% filter(phase == "Preparation")
prep_rms <- compute_phase_rms(prep_data)

for (axis in c("x", "y", "z")) {
  axis_col <- paste0("rms_", axis)
  print(
    ggplot(prep_rms, aes(x = factor(Block), y = .data[[axis_col]], fill = phase)) +
      geom_boxplot(alpha = 0.7, outlier.shape = NA) +
      geom_jitter(width = 0.2, alpha = 0.4, size = 0.6) +
      geom_vline(xintercept = 3.5, linetype = "dashed") +
      coord_cartesian(ylim = c(0, 0.5)) +
      labs(title = paste("Preparation Phase:", toupper(axis), "Axis"), x = "Block", y = "RMS") +
      theme_minimal()
  )
}

# Combine prep + exec, join trial Accuracy, then model per axis
rms_combined <- bind_rows(prep_rms, exec_data) %>%
  # Join Accuracy before converting key columns to factors
  add_accuracy_to(all_data_mixed) %>%
  mutate(
    phase = factor(phase, levels = c("Preparation", "Execution")),
    Block = factor(Block),
    Trial = factor(trial)
  )
Warning in left_join(., acc_tbl, by = c("subject", "Block", "trial")): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 1 of `x` matches multiple rows in `y`.
ℹ Row 3021 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
  "many-to-many"` to silence this warning.
run_phase_block_models(rms_combined)


=============================
Axis: X 
=============================

Model Summary:
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: fml
   Data: df_axis

REML criterion at convergence: 1156.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2686 -0.5173 -0.0979  0.3264  8.9700 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Trial    (Intercept) 0.0002199 0.01483 
 subject  (Intercept) 0.0170146 0.13044 
 Residual             0.0635587 0.25211 
Number of obs: 11552, groups:  Trial, 48; subject, 18

Fixed effects:
                Estimate Std. Error         df  t value Pr(>|t|)    
(Intercept)    4.028e-01  3.091e-02  1.718e+01   13.030 2.47e-10 ***
Block1         3.041e-02  5.062e-03  1.152e+04    6.007 1.95e-09 ***
Block2         1.660e-02  4.709e-03  1.150e+04    3.525 0.000426 ***
Block3        -2.104e-02  4.733e-03  1.147e+04   -4.446 8.84e-06 ***
Block4         2.224e-02  4.743e-03  1.150e+04    4.689 2.77e-06 ***
phase1        -2.881e-01  2.357e-03  1.149e+04 -122.230  < 2e-16 ***
Accuracy1     -1.782e-02  2.499e-03  1.086e+04   -7.132 1.05e-12 ***
Block1:phase1 -9.185e-02  4.974e-03  1.148e+04  -18.467  < 2e-16 ***
Block2:phase1 -1.717e-02  4.703e-03  1.147e+04   -3.651 0.000262 ***
Block3:phase1  6.341e-02  4.685e-03  1.147e+04   13.535  < 2e-16 ***
Block4:phase1 -1.417e-02  4.719e-03  1.147e+04   -3.003 0.002681 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block1 Block2 Block3 Block4 phase1 Accrc1 Blc1:1 Blc2:1
Block1       0.006                                                        
Block2       0.000 -0.268                                                 
Block3      -0.001 -0.285 -0.245                                          
Block4       0.001 -0.254 -0.248 -0.255                                   
phase1      -0.001 -0.013  0.002  0.003  0.003                            
Accuracy1    0.008  0.175 -0.001 -0.107  0.082 -0.005                     
Block1:phs1 -0.001 -0.033  0.009  0.009  0.008  0.072 -0.003              
Block2:phs1  0.000  0.009 -0.015  0.002  0.002 -0.002 -0.001 -0.272       
Block3:phs1  0.000  0.009  0.002 -0.014  0.002 -0.008  0.001 -0.271 -0.247
Block4:phs1  0.000  0.009  0.002  0.001 -0.012  0.002  0.003 -0.273 -0.250
            Blc3:1
Block1            
Block2            
Block3            
Block4            
phase1            
Accuracy1         
Block1:phs1       
Block2:phs1       
Block3:phs1       
Block4:phs1 -0.248

Estimated Marginal Means (df=asymptotic):
 Block phase       emmean     SE  df asymp.LCL asymp.UCL
 1     Preparation 0.0533 0.0318 Inf  -0.00911     0.116
 2     Preparation 0.1141 0.0317 Inf   0.05201     0.176
 3     Preparation 0.1571 0.0317 Inf   0.09496     0.219
 4     Preparation 0.1228 0.0317 Inf   0.06062     0.185
 5     Preparation 0.1263 0.0316 Inf   0.06436     0.188
 1     Execution   0.8131 0.0319 Inf   0.75060     0.876
 2     Execution   0.7246 0.0317 Inf   0.66248     0.787
 3     Execution   0.6064 0.0317 Inf   0.54426     0.669
 4     Execution   0.7273 0.0317 Inf   0.66510     0.789
 5     Execution   0.5829 0.0316 Inf   0.52094     0.645

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Type II ANOVA (Chisq):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_x
                Chisq Df Pr(>Chisq)    
Block         148.880  4  < 2.2e-16 ***
phase       14600.810  1  < 2.2e-16 ***
Accuracy       50.864  1  9.897e-13 ***
Block:phase   574.253  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise (within phase; Tukey):
phase = Preparation:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1              0.06087 0.0108 Inf   5.628  <.0001
 3 - 1              0.10381 0.0109 Inf   9.564  <.0001
 3 - 2              0.04295 0.0104 Inf   4.114  0.0004
 4 - 1              0.06951 0.0108 Inf   6.423  <.0001
 4 - 2              0.00865 0.0105 Inf   0.825  0.9231
 4 - 3             -0.03430 0.0105 Inf  -3.267  0.0096
 5 - 1              0.07301 0.0106 Inf   6.905  <.0001
 5 - 2              0.01214 0.0101 Inf   1.198  0.7524
 5 - 3             -0.03081 0.0101 Inf  -3.053  0.0192
 5 - 4              0.00349 0.0102 Inf   0.343  0.9970

phase = Execution:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1             -0.08848 0.0111 Inf  -7.966  <.0001
 3 - 1             -0.20671 0.0111 Inf -18.548  <.0001
 3 - 2             -0.11822 0.0106 Inf -11.174  <.0001
 4 - 1             -0.08584 0.0111 Inf  -7.733  <.0001
 4 - 2              0.00264 0.0106 Inf   0.249  0.9992
 4 - 3              0.12087 0.0106 Inf  11.377  <.0001
 5 - 1             -0.23025 0.0109 Inf -21.217  <.0001
 5 - 2             -0.14176 0.0103 Inf -13.821  <.0001
 5 - 3             -0.02354 0.0102 Inf  -2.305  0.1431
 5 - 4             -0.14441 0.0103 Inf -14.007  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 5 estimates 


=============================
Axis: Y 
=============================

Model Summary:
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: fml
   Data: df_axis

REML criterion at convergence: 4871.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.7322 -0.5187 -0.0835  0.3331 23.4331 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Trial    (Intercept) 0.0001537 0.0124  
 subject  (Intercept) 0.0214834 0.1466  
 Residual             0.0877958 0.2963  
Number of obs: 11552, groups:  Trial, 48; subject, 18

Fixed effects:
                Estimate Std. Error         df  t value Pr(>|t|)    
(Intercept)    4.218e-01  3.471e-02  1.710e+01   12.152 7.70e-10 ***
Block1         3.571e-02  5.948e-03  1.152e+04    6.005 1.97e-09 ***
Block2         2.512e-02  5.534e-03  1.151e+04    4.539 5.70e-06 ***
Block3        -2.054e-02  5.556e-03  1.142e+04   -3.697 0.000219 ***
Block4         1.555e-02  5.574e-03  1.151e+04    2.789 0.005290 ** 
phase1        -3.046e-01  2.770e-03  1.150e+04 -109.975  < 2e-16 ***
Accuracy1     -1.736e-02  2.929e-03  1.044e+04   -5.925 3.22e-09 ***
Block1:phase1 -9.992e-02  5.845e-03  1.148e+04  -17.094  < 2e-16 ***
Block2:phase1 -1.923e-02  5.528e-03  1.147e+04   -3.480 0.000504 ***
Block3:phase1  7.315e-02  5.506e-03  1.148e+04   13.284  < 2e-16 ***
Block4:phase1 -1.343e-02  5.547e-03  1.147e+04   -2.422 0.015466 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block1 Block2 Block3 Block4 phase1 Accrc1 Blc1:1 Blc2:1
Block1       0.007                                                        
Block2       0.000 -0.268                                                 
Block3      -0.001 -0.285 -0.245                                          
Block4       0.001 -0.254 -0.248 -0.255                                   
phase1      -0.002 -0.013  0.002  0.003  0.003                            
Accuracy1    0.008  0.175 -0.001 -0.108  0.082 -0.006                     
Block1:phs1 -0.001 -0.033  0.009  0.009  0.008  0.072 -0.004              
Block2:phs1  0.000  0.009 -0.015  0.002  0.002 -0.002 -0.001 -0.272       
Block3:phs1  0.000  0.009  0.002 -0.014  0.002 -0.008  0.001 -0.271 -0.247
Block4:phs1  0.000  0.009  0.002  0.001 -0.012  0.002  0.003 -0.273 -0.250
            Blc3:1
Block1            
Block2            
Block3            
Block4            
phase1            
Accuracy1         
Block1:phs1       
Block2:phs1       
Block3:phs1       
Block4:phs1 -0.248

Estimated Marginal Means (df=asymptotic):
 Block phase       emmean     SE  df asymp.LCL asymp.UCL
 1     Preparation  0.053 0.0358 Inf   -0.0173     0.123
 2     Preparation  0.123 0.0357 Inf    0.0531     0.193
 3     Preparation  0.170 0.0357 Inf    0.0999     0.240
 4     Preparation  0.119 0.0357 Inf    0.0493     0.189
 5     Preparation  0.121 0.0355 Inf    0.0511     0.190
 1     Execution    0.862 0.0359 Inf    0.7916     0.932
 2     Execution    0.771 0.0357 Inf    0.7007     0.841
 3     Execution    0.633 0.0357 Inf    0.5627     0.703
 4     Execution    0.755 0.0357 Inf    0.6853     0.825
 5     Execution    0.611 0.0356 Inf    0.5414     0.681

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Type II ANOVA (Chisq):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_y
                Chisq Df Pr(>Chisq)    
Block         138.607  4  < 2.2e-16 ***
phase       11822.323  1  < 2.2e-16 ***
Accuracy       35.108  1   3.12e-09 ***
Block:phase   485.928  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise (within phase; Tukey):
phase = Preparation:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1              0.07009 0.0127 Inf   5.515  <.0001
 3 - 1              0.11681 0.0128 Inf   9.161  <.0001
 3 - 2              0.04672 0.0123 Inf   3.810  0.0013
 4 - 1              0.06632 0.0127 Inf   5.215  <.0001
 4 - 2             -0.00377 0.0123 Inf  -0.306  0.9981
 4 - 3             -0.05049 0.0123 Inf  -4.093  0.0004
 5 - 1              0.06780 0.0124 Inf   5.457  <.0001
 5 - 2             -0.00229 0.0119 Inf  -0.192  0.9997
 5 - 3             -0.04901 0.0119 Inf  -4.134  0.0003
 5 - 4              0.00148 0.0120 Inf   0.124  0.9999

phase = Execution:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1             -0.09128 0.0131 Inf  -6.992  <.0001
 3 - 1             -0.22932 0.0131 Inf -17.516  <.0001
 3 - 2             -0.13804 0.0124 Inf -11.105  <.0001
 4 - 1             -0.10665 0.0130 Inf  -8.176  <.0001
 4 - 2             -0.01537 0.0125 Inf  -1.233  0.7321
 4 - 3              0.12266 0.0125 Inf   9.828  <.0001
 5 - 1             -0.25091 0.0128 Inf -19.675  <.0001
 5 - 2             -0.15964 0.0121 Inf -13.243  <.0001
 5 - 3             -0.02160 0.0120 Inf  -1.800  0.3734
 5 - 4             -0.14426 0.0121 Inf -11.907  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 5 estimates 


=============================
Axis: Z 
=============================

Model Summary:
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: fml
   Data: df_axis

REML criterion at convergence: 16049.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.8020 -0.5578 -0.1423  0.3881 11.5638 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.000956 0.03092 
 subject  (Intercept) 0.061226 0.24744 
 Residual             0.230927 0.48055 
Number of obs: 11552, groups:  Trial, 48; subject, 18

Fixed effects:
                Estimate Std. Error         df  t value Pr(>|t|)    
(Intercept)    6.666e-01  5.867e-02  1.721e+01   11.362 2.01e-09 ***
Block1         2.016e-02  9.651e-03  1.152e+04    2.089  0.03674 *  
Block2         3.803e-02  8.977e-03  1.150e+04    4.237 2.29e-05 ***
Block3        -1.560e-02  9.024e-03  1.148e+04   -1.729  0.08389 .  
Block4         3.704e-02  9.042e-03  1.150e+04    4.097 4.22e-05 ***
phase1        -5.173e-01  4.493e-03  1.149e+04 -115.147  < 2e-16 ***
Accuracy1     -3.789e-02  4.767e-03  1.099e+04   -7.947 2.09e-15 ***
Block1:phase1 -1.277e-01  9.481e-03  1.148e+04  -13.470  < 2e-16 ***
Block2:phase1 -2.512e-02  8.965e-03  1.147e+04   -2.802  0.00509 ** 
Block3:phase1  1.002e-01  8.930e-03  1.147e+04   11.217  < 2e-16 ***
Block4:phase1 -3.600e-02  8.996e-03  1.147e+04   -4.002 6.31e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block1 Block2 Block3 Block4 phase1 Accrc1 Blc1:1 Blc2:1
Block1       0.006                                                        
Block2       0.000 -0.268                                                 
Block3      -0.001 -0.285 -0.245                                          
Block4       0.001 -0.254 -0.248 -0.255                                   
phase1      -0.001 -0.013  0.002  0.003  0.003                            
Accuracy1    0.008  0.175 -0.001 -0.107  0.081 -0.004                     
Block1:phs1 -0.001 -0.033  0.009  0.009  0.008  0.072 -0.003              
Block2:phs1  0.000  0.009 -0.015  0.002  0.002 -0.002 -0.001 -0.272       
Block3:phs1  0.000  0.009  0.002 -0.014  0.002 -0.008  0.001 -0.271 -0.247
Block4:phs1  0.000  0.009  0.002  0.001 -0.012  0.002  0.003 -0.273 -0.250
            Blc3:1
Block1            
Block2            
Block3            
Block4            
phase1            
Accuracy1         
Block1:phs1       
Block2:phs1       
Block3:phs1       
Block4:phs1 -0.248

Estimated Marginal Means (df=asymptotic):
 Block phase       emmean     SE  df asymp.LCL asymp.UCL
 1     Preparation 0.0418 0.0604 Inf   -0.0766     0.160
 2     Preparation 0.1622 0.0602 Inf    0.0443     0.280
 3     Preparation 0.2339 0.0602 Inf    0.1160     0.352
 4     Preparation 0.1504 0.0602 Inf    0.0324     0.268
 5     Preparation 0.1583 0.0600 Inf    0.0408     0.276
 1     Execution   1.3318 0.0606 Inf    1.2131     1.451
 2     Execution   1.2471 0.0602 Inf    1.1291     1.365
 3     Execution   1.0682 0.0602 Inf    0.9502     1.186
 4     Execution   1.2570 0.0602 Inf    1.1390     1.375
 5     Execution   1.0157 0.0600 Inf    0.8981     1.133

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Type II ANOVA (Chisq):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_z
                Chisq Df Pr(>Chisq)    
Block          97.924  4  < 2.2e-16 ***
phase       13038.956  1  < 2.2e-16 ***
Accuracy       63.158  1  1.908e-15 ***
Block:phase   348.635  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise (within phase; Tukey):
phase = Preparation:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1              0.12046 0.0206 Inf   5.843  <.0001
 3 - 1              0.19211 0.0207 Inf   9.284  <.0001
 3 - 2              0.07166 0.0199 Inf   3.601  0.0029
 4 - 1              0.10858 0.0206 Inf   5.263  <.0001
 4 - 2             -0.01188 0.0200 Inf  -0.594  0.9760
 4 - 3             -0.08353 0.0200 Inf  -4.173  0.0003
 5 - 1              0.11655 0.0202 Inf   5.783  <.0001
 5 - 2             -0.00391 0.0193 Inf  -0.202  0.9996
 5 - 3             -0.07556 0.0192 Inf  -3.928  0.0008
 5 - 4              0.00797 0.0195 Inf   0.410  0.9941

phase = Execution:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1             -0.08471 0.0212 Inf  -4.001  0.0006
 3 - 1             -0.26363 0.0212 Inf -12.409  <.0001
 3 - 2             -0.17892 0.0202 Inf  -8.871  <.0001
 4 - 1             -0.07481 0.0212 Inf  -3.536  0.0037
 4 - 2              0.00990 0.0202 Inf   0.489  0.9884
 4 - 3              0.18882 0.0203 Inf   9.323  <.0001
 5 - 1             -0.31614 0.0207 Inf -15.283  <.0001
 5 - 2             -0.23143 0.0196 Inf -11.837  <.0001
 5 - 3             -0.05251 0.0195 Inf  -2.698  0.0543
 5 - 4             -0.24133 0.0197 Inf -12.281  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 5 estimates 
# Descriptive means/SDs by phase × block
rms_summary_blockwise <- rms_combined %>%
  group_by(phase, Block) %>%
  summarise(
    mean_rms_x = mean(rms_x, na.rm = TRUE), sd_rms_x = sd(rms_x, na.rm = TRUE),
    mean_rms_y = mean(rms_y, na.rm = TRUE), sd_rms_y = sd(rms_y, na.rm = TRUE),
    mean_rms_z = mean(rms_z, na.rm = TRUE), sd_rms_z = sd(rms_z, na.rm = TRUE),
    .groups = "drop"
  )
print(rbind(head(rms_summary_blockwise, 6)))
# A tibble: 6 × 8
  phase       Block mean_rms_x sd_rms_x mean_rms_y sd_rms_y mean_rms_z sd_rms_z
  <fct>       <fct>      <dbl>    <dbl>      <dbl>    <dbl>      <dbl>    <dbl>
1 Preparation 1         0.0642   0.0635     0.0635   0.0634     0.0616   0.0918
2 Preparation 2         0.117    0.266      0.125    0.302      0.167    0.493 
3 Preparation 3         0.150    0.241      0.161    0.269      0.220    0.456 
4 Preparation 4         0.127    0.223      0.121    0.220      0.160    0.376 
5 Preparation 5         0.119    0.172      0.113    0.163      0.145    0.302 
6 Execution   1         0.822    0.399      0.870    0.502      1.35     0.770 
# Collapsed across blocks (phase only)
rms_summary_phaseonly <- rms_combined %>%
  group_by(phase) %>%
  summarise(
    mean_rms_x = mean(rms_x, na.rm = TRUE), sd_rms_x = sd(rms_x, na.rm = TRUE),
    mean_rms_y = mean(rms_y, na.rm = TRUE), sd_rms_y = sd(rms_y, na.rm = TRUE),
    mean_rms_z = mean(rms_z, na.rm = TRUE), sd_rms_z = sd(rms_z, na.rm = TRUE),
    .groups = "drop"
  )
print(rms_summary_phaseonly)
# A tibble: 2 × 7
  phase       mean_rms_x sd_rms_x mean_rms_y sd_rms_y mean_rms_z sd_rms_z
  <fct>            <dbl>    <dbl>      <dbl>    <dbl>      <dbl>    <dbl>
1 Preparation      0.117    0.209      0.118    0.223      0.153    0.377
2 Execution        0.684    0.357      0.718    0.425      1.17     0.683
# Build a per-trial sequence length lookup from step-wise data if available; otherwise fall back to NA
if (exists("sw_all")) {
  seq_lookup <- sw_all %>%
    dplyr::filter(Block %in% c(4, 5) | Block %in% c("4","5")) %>%
    dplyr::group_by(subject, Block, trial) %>%
    dplyr::summarise(step_count = max(Step, na.rm = TRUE), .groups = "drop") %>%
    dplyr::mutate(
      SeqLen = dplyr::case_when(
        step_count == 6  ~ "6-step",
        step_count == 12 ~ "12-step",
        step_count == 18 ~ "18-step",
        TRUE ~ NA_character_
      )
    ) %>%
    dplyr::transmute(subject, Block, trial, SeqLen)
} else {
  
  seq_lookup <- rms_data %>%
    dplyr::filter(Block %in% c(4, 5) | Block %in% c("4","5")) %>%
    dplyr::distinct(subject, Block, trial) %>%
    dplyr::mutate(SeqLen = NA_character_)
}

prep_b45 <- rms_data %>%
  dplyr::filter(phase == "Preparation", Block %in% c(4, 5) | Block %in% c("4","5")) %>%
  dplyr::left_join(seq_lookup, by = c("subject","Block","trial")) %>%
  tidyr::pivot_longer(dplyr::starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
  dplyr::mutate(Axis = toupper(sub("^rms_", "", Axis)))

exec_b45 <- rms_data %>%
  dplyr::filter(phase == "Execution", Block %in% c(4, 5) | Block %in% c("4","5")) %>%
  dplyr::left_join(seq_lookup, by = c("subject","Block","trial")) %>%
  tidyr::pivot_longer(dplyr::starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
  dplyr::mutate(Axis = toupper(sub("^rms_", "", Axis)))

#B1.1 Training phase comparison preparation and execution

# === TRAINING (Blocks 1–3) — Combined figure: Preparation (top) + Execution (bottom)
# Boxplots + jitter, no outliers, single X/Y/Z headers (top only), custom x labels


# Long-format data with Difficulty labels
exec_tr_long <- exec_data %>%
  dplyr::filter(Block %in% 1:3) %>%
  tidyr::pivot_longer(dplyr::starts_with("rms_"),
                      names_to = "Axis", values_to = "RMS") %>%
  dplyr::mutate(
    Axis       = toupper(sub("^rms_", "", Axis)),
    Difficulty = factor(Block, levels = c(1, 2, 3),
                        labels = c("6 steps", "12 steps", "18 steps"))
  )

prep_tr_long <- prep_rms %>%
  dplyr::filter(Block %in% 1:3) %>%
  tidyr::pivot_longer(dplyr::starts_with("rms_"),
                      names_to = "Axis", values_to = "RMS") %>%
  dplyr::mutate(
    Axis       = toupper(sub("^rms_", "", Axis)),
    Difficulty = factor(Block, levels = c(1, 2, 3),
                        labels = c("6 steps", "12 steps", "18 steps"))
  )

# Preparation (top) 
p_train_prep_box <- ggplot(prep_tr_long, aes(x = Difficulty, y = RMS, fill = Difficulty)) +
  geom_boxplot(width = 0.65, outlier.shape = NA) +
  geom_jitter(aes(color = Difficulty),
              width = 0.20, height = 0, size = 0.7, alpha = 0.35, shape = 16, stroke = 0) +
  facet_wrap(~ Axis, nrow = 1, strip.position = "top") +
  coord_cartesian(ylim = c(0, 0.4)) +
  labs(title = "Preparation - Training Phase",
       x = "Difficulty", y = "RMS") +
  theme_classic() +
  theme(strip.text.x = element_text(face = "bold")) +
  guides(fill = "none", color = "none")

# Execution (bottom) 
p_train_exec_box <- ggplot(exec_tr_long, aes(x = Difficulty, y = RMS, fill = Difficulty)) +
  geom_boxplot(width = 0.65, outlier.shape = NA) +
  geom_jitter(aes(color = Difficulty),
              width = 0.20, height = 0, size = 0.7, alpha = 0.35, shape = 16, stroke = 0) +
  facet_wrap(~ Axis, nrow = 1, strip.position = "top") +
  coord_cartesian(ylim = c(0, 2.5)) +
  labs(title = "Execution ",
       x = "Difficulty", y = "RMS") +
  theme_classic() +
  theme(strip.text.x = element_blank()) +
  guides(fill = "none", color = "none")

# Combine vertically
p_train_prep_box / p_train_exec_box

#B1.2 Test phase comparison preparation and execution

# === TEST BLOCKS (4–5) 
# Preparation (top) + Execution (bottom), Condition = Familiar/Unfamiliar

library(dplyr)
library(tidyr)
library(ggplot2)
library(patchwork)

# Ensure Difficulty and Condition labels
prep_b45_plot <- prep_b45 %>%
  mutate(
    Difficulty = factor(SeqLen,
                        levels = c("6-step","12-step","18-step"),
                        labels = c("6 steps","12 steps","18 steps")),
    Condition  = factor(Block, levels = c("4","5"),
                        labels = c("Familiar","Unfamiliar"))
  )

exec_b45_plot <- exec_b45 %>%
  mutate(
    Difficulty = factor(SeqLen,
                        levels = c("6-step","12-step","18-step"),
                        labels = c("6 steps","12 steps","18 steps")),
    Condition  = factor(Block, levels = c("4","5"),
                        labels = c("Familiar","Unfamiliar"))
  )

dodge_w <- 0.65
jit_w   <- 0.15

# --- Preparation (top) ---
p_test_prep_combined <- ggplot(prep_b45_plot, aes(x = Difficulty, y = RMS, fill = Condition)) +
  geom_boxplot(outlier.shape = NA, width = 0.6,
               position = position_dodge(width = dodge_w)) +
  geom_point(aes(color = Condition),
             position = position_jitterdodge(jitter.width = jit_w, dodge.width = dodge_w),
             size = 0.6, alpha = 0.30, shape = 16, stroke = 0) +
  facet_wrap(~ Axis, nrow = 1, strip.position = "top") +
  coord_cartesian(ylim = c(0, 0.4)) +
  labs(title = "Preparation - Test Blocks (4–5)",
       x = "Difficulty", y = "RMS") +
  theme_classic() +
  theme(strip.text.x = element_text(face = "bold")) +
  scale_fill_manual(name = "Condition",
                    values = c(Familiar = "#F8766D", Unfamiliar = "#00BFC4")) +
  scale_color_manual(values = c(Familiar = "#F8766D", Unfamiliar = "#00BFC4"),
                     guide = "none")   # show only one legend (fill)

# --- Execution (bottom) ---
p_test_exec_combined <- ggplot(exec_b45_plot, aes(x = Difficulty, y = RMS, fill = Condition)) +
  geom_boxplot(outlier.shape = NA, width = 0.6,
               position = position_dodge(width = dodge_w)) +
  geom_point(aes(color = Condition),
             position = position_jitterdodge(jitter.width = jit_w, dodge.width = dodge_w),
             size = 0.6, alpha = 0.30, shape = 16, stroke = 0) +
  facet_wrap(~ Axis, nrow = 1, strip.position = "top") +
  coord_cartesian(ylim = c(0, 2.5)) +
  labs(title = "Execution",
       x = "Difficulty", y = "RMS") +
  theme_classic() +
  theme(strip.text.x = element_blank()) +   # X/Y/Z only on top row
  scale_fill_manual(name = "Condition",
                    values = c(Familiar = "#F8766D", Unfamiliar = "#00BFC4")) +
  scale_color_manual(values = c(Familiar = "#F8766D", Unfamiliar = "#00BFC4"),
                     guide = "none")   # keep one legend

# Combine vertically and show the legend at the bottom
(p_test_prep_combined / p_test_exec_combined) +
  plot_layout(guides = "collect") & theme(legend.position = "bottom")

# ==== #1.3 Complement: Pairwise Block comparisons matching the plots ====
# - TRAINING (Blocks 1–3): within-phase (Prep/Exec), per axis — Tukey among 1,2,3
# - TEST (Blocks 4–5): within-phase AND within SeqLen (6/12/18), per axis — Block 4 vs 5
# Model used in each subset: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)

suppressPackageStartupMessages({
  library(dplyr)
  library(lme4)
  library(emmeans)
})

emm_options(lmer.df = "asymptotic")

# -------- TRAINING: Blocks 1–3 (within-phase) --------
pairwise_training_blocks <- function(rms_combined) {
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    # long-ish subset per phase
    for (ph in c("Preparation","Execution")) {
      d <- rms_combined %>%
        filter(phase == ph, Block %in% c("1","2","3")) %>%
        transmute(
          subject, Trial, phase,
          Block = factor(Block, levels = c("1","2","3")),
          Accuracy,
          RMS = .data[[axis_col]]
        ) %>%
        droplevels()

      if (nrow(d) == 0) next

      cat("\n\n====================\n",
          "TRAINING | Axis ", toupper(axis), " | Phase: ", ph,
          "\n====================\n", sep = "")

      m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = d, REML = TRUE)

      em_blk <- emmeans(m, ~ Block)        # EMMs for Blocks 1–3 within this phase
      cat("\nEstimated Marginal Means (Blocks 1–3):\n")
      print(summary(em_blk))

      cat("\nPairwise (Tukey) among Blocks 1–3:\n")
      print(pairs(em_blk, adjust = "tukey"))

      rm(m, em_blk); invisible(gc())
    }
  }
}

# -------- TEST: Blocks 4–5 (within-phase AND within SeqLen) --------
pairwise_test_blocks_by_length <- function(rms_combined) {

  if (!exists("sw_all")) {
    stop("Test-phase length-specific comparisons require `sw_all` (from step-wise prep) to be available.")
  }

  # Build sequence-length lookup from sw_all (actual detected step_count per trial)
  seq_lookup <- sw_all %>%
    distinct(subject, Block, trial, step_count) %>%
    filter(Block %in% c(4,5)) %>%
    mutate(
      subject = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial),
      SeqLen = factor(paste0(step_count, " steps"),
                      levels = c("6 steps","12 steps","18 steps"))
    ) %>%
    select(subject, Block_chr, trial_chr, SeqLen)

  # Attach SeqLen to phase-level RMS for blocks 4–5
  rb45 <- rms_combined %>%
    filter(Block %in% c("4","5")) %>%
    mutate(
      subject = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial)
    ) %>%
    left_join(seq_lookup, by = c("subject","Block_chr","trial_chr")) %>%
    mutate(
      Block = factor(Block, levels = c("4","5")),
      SeqLen = droplevels(SeqLen)
    )

  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    for (ph in c("Preparation","Execution")) {
      for (sl in c("6 steps","12 steps","18 steps")) {

        dd <- rb45 %>%
          filter(phase == ph, SeqLen == sl) %>%
          transmute(
            subject, Trial, phase, SeqLen,
            Block, Accuracy,
            RMS = .data[[axis_col]]
          ) %>%
          droplevels()

        if (nrow(dd) == 0 || nlevels(dd$Block) < 2) next

        cat("\n\n--------------------\n",
            "TEST | Axis ", toupper(axis), " | Phase: ", ph, " | SeqLen: ", sl,
            "\n--------------------\n", sep = "")

        m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = dd, REML = TRUE)

        em_blk <- emmeans(m, ~ Block)  # Block 4 vs 5 within this phase × SeqLen
        cat("\nEstimated Marginal Means (Block 4 vs 5):\n")
        print(summary(em_blk))

        cat("\nPairwise (Tukey) Block 4 vs 5:\n")
        print(pairs(em_blk, adjust = "tukey"))

        rm(m, em_blk); invisible(gc())
      }
    }
  }
}

# ---- Run both analyses ----
pairwise_training_blocks(rms_combined)


====================
TRAINING | Axis X | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0599 0.0141 Inf    0.0323    0.0875
 2     0.1208 0.0138 Inf    0.0938    0.1479
 3     0.1686 0.0139 Inf    0.1414    0.1958

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0609 0.00876 Inf  -6.953  <.0001
 Block1 - Block3  -0.1087 0.00897 Inf -12.120  <.0001
 Block2 - Block3  -0.0477 0.00846 Inf  -5.645  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis X | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.796 0.0657 Inf     0.667     0.925
 2      0.713 0.0656 Inf     0.584     0.842
 3      0.596 0.0656 Inf     0.467     0.724

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0829 0.0107 Inf   7.784  <.0001
 Block1 - Block3   0.2004 0.0109 Inf  18.394  <.0001
 Block2 - Block3   0.1175 0.0101 Inf  11.589  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0587 0.0150 Inf    0.0294     0.088
 2     0.1290 0.0147 Inf    0.1003     0.158
 3     0.1807 0.0147 Inf    0.1518     0.210

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0703 0.00993 Inf  -7.084  <.0001
 Block1 - Block3  -0.1220 0.01020 Inf -12.008  <.0001
 Block2 - Block3  -0.0516 0.00958 Inf  -5.388  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.846 0.0755 Inf     0.698     0.994
 2      0.758 0.0754 Inf     0.610     0.906
 3      0.624 0.0754 Inf     0.476     0.772

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0881 0.0124 Inf   7.120  <.0001
 Block1 - Block3   0.2222 0.0126 Inf  17.567  <.0001
 Block2 - Block3   0.1341 0.0118 Inf  11.391  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0534 0.0257 Inf   0.00307     0.104
 2     0.1728 0.0252 Inf   0.12348     0.222
 3     0.2521 0.0253 Inf   0.20262     0.302

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2  -0.1194 0.0164 Inf  -7.291  <.0001
 Block1 - Block3  -0.1988 0.0168 Inf -11.864  <.0001
 Block2 - Block3  -0.0794 0.0158 Inf  -5.022  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean    SE  df asymp.LCL asymp.UCL
 1       1.30 0.124 Inf     1.061      1.55
 2       1.23 0.124 Inf     0.986      1.47
 3       1.05 0.124 Inf     0.813      1.30

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0751 0.0210 Inf   3.583  0.0010
 Block1 - Block3   0.2486 0.0214 Inf  11.615  <.0001
 Block2 - Block3   0.1735 0.0199 Inf   8.710  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 
pairwise_test_blocks_by_length(rms_combined)
# ==== #1.3 Complement : Pairwise Block comparisons matching the plots ====
# - TRAINING (Blocks 1–3): within-phase (Prep/Exec), per axis — Tukey among 1,2,3
# - TEST (Blocks 4–5): within-phase AND within SeqLen (6/12/18), per axis — Block 4 vs 5
# Model in each subset: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)

suppressPackageStartupMessages({
  library(dplyr)
  library(lme4)
  library(lmerTest)  # for Satterthwaite tests in summary() and anova()
  library(emmeans)
  library(car)       # for Type II / III Wald χ²
})

emm_options(lmer.df = "asymptotic")

# -------- TRAINING: Blocks 1–3 (within-phase) --------
pairwise_training_blocks <- function(rms_combined) {
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    for (ph in c("Preparation","Execution")) {
      d <- rms_combined %>%
        filter(phase == ph, Block %in% c("1","2","3")) %>%
        transmute(
          subject, Trial, phase,
          Block    = factor(Block, levels = c("1","2","3")),
          Accuracy,
          RMS      = .data[[axis_col]]
        ) %>%
        droplevels()

      if (nrow(d) == 0) next

      cat("\n\n====================\n",
          "TRAINING | Axis ", toupper(axis), " | Phase: ", ph,
          "\n====================\n", sep = "")

      m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = d, REML = TRUE)

      cat("\n--- Model Summary (lmerTest; Satterthwaite t-tests) ---\n")
      print(summary(m))

      cat("\n--- lmerTest ANOVA (F-tests; Satterthwaite) ---\n")
      print(anova(m))  # Type I in order of terms; informative with full summary above

      cat("\n--- Type II Wald χ² (car::Anova) ---\n")
      print(car::Anova(m, type = 2, test.statistic = "Chisq"))

      cat("\n--- Type III Wald χ² (car::Anova; sum contrasts) ---\n")
      print(car::Anova(m, type = 3, test.statistic = "Chisq"))

      em_blk <- emmeans(m, ~ Block)
      cat("\n--- Estimated Marginal Means (Blocks 1–3) ---\n")
      print(summary(em_blk))

      cat("\n--- Pairwise (Tukey) among Blocks 1–3 ---\n")
      print(pairs(em_blk, adjust = "tukey"))

      rm(m, em_blk); invisible(gc())
    }
  }
}

# -------- TEST: Blocks 4–5 (within-phase AND within SeqLen) --------
pairwise_test_blocks_by_length <- function(rms_combined) {
  if (!exists("sw_all")) {
    stop("Test-phase length-specific comparisons require `sw_all` (from step-wise prep) to be available.")
  }

  # Sequence-length lookup (actual detected per trial)
  seq_lookup <- sw_all %>%
    distinct(subject, Block, trial, step_count) %>%
    filter(Block %in% c(4,5)) %>%
    mutate(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial),
      SeqLen    = factor(paste0(step_count, " steps"),
                         levels = c("6 steps","12 steps","18 steps"))
    ) %>%
    select(subject, Block_chr, trial_chr, SeqLen)

  # Attach SeqLen to phase-level RMS for Blocks 4–5
  rb45 <- rms_combined %>%
    filter(Block %in% c("4","5")) %>%
    mutate(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial)
    ) %>%
    left_join(seq_lookup, by = c("subject","Block_chr","trial_chr")) %>%
    mutate(
      Block = factor(Block, levels = c("4","5")),
      SeqLen = droplevels(SeqLen)
    )

  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    for (ph in c("Preparation","Execution")) {
      for (sl in c("6 steps","12 steps","18 steps")) {

        dd <- rb45 %>%
          filter(phase == ph, SeqLen == sl) %>%
          transmute(
            subject, Trial, phase, SeqLen,
            Block, Accuracy,
            RMS = .data[[axis_col]]
          ) %>%
          droplevels()

        if (nrow(dd) == 0 || nlevels(dd$Block) < 2) next

        cat("\n\n--------------------\n",
            "TEST | Axis ", toupper(axis), " | Phase: ", ph, " | SeqLen: ", sl,
            "\n--------------------\n", sep = "")

        m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = dd, REML = TRUE)

        cat("\n--- Model Summary (lmerTest; Satterthwaite t-tests) ---\n")
        print(summary(m))

        cat("\n--- lmerTest ANOVA (F-tests; Satterthwaite) ---\n")
        print(anova(m))

        cat("\n--- Type II Wald χ² (car::Anova) ---\n")
        print(car::Anova(m, type = 2, test.statistic = "Chisq"))

        cat("\n--- Type III Wald χ² (car::Anova; sum contrasts) ---\n")
        print(car::Anova(m, type = 3, test.statistic = "Chisq"))

        em_blk <- emmeans(m, ~ Block)  # Block 4 vs 5 within this phase × SeqLen
        cat("\n--- Estimated Marginal Means (Block 4 vs 5) ---\n")
        print(summary(em_blk))

        cat("\n--- Pairwise (Tukey) Block 4 vs 5 ---\n")
        print(pairs(em_blk, adjust = "tukey"))

        rm(m, em_blk); invisible(gc())
      }
    }
  }
}

# ---- Run both analyses ----
pairwise_training_blocks(rms_combined)


====================
TRAINING | Axis X | Phase: Preparation
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: -1053.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.8161 -0.4221 -0.1614  0.1469 11.7183 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Trial    (Intercept) 0.0055881 0.07475 
 subject  (Intercept) 0.0006911 0.02629 
 Residual             0.0407934 0.20197 
Number of obs: 3378, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.164e-01  1.297e-02  5.473e+01   8.980 2.38e-12 ***
Block1      -5.654e-02  5.195e-03  3.325e+03 -10.883  < 2e-16 ***
Block2       4.397e-03  4.902e-03  3.321e+03   0.897   0.3698    
Accuracy1   -7.152e-03  3.781e-03  3.217e+03  -1.892   0.0586 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.021              
Block2    -0.013 -0.506       
Accuracy1  0.040  0.222 -0.041

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
         Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)    
Block    5.9995  2.9998     2 3327.5  73.535 < 2e-16 ***
Accuracy 0.1460  0.1460     1 3216.5   3.579 0.05861 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
Block    147.071  2    < 2e-16 ***
Accuracy   3.579  1    0.05852 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept)  80.633  1    < 2e-16 ***
Block       147.071  2    < 2e-16 ***
Accuracy      3.579  1    0.05852 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0599 0.0141 Inf    0.0323    0.0875
 2     0.1208 0.0138 Inf    0.0938    0.1479
 3     0.1686 0.0139 Inf    0.1414    0.1958

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0609 0.00876 Inf  -6.953  <.0001
 Block1 - Block3  -0.1087 0.00897 Inf -12.120  <.0001
 Block2 - Block3  -0.0477 0.00846 Inf  -5.645  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis X | Phase: Execution
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: 120.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.8704 -0.4840 -0.0071  0.4510  5.0806 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.003956 0.06289 
 subject  (Intercept) 0.075076 0.27400 
 Residual             0.057055 0.23886 
Number of obs: 3241, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  7.015e-01  6.537e-02  1.769e+01  10.732 3.58e-09 ***
Block1       9.445e-02  6.339e-03  3.183e+03  14.899  < 2e-16 ***
Block2       1.152e-02  5.905e-03  3.176e+03   1.951   0.0512 .  
Accuracy1   -4.414e-02  4.608e-03  3.213e+03  -9.579  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.007              
Block2    -0.004 -0.514       
Accuracy1  0.011  0.222 -0.042

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
          Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Block    19.8101  9.9050     2 3188.5 173.604 < 2.2e-16 ***
Accuracy  5.2351  5.2351     1 3213.2  91.755 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
Block    347.208  2  < 2.2e-16 ***
Accuracy  91.755  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept) 115.167  1  < 2.2e-16 ***
Block       347.208  2  < 2.2e-16 ***
Accuracy     91.755  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.796 0.0657 Inf     0.667     0.925
 2      0.713 0.0656 Inf     0.584     0.842
 3      0.596 0.0656 Inf     0.467     0.724

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0829 0.0107 Inf   7.784  <.0001
 Block1 - Block3   0.2004 0.0109 Inf  18.394  <.0001
 Block2 - Block3   0.1175 0.0101 Inf  11.589  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Preparation
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: -218.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.5091 -0.4013 -0.1592  0.1394 24.5361 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Trial    (Intercept) 0.0062547 0.07909 
 subject  (Intercept) 0.0006933 0.02633 
 Residual             0.0523860 0.22888 
Number of obs: 3378, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.228e-01  1.363e-02  5.382e+01   9.007  2.5e-12 ***
Block1      -6.411e-02  5.886e-03  3.328e+03 -10.892  < 2e-16 ***
Block2       6.241e-03  5.554e-03  3.323e+03   1.124   0.2612    
Accuracy1   -7.212e-03  4.274e-03  3.147e+03  -1.687   0.0917 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.023              
Block2    -0.014 -0.507       
Accuracy1  0.043  0.222 -0.041

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
         Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)    
Block    7.5748  3.7874     2 3329.9 72.2978 < 2e-16 ***
Accuracy 0.1491  0.1491     1 3146.7  2.8468 0.09165 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
Block    144.5956  2    < 2e-16 ***
Accuracy   2.8468  1    0.09156 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
               Chisq Df Pr(>Chisq)    
(Intercept)  81.1175  1    < 2e-16 ***
Block       144.5956  2    < 2e-16 ***
Accuracy      2.8468  1    0.09156 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0587 0.0150 Inf    0.0294     0.088
 2     0.1290 0.0147 Inf    0.1003     0.158
 3     0.1807 0.0147 Inf    0.1518     0.210

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0703 0.00993 Inf  -7.084  <.0001
 Block1 - Block3  -0.1220 0.01020 Inf -12.008  <.0001
 Block2 - Block3  -0.0516 0.00958 Inf  -5.388  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Execution
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: 1078.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.6672 -0.4816  0.0024  0.4511  6.6133 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.003739 0.06115 
 subject  (Intercept) 0.099724 0.31579 
 Residual             0.077019 0.27752 
Number of obs: 3241, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  7.429e-01  7.513e-02  1.750e+01   9.888 1.39e-08 ***
Block1       1.034e-01  7.362e-03  3.189e+03  14.050  < 2e-16 ***
Block2       1.532e-02  6.859e-03  3.181e+03   2.233   0.0256 *  
Accuracy1   -4.498e-02  5.346e-03  3.219e+03  -8.413  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.007              
Block2    -0.004 -0.514       
Accuracy1  0.011  0.222 -0.042

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
          Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Block    24.5699 12.2849     2 3195.2 159.505 < 2.2e-16 ***
Accuracy  5.4517  5.4517     1 3219.5  70.784 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
Block    319.010  2  < 2.2e-16 ***
Accuracy  70.784  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept)  97.776  1  < 2.2e-16 ***
Block       319.010  2  < 2.2e-16 ***
Accuracy     70.784  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.846 0.0755 Inf     0.698     0.994
 2      0.758 0.0754 Inf     0.610     0.906
 3      0.624 0.0754 Inf     0.476     0.772

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0881 0.0124 Inf   7.120  <.0001
 Block1 - Block3   0.2222 0.0126 Inf  17.567  <.0001
 Block2 - Block3   0.1341 0.0118 Inf  11.391  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Preparation
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: 3162.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.4689 -0.3958 -0.1519  0.1488 14.4245 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.017764 0.13328 
 subject  (Intercept) 0.002477 0.04977 
 Residual             0.142476 0.37746 
Number of obs: 3378, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.594e-01  2.354e-02  5.443e+01   6.772 9.34e-09 ***
Block1      -1.061e-01  9.708e-03  3.326e+03 -10.925  < 2e-16 ***
Block2       1.335e-02  9.161e-03  3.322e+03   1.458   0.1450    
Accuracy1   -1.560e-02  7.065e-03  3.226e+03  -2.208   0.0273 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.022              
Block2    -0.013 -0.507       
Accuracy1  0.042  0.222 -0.041

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
          Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)    
Block    20.1906 10.0953     2 3328.6 70.8559 < 2e-16 ***
Accuracy  0.6949  0.6949     1 3225.8  4.8771 0.02729 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
Block    141.7119  2    < 2e-16 ***
Accuracy   4.8771  1    0.02722 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
               Chisq Df Pr(>Chisq)    
(Intercept)  45.8537  1  1.274e-11 ***
Block       141.7119  2  < 2.2e-16 ***
Accuracy      4.8771  1    0.02722 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0534 0.0257 Inf   0.00307     0.104
 2     0.1728 0.0252 Inf   0.12348     0.222
 3     0.2521 0.0253 Inf   0.20262     0.302

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2  -0.1194 0.0164 Inf  -7.291  <.0001
 Block1 - Block3  -0.1988 0.0168 Inf -11.864  <.0001
 Block2 - Block3  -0.0794 0.0158 Inf  -5.022  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Execution
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: 4479

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.5636 -0.4699 -0.0113  0.4195  5.9733 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.008101 0.09001 
 subject  (Intercept) 0.268090 0.51777 
 Residual             0.220928 0.47003 
Number of obs: 3241, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.196e+00  1.230e-01  1.741e+01   9.717 1.89e-08 ***
Block1       1.079e-01  1.246e-02  3.191e+03   8.658  < 2e-16 ***
Block2       3.280e-02  1.161e-02  3.180e+03   2.824  0.00477 ** 
Accuracy1   -8.618e-02  9.043e-03  3.222e+03  -9.530  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.007              
Block2    -0.004 -0.515       
Accuracy1  0.011  0.222 -0.042

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
         Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Block    32.498  16.249     2 3197.0  73.549 < 2.2e-16 ***
Accuracy 20.065  20.065     1 3222.1  90.820 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
          Chisq Df Pr(>Chisq)    
Block    147.10  2  < 2.2e-16 ***
Accuracy  90.82  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept)  94.426  1  < 2.2e-16 ***
Block       147.098  2  < 2.2e-16 ***
Accuracy     90.820  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean    SE  df asymp.LCL asymp.UCL
 1       1.30 0.124 Inf     1.061      1.55
 2       1.23 0.124 Inf     0.986      1.47
 3       1.05 0.124 Inf     0.813      1.30

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0751 0.0210 Inf   3.583  0.0010
 Block1 - Block3   0.2486 0.0214 Inf  11.615  <.0001
 Block2 - Block3   0.1735 0.0199 Inf   8.710  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 
pairwise_test_blocks_by_length(rms_combined)

#new

# ==== #1.3b  All-axes models (collapsed reporting) ============================
suppressPackageStartupMessages({
  library(dplyr); library(tidyr); library(lme4); library(lmerTest)
  library(emmeans); library(car)
})
emm_options(lmer.df = "asymptotic")

# Helper: pivot to long with Axis factor
rms_long <- rms_combined %>%
  tidyr::pivot_longer(
    cols = starts_with("rms_"),
    names_to = "Axis", names_prefix = "rms_",
    values_to = "RMS"
  ) %>%
  mutate(
    Axis  = factor(Axis, levels = c("x","y","z")),
    Block = factor(Block),
    Trial = if ("Trial" %in% names(.)) Trial else factor(trial)
  ) %>%
  drop_na(RMS)

# Safe fitter with random-slope fallback (avoids convergence/singularity headaches)
.fit_all_axes <- function(form_full, form_simple, data) {
  ctrl <- lmerControl(optimizer = "bobyqa", calc.derivs = TRUE,
                      check.conv.singular = "ignore")
  fit <- try(suppressWarnings(lmer(form_full, data = data, REML = TRUE, control = ctrl)), silent = TRUE)
  if (inherits(fit, "try-error") || isTRUE(isSingular(fit, tol = 1e-4))) {
    fit <- lmer(form_simple, data = data, REML = TRUE, control = ctrl)
  }
  fit
}

# -------- TRAINING: Blocks 1–3 (within-phase), collapsed across axes ----------
pairwise_training_blocks_allaxes <- function(rms_long) {
  d_train <- rms_long %>%
    filter(Block %in% c("1","2","3")) %>%
    mutate(Block = factor(Block, levels = c("1","2","3"))) %>%
    droplevels()

  for (ph in c("Preparation","Execution")) {
    dd <- d_train %>% filter(phase == ph)
    if (nrow(dd) == 0) next

    cat("\n\n====================\n",
        "TRAINING | Phase: ", ph, " | All Axes Together",
        "\n====================\n", sep = "")

    # Full model with subject-specific Axis slopes; fallback to simpler if needed
    m <- .fit_all_axes(
      form_full   = RMS ~ Block * Axis + Accuracy + (1 + Axis | subject) + (1 | Trial),
      form_simple = RMS ~ Block * Axis + Accuracy + (1 | subject) + (1 | Trial),
      data = dd
    )

    cat("\n--- Model Summary (lmerTest; Satterthwaite) ---\n"); print(summary(m))
    cat("\n--- Type II Wald χ² ---\n"); print(car::Anova(m, type = 2, test.statistic = "Chisq"))
    cat("\n--- Type III Wald χ² (sum contrasts recommended) ---\n"); print(car::Anova(m, type = 3, test.statistic = "Chisq"))

    # Primary report: Block effect averaged over axes (equal weight per axis)
    em_blk <- emmeans(m, ~ Block, weights = "equal")
    cat("\n--- EMMs for Block (collapsed across axes) ---\n"); print(summary(em_blk))
    cat("\n--- Pairwise Tukey among Blocks 1–3 (collapsed across axes) ---\n"); print(pairs(em_blk, adjust = "tukey"))

    # Optional: Only if Block × Axis matters, show simple effects by Axis
    # (comment out to keep output minimal)
    if (anova(m)["Block:Axis","Pr(>F)"] < 0.05 || car::Anova(m, type=3)$`Pr(>Chisq)`[rownames(car::Anova(m, type=3))=="Block:Axis"] < 0.05) {
      cat("\n--- Simple Block effects within each Axis (only shown because Block×Axis significant) ---\n")
      print(pairs(emmeans(m, ~ Block | Axis), adjust = "tukey"))
    }

    rm(m, em_blk); invisible(gc())
  }
}

# -------- TEST: Blocks 4–5 (within-phase AND within SeqLen), collapsed --------
pairwise_test_blocks_by_length_allaxes <- function(rms_long) {
  if (!exists("sw_all")) stop("Length-specific comparisons require `sw_all` (from stepwise prep).")

  # Sequence-length lookup (actual detected per trial) for Blocks 4–5
  seq_lookup <- sw_all %>%
    distinct(subject, Block, trial, step_count) %>%
    filter(Block %in% c(4,5)) %>%
    transmute(
      subject = as.character(subject),
      Block   = factor(as.character(Block), levels = c("4","5")),
      Trial   = factor(trial),
      SeqLen  = factor(paste0(step_count, " steps"),
                       levels = c("6 steps","12 steps","18 steps"))
    )

  d_test <- rms_long %>%
    filter(Block %in% c("4","5")) %>%
    mutate(
      subject = as.character(subject),
      Block   = factor(Block, levels = c("4","5"))
    ) %>%
    left_join(seq_lookup, by = c("subject","Block","Trial")) %>%
    filter(!is.na(SeqLen)) %>%
    droplevels()

  for (ph in c("Preparation","Execution")) {
    for (sl in levels(d_test$SeqLen)) {
      dd <- d_test %>% filter(phase == ph, SeqLen == sl)
      if (nrow(dd) == 0 || nlevels(dd$Block) < 2) next

      cat("\n\n--------------------\n",
          "TEST | Phase: ", ph, " | SeqLen: ", sl, " | All Axes Together",
          "\n--------------------\n", sep = "")

      m <- .fit_all_axes(
        form_full   = RMS ~ Block * Axis + Accuracy + (1 + Axis | subject) + (1 | Trial),
        form_simple = RMS ~ Block * Axis + Accuracy + (1 | subject) + (1 | Trial),
        data = dd
      )

      cat("\n--- Model Summary (lmerTest; Satterthwaite) ---\n"); print(summary(m))
      cat("\n--- Type II Wald χ² ---\n"); print(car::Anova(m, type = 2, test.statistic = "Chisq"))
      cat("\n--- Type III Wald χ² (sum contrasts recommended) ---\n"); print(car::Anova(m, type = 3, test.statistic = "Chisq"))

      # Primary report: Block 4 vs 5 averaged over axes
      em_blk <- emmeans(m, ~ Block, weights = "equal")
      cat("\n--- EMMs for Block 4 vs 5 (collapsed across axes) ---\n"); print(summary(em_blk))
      cat("\n--- Pairwise (Tukey) Block 4 vs 5 (collapsed across axes) ---\n"); print(pairs(em_blk, adjust = "tukey"))

      # Optional: simple Block contrasts within each Axis if interaction is present
      if (anova(m)["Block:Axis","Pr(>F)"] < 0.05 || car::Anova(m, type=3)$`Pr(>Chisq)`[rownames(car::Anova(m, type=3))=="Block:Axis"] < 0.05) {
        cat("\n--- Block 4 vs 5 within Axis (only shown because Block×Axis significant) ---\n")
        print(pairs(emmeans(m, ~ Block | Axis), adjust = "tukey"))
      }

      rm(m, em_blk); invisible(gc())
    }
  }
}

# ---- Run the collapsed-axes analyses ----
pairwise_training_blocks_allaxes(rms_long)


====================
TRAINING | Phase: Preparation | All Axes Together
====================

--- Model Summary (lmerTest; Satterthwaite) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: form_simple
   Data: data
Control: ctrl

REML criterion at convergence: 3263.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.7232 -0.4128 -0.1232  0.1647 19.9706 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.009948 0.09974 
 subject  (Intercept) 0.001272 0.03566 
 Residual             0.078622 0.28040 
Number of obs: 10134, groups:  Trial, 48; subject, 18

Fixed effects:
               Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)   1.338e-01  1.693e-02  6.047e+01   7.905 6.78e-11 ***
Block1       -7.621e-02  4.167e-03  1.008e+04 -18.289  < 2e-16 ***
Block2        7.525e-03  3.931e-03  1.008e+04   1.914  0.05565 .  
Axis1        -1.538e-02  3.946e-03  1.006e+04  -3.898 9.75e-05 ***
Axis2        -8.977e-03  3.946e-03  1.006e+04  -2.275  0.02294 *  
Accuracy1    -9.236e-03  3.053e-03  9.842e+03  -3.026  0.00249 ** 
Block1:Axis1  1.634e-02  5.700e-03  1.006e+04   2.867  0.00415 ** 
Block2:Axis1 -3.964e-03  5.527e-03  1.006e+04  -0.717  0.47326    
Block1:Axis2  9.474e-03  5.700e-03  1.006e+04   1.662  0.09649 .  
Block2:Axis2 -2.532e-03  5.527e-03  1.006e+04  -0.458  0.64691    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block1 Block2 Axis1  Axis2  Accrc1 Bl1:A1 Bl2:A1 Bl1:A2
Block1       0.013                                                        
Block2      -0.008 -0.506                                                 
Axis1        0.000  0.000  0.000                                          
Axis2        0.000  0.000  0.000 -0.500                                   
Accuracy1    0.026  0.222 -0.041  0.000  0.000                            
Block1:Axs1  0.000  0.000  0.000  0.060 -0.030  0.000                     
Block2:Axs1  0.000  0.000  0.000 -0.028  0.014  0.000 -0.518              
Block1:Axs2  0.000  0.000  0.000 -0.030  0.060  0.000 -0.500  0.259       
Block2:Axs2  0.000  0.000  0.000  0.014 -0.028  0.000  0.259 -0.500 -0.518

--- Type II Wald χ² ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
Block      406.7644  2  < 2.2e-16 ***
Axis        42.6958  2  5.354e-10 ***
Accuracy     9.1541  1  0.0024816 ** 
Block:Axis  22.9320  4  0.0001306 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (sum contrasts recommended) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
               Chisq Df Pr(>Chisq)    
(Intercept)  62.4866  1  2.683e-15 ***
Block       406.7644  2  < 2.2e-16 ***
Axis         38.9853  2  3.423e-09 ***
Accuracy      9.1541  1  0.0024816 ** 
Block:Axis   22.9320  4  0.0001306 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NOTE: Results may be misleading due to involvement in interactions

--- EMMs for Block (collapsed across axes) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0576 0.0175 Inf    0.0233    0.0919
 2     0.1414 0.0173 Inf    0.1074    0.1754
 3     0.2025 0.0174 Inf    0.1685    0.2366

Results are averaged over the levels of: Axis, Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise Tukey among Blocks 1–3 (collapsed across axes) ---
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0837 0.00703 Inf -11.915  <.0001
 Block1 - Block3  -0.1449 0.00720 Inf -20.137  <.0001
 Block2 - Block3  -0.0612 0.00679 Inf  -9.013  <.0001

Results are averaged over the levels of: Axis, Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

--- Simple Block effects within each Axis (only shown because Block×Axis significant) ---
Axis = x:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2  -0.0634 0.0120 Inf  -5.267  <.0001
 Block1 - Block3  -0.1162 0.0121 Inf  -9.582  <.0001
 Block2 - Block3  -0.0527 0.0116 Inf  -4.532  <.0001

Axis = y:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2  -0.0717 0.0120 Inf  -5.956  <.0001
 Block1 - Block3  -0.1285 0.0121 Inf -10.597  <.0001
 Block2 - Block3  -0.0568 0.0116 Inf  -4.876  <.0001

Axis = z:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2  -0.1160 0.0120 Inf  -9.636  <.0001
 Block1 - Block3  -0.1900 0.0121 Inf -15.673  <.0001
 Block2 - Block3  -0.0740 0.0116 Inf  -6.357  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Phase: Execution | All Axes Together
====================

--- Model Summary (lmerTest; Satterthwaite) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: form_full
   Data: data
Control: ctrl

REML criterion at convergence: 7170.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-6.1734 -0.4417 -0.0102  0.4124  8.1143 

Random effects:
 Groups   Name        Variance Std.Dev. Corr       
 Trial    (Intercept) 0.007736 0.08796             
 subject  (Intercept) 0.131215 0.36224             
          Axis1       0.013740 0.11722  -0.82      
          Axis2       0.004497 0.06706  -0.74  0.86
 Residual             0.117703 0.34308             
Number of obs: 9723, groups:  Trial, 48; subject, 18

Fixed effects:
               Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)   8.759e-01  8.640e-02  1.777e+01  10.138 8.23e-09 ***
Block1        1.037e-01  5.262e-03  9.630e+03  19.711  < 2e-16 ***
Block2        2.085e-02  4.900e-03  9.623e+03   4.255 2.11e-05 ***
Axis1        -1.808e-01  2.807e-02  1.703e+01  -6.442 6.03e-06 ***
Axis2        -1.408e-01  1.657e-02  1.700e+01  -8.499 1.59e-07 ***
Accuracy1    -5.847e-02  3.832e-03  9.666e+03 -15.261  < 2e-16 ***
Block1:Axis1 -1.139e-02  7.201e-03  9.621e+03  -1.581    0.114    
Block2:Axis1 -7.727e-03  6.895e-03  9.618e+03  -1.121    0.262    
Block1:Axis2 -2.235e-03  7.200e-03  9.623e+03  -0.310    0.756    
Block2:Axis2 -3.537e-03  6.894e-03  9.621e+03  -0.513    0.608    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block1 Block2 Axis1  Axis2  Accrc1 Bl1:A1 Bl2:A1 Bl1:A2
Block1       0.004                                                        
Block2      -0.002 -0.512                                                 
Axis1       -0.802  0.000  0.000                                          
Axis2       -0.700  0.000  0.000  0.779                                   
Accuracy1    0.007  0.221 -0.042  0.000  0.000                            
Block1:Axs1  0.000  0.000  0.000  0.014 -0.012  0.000                     
Block2:Axs1  0.000  0.000  0.000 -0.007  0.006  0.000 -0.525              
Block1:Axs2  0.000  0.000  0.000 -0.007  0.024  0.000 -0.499  0.262       
Block2:Axs2  0.000  0.000  0.000  0.003 -0.012  0.000  0.262 -0.500 -0.525

--- Type II Wald χ² ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
             Chisq Df Pr(>Chisq)    
Block      667.657  2  < 2.2e-16 ***
Axis        72.242  2  < 2.2e-16 ***
Accuracy   232.891  1  < 2.2e-16 ***
Block:Axis  14.384  4   0.006164 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (sum contrasts recommended) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept) 102.775  1  < 2.2e-16 ***
Block       667.658  2  < 2.2e-16 ***
Axis         72.310  2  < 2.2e-16 ***
Accuracy    232.891  1  < 2.2e-16 ***
Block:Axis   14.384  4   0.006164 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NOTE: Results may be misleading due to involvement in interactions

--- EMMs for Block (collapsed across axes) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.980 0.0866 Inf     0.810     1.149
 2      0.897 0.0865 Inf     0.727     1.066
 3      0.751 0.0865 Inf     0.582     0.921

Results are averaged over the levels of: Axis, Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise Tukey among Blocks 1–3 (collapsed across axes) ---
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2   0.0829 0.00884 Inf   9.376  <.0001
 Block1 - Block3   0.2283 0.00905 Inf  25.219  <.0001
 Block2 - Block3   0.1454 0.00842 Inf  17.269  <.0001

Results are averaged over the levels of: Axis, Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

--- Simple Block effects within each Axis (only shown because Block×Axis significant) ---
Axis = x:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0792 0.0152 Inf   5.227  <.0001
 Block1 - Block3   0.1978 0.0153 Inf  12.967  <.0001
 Block2 - Block3   0.1186 0.0144 Inf   8.209  <.0001

Axis = y:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0842 0.0152 Inf   5.555  <.0001
 Block1 - Block3   0.2203 0.0152 Inf  14.444  <.0001
 Block2 - Block3   0.1361 0.0144 Inf   9.423  <.0001

Axis = z:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0852 0.0152 Inf   5.622  <.0001
 Block1 - Block3   0.2668 0.0153 Inf  17.487  <.0001
 Block2 - Block3   0.1816 0.0144 Inf  12.567  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 
pairwise_test_blocks_by_length_allaxes(rms_long)

#B2.1 comparison of sequence lengths training phase

# ==== TRAINING (Blocks 1–3): pairwise Block comparisons within each phase, per axis ====
# Uses the same family as plots: RMS ~ Block + Accuracy + (1|subject) + (1|Trial)


suppressPackageStartupMessages({
  library(dplyr)
  library(lme4)
  library(emmeans)
})
emm_options(lmer.df = "asymptotic")

pairwise_training_blocks <- function(rms_combined) {
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    for (ph in c("Preparation","Execution")) {
      d <- rms_combined %>%
        filter(phase == ph, Block %in% c("1","2","3")) %>%
        transmute(
          subject, Trial, phase,
          Block = factor(Block, levels = c("1","2","3")),
          Accuracy,
          RMS = .data[[axis_col]]
        ) %>%
        droplevels()

      if (nrow(d) == 0 || nlevels(d$Block) < 2) next

      cat("\n\n====================\n",
          "TRAINING | Axis ", toupper(axis), " | Phase: ", ph,
          "\n====================\n", sep = "")

      m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = d, REML = TRUE)

      em_blk <- emmeans(m, ~ Block)
      cat("\nEstimated Marginal Means (Blocks 1–3):\n"); print(summary(em_blk))
      cat("\nPairwise (Tukey) among Blocks 1–3:\n"); print(pairs(em_blk, adjust = "tukey"))

      rm(m, em_blk); invisible(gc())
    }
  }
}

# Run training comparisons
pairwise_training_blocks(rms_combined)


====================
TRAINING | Axis X | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0599 0.0141 Inf    0.0323    0.0875
 2     0.1208 0.0138 Inf    0.0938    0.1479
 3     0.1686 0.0139 Inf    0.1414    0.1958

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0609 0.00876 Inf  -6.953  <.0001
 Block1 - Block3  -0.1087 0.00897 Inf -12.120  <.0001
 Block2 - Block3  -0.0477 0.00846 Inf  -5.645  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis X | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.796 0.0657 Inf     0.667     0.925
 2      0.713 0.0656 Inf     0.584     0.842
 3      0.596 0.0656 Inf     0.467     0.724

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0829 0.0107 Inf   7.784  <.0001
 Block1 - Block3   0.2004 0.0109 Inf  18.394  <.0001
 Block2 - Block3   0.1175 0.0101 Inf  11.589  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0587 0.0150 Inf    0.0294     0.088
 2     0.1290 0.0147 Inf    0.1003     0.158
 3     0.1807 0.0147 Inf    0.1518     0.210

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0703 0.00993 Inf  -7.084  <.0001
 Block1 - Block3  -0.1220 0.01020 Inf -12.008  <.0001
 Block2 - Block3  -0.0516 0.00958 Inf  -5.388  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.846 0.0755 Inf     0.698     0.994
 2      0.758 0.0754 Inf     0.610     0.906
 3      0.624 0.0754 Inf     0.476     0.772

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0881 0.0124 Inf   7.120  <.0001
 Block1 - Block3   0.2222 0.0126 Inf  17.567  <.0001
 Block2 - Block3   0.1341 0.0118 Inf  11.391  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0534 0.0257 Inf   0.00307     0.104
 2     0.1728 0.0252 Inf   0.12348     0.222
 3     0.2521 0.0253 Inf   0.20262     0.302

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2  -0.1194 0.0164 Inf  -7.291  <.0001
 Block1 - Block3  -0.1988 0.0168 Inf -11.864  <.0001
 Block2 - Block3  -0.0794 0.0158 Inf  -5.022  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean    SE  df asymp.LCL asymp.UCL
 1       1.30 0.124 Inf     1.061      1.55
 2       1.23 0.124 Inf     0.986      1.47
 3       1.05 0.124 Inf     0.813      1.30

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0751 0.0210 Inf   3.583  0.0010
 Block1 - Block3   0.2486 0.0214 Inf  11.615  <.0001
 Block2 - Block3   0.1735 0.0199 Inf   8.710  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

#B2.1 comparison of sequence lengths test phase, and comparison of familiar vs unfamiliar

# ==== TEST (Blocks 4–5): block-vs-block within each length AND within-block among lengths ====
# Models:
#  A) Block 4 vs 5 within phase & length:    RMS ~ Block  + Accuracy + (1|subject) + (1|Trial)
#  B) Lengths (6/12/18) within block & phase: RMS ~ SeqLen + Accuracy + (1|subject) + (1|Trial)

suppressPackageStartupMessages({
  library(dplyr)
  library(lme4)
  library(emmeans)
})
emm_options(lmer.df = "asymptotic")

pairwise_test_blocks_and_lengths <- function(rms_combined) {

  if (!exists("sw_all")) {
    stop("This analysis needs `sw_all` (step-wise table) to derive sequence lengths for Blocks 4–5.")
  }

  # Build a unique per-trial sequence length lookup (6/12/18 steps) from sw_all
  seq_lookup <- sw_all %>%
    group_by(subject, Block, trial) %>%
    summarise(step_count = max(step_count, na.rm = TRUE), .groups = "drop") %>%  # ensure unique per trial
    filter(Block %in% c(4, 5)) %>%
    transmute(
      subject = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial),
      SeqLen = factor(paste0(step_count, " steps"),
                      levels = c("6 steps","12 steps","18 steps"))
    )

  # Attach sequence length to the phase-level RMS rows for blocks 4–5
  rb45 <- rms_combined %>%
    filter(Block %in% c("4","5")) %>%
    mutate(
      subject  = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial)
    ) %>%
    left_join(seq_lookup, by = c("subject","Block_chr","trial_chr")) %>%
    mutate(
      Block  = factor(Block, levels = c("4","5")),
      SeqLen = droplevels(SeqLen)
    )

  # ---------- (A) Block 4 vs 5 within each length & phase ----------
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)
    for (ph in c("Preparation","Execution")) {
      for (sl in c("6 steps","12 steps","18 steps")) {
        dd <- rb45 %>%
          filter(phase == ph, SeqLen == sl) %>%
          transmute(
            subject, Trial, phase, SeqLen,
            Block, Accuracy,
            RMS = .data[[axis_col]]
          ) %>% droplevels()

        if (nrow(dd) == 0 || nlevels(dd$Block) < 2) next

        cat("\n\n--------------------\n",
            "TEST (Between blocks) | Axis ", toupper(axis),
            " | Phase: ", ph, " | SeqLen: ", sl,
            "\n--------------------\n", sep = "")

        mA <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = dd, REML = TRUE)
        em_blk <- emmeans(mA, ~ Block)  # 4 vs 5
        cat("\nEstimated Marginal Means (Block 4 vs 5):\n"); print(summary(em_blk))
        cat("\nPairwise (Tukey) Block 4 vs 5:\n"); print(pairs(em_blk, adjust = "tukey"))

        rm(mA, em_blk); invisible(gc())
      }
    }
  }

  # ---------- (B) Within each block: compare sequence lengths (6 vs 12 vs 18) per phase ----------
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)
    for (ph in c("Preparation","Execution")) {
      for (blk in c("4","5")) {
        dd <- rb45 %>%
          filter(phase == ph, Block == blk) %>%
          transmute(
            subject, Trial, phase,
            Block, SeqLen = factor(SeqLen, levels = c("6 steps","12 steps","18 steps")),
            Accuracy,
            RMS = .data[[axis_col]]
          ) %>% droplevels()

        # Need at least 2 lengths present to compare
        if (nrow(dd) == 0 || nlevels(dd$SeqLen) < 2) next

        cat("\n\n====================\n",
            "TEST (Within block) | Axis ", toupper(axis),
            " | Phase: ", ph, " | Block: ", blk,
            "\n====================\n", sep = "")

        mB <- lmer(RMS ~ SeqLen + Accuracy + (1 | subject) + (1 | Trial), data = dd, REML = TRUE)
        em_len <- emmeans(mB, ~ SeqLen)
        cat("\nEstimated Marginal Means (SeqLen within Block ", blk, "):\n", sep = ""); print(summary(em_len))
        cat("\nPairwise (Tukey) among 6/12/18 steps within Block ", blk, ":\n", sep = ""); print(pairs(em_len, adjust = "tukey"))

        rm(mB, em_len); invisible(gc())
      }
    }
  }
}

# Run test-phase comparisons
pairwise_test_blocks_and_lengths(rms_combined)
# ==== TEST (Blocks 4–5): all-axes-together ====
# Block-vs-block within each sequence length, and within-block among lengths
# Collapses across axes (Axis factor), reports Block/SeqLen averaged over axes.
# Includes Wald χ² (Type II & III) and Likelihood-Ratio χ² via explicit ML refits (no update()).

suppressPackageStartupMessages({
  library(dplyr)
  library(tidyr)
  library(lme4)
  library(lmerTest)  # optional: Satterthwaite tests in summary()/anova()
  library(emmeans)
  library(car)       # Type II/III Wald χ²
})
emm_options(lmer.df = "asymptotic")
# If you interpret Type III, set sum contrasts globally (uncomment if needed):
# options(contrasts = c("contr.sum","contr.poly"))

pairwise_test_blocks_and_lengths_allaxes <- function(rms_combined) {

  if (!exists("sw_all")) {
    stop("This analysis needs `sw_all` (step-wise table) to derive sequence lengths for Blocks 4–5.")
  }

  # ----- Pivot RMS to long with Axis factor -----
  rms_long <- rms_combined %>%
    tidyr::pivot_longer(
      cols = starts_with("rms_"),
      names_to = "Axis", names_prefix = "rms_",
      values_to = "RMS"
    ) %>%
    mutate(
      Axis  = factor(Axis, levels = c("x","y","z")),
      Block = factor(Block),
      Trial = if ("Trial" %in% names(.)) Trial else factor(trial)
    ) %>%
    drop_na(RMS)

  # Helper: REML fitter with random-slope fallback (1 + Axis | subject) -> (1 | subject)
  .fit_all_axes_REML <- function(form_full, form_simple, data) {
    fit <- try(
      suppressWarnings(
        lmer(form_full, data = data, REML = TRUE,
             control = lmerControl(optimizer = "bobyqa",
                                   calc.derivs = TRUE,
                                   check.conv.singular = "ignore"))
      ),
      silent = TRUE
    )
    if (inherits(fit, "try-error") || isTRUE(isSingular(fit, tol = 1e-4))) {
      fit <- lmer(form_simple, data = data, REML = TRUE,
                  control = lmerControl(optimizer = "bobyqa",
                                        calc.derivs = TRUE,
                                        check.conv.singular = "ignore"))
    }
    fit
  }

  # Helper: ML pair (full vs reduced) with *matched* random-effects structure.
  # We try (1 + Axis | subject) first; if it fails/singular, we refit *both* models with (1 | subject).
  .fit_ml_pair <- function(full_fixef_rhs, reduced_fixef_rhs, data) {
    # Build formulas with rich random structure
    full_re  <- as.formula(paste0("RMS ~ ", full_fixef_rhs,  " + (1 + Axis | subject) + (1 | Trial)"))
    red_re   <- as.formula(paste0("RMS ~ ", reduced_fixef_rhs," + (1 + Axis | subject) + (1 | Trial)"))

    try_full <- try(
      suppressWarnings(
        lmer(full_re, data = data, REML = FALSE,
             control = lmerControl(optimizer = "bobyqa",
                                   calc.derivs = TRUE,
                                   check.conv.singular = "ignore"))
      ),
      silent = TRUE
    )

    if (!(inherits(try_full, "try-error") || isTRUE(isSingular(try_full, tol = 1e-4)))) {
      m_full <- try_full
      m_red  <- lmer(red_re, data = data, REML = FALSE,
                     control = lmerControl(optimizer = "bobyqa",
                                           calc.derivs = TRUE,
                                           check.conv.singular = "ignore"))
      return(list(full = m_full, reduced = m_red, slope = TRUE))
    }

    # Fallback: simple random structure for both models
    full_simple <- as.formula(paste0("RMS ~ ", full_fixef_rhs,  " + (1 | subject) + (1 | Trial)"))
    red_simple  <- as.formula(paste0("RMS ~ ", reduced_fixef_rhs," + (1 | subject) + (1 | Trial)"))

    m_full <- lmer(full_simple, data = data, REML = FALSE,
                   control = lmerControl(optimizer = "bobyqa",
                                         calc.derivs = TRUE,
                                         check.conv.singular = "ignore"))
    m_red  <- lmer(red_simple,  data = data, REML = FALSE,
                   control = lmerControl(optimizer = "bobyqa",
                                         calc.derivs = TRUE,
                                         check.conv.singular = "ignore"))
    list(full = m_full, reduced = m_red, slope = FALSE)
  }

  # ----- Build unique per-trial sequence length lookup (6/12/18) from sw_all -----
  seq_lookup <- sw_all %>%
    group_by(subject, Block, trial) %>%
    summarise(step_count = max(step_count, na.rm = TRUE), .groups = "drop") %>%
    filter(Block %in% c(4, 5)) %>%
    transmute(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial),
      SeqLen    = factor(paste0(step_count, " steps"),
                         levels = c("6 steps","12 steps","18 steps"))
    )

  # ----- Attach SeqLen to phase-level RMS (Blocks 4–5), keep Axis in long form -----
  rb45_long <- rms_long %>%
    filter(Block %in% c("4","5")) %>%
    mutate(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(Trial)
    ) %>%
    left_join(seq_lookup, by = c("subject","Block_chr","trial_chr")) %>%
    mutate(
      Block  = factor(Block, levels = c("4","5")),
      SeqLen = droplevels(SeqLen)
    )

  # ---------- (A) Block 4 vs 5 within each length & phase (all axes together) ----------
  for (ph in c("Preparation","Execution")) {
    for (sl in c("6 steps","12 steps","18 steps")) {

      dd <- rb45_long %>%
        filter(phase == ph, SeqLen == sl) %>%
        transmute(
          subject = factor(subject),
          Trial   = factor(Trial),
          phase, SeqLen, Axis,
          Block, Accuracy,
          RMS
        ) %>%
        filter(is.finite(RMS), !is.na(Accuracy), !is.na(Block), !is.na(Axis)) %>%
        droplevels()

      if (nrow(dd) == 0 || nlevels(dd$Block) < 2) next

      cat("\n\n--------------------\n",
          "TEST (Between blocks, all axes) | Phase: ", ph, " | SeqLen: ", sl,
          "\n--------------------\n", sep = "")

      # REML model for estimates/EMMs
      mA <- .fit_all_axes_REML(
        form_full   = RMS ~ Block * Axis + Accuracy + (1 + Axis | subject) + (1 | Trial),
        form_simple = RMS ~ Block * Axis + Accuracy + (1 | subject) + (1 | Trial),
        data = dd
      )

      cat("\n--- Model Summary (lmerTest; Satterthwaite) ---\n"); print(summary(mA))
      cat("\n--- Type II Wald χ² ---\n"); print(car::Anova(mA, type = 2, test.statistic = "Chisq"))
      cat("\n--- Type III Wald χ² (sum contrasts recommended) ---\n"); print(car::Anova(mA, type = 3, test.statistic = "Chisq"))

      # Primary: Block effect averaged over axes
      em_blk <- emmeans(mA, ~ Block, weights = "equal")
      cat("\n--- EMMs for Block (collapsed across axes) ---\n"); print(summary(em_blk))
      cat("\n--- Pairwise (Tukey) Block 4 vs 5 (collapsed across axes) ---\n"); print(pairs(em_blk, adjust = "tukey"))

      # ML LRT for overall Block (remove Block and Block:Axis)
      cat("\n--- Likelihood-Ratio χ² (ML) for Block ---\n")
      ml_pair <- .fit_ml_pair(
        full_fixef_rhs    = "Block * Axis + Accuracy",
        reduced_fixef_rhs = "Axis + Accuracy",
        data = dd
      )
      print(anova(ml_pair$reduced, ml_pair$full))  # Chi-square, df, p-value

      # Optional: show Block within each Axis if Block×Axis significant
      A3 <- car::Anova(mA, type = 3, test.statistic = "Chisq")
      if ("Block:Axis" %in% rownames(A3) && is.finite(A3["Block:Axis","Pr(>Chisq)"]) &&
          A3["Block:Axis","Pr(>Chisq)"] < 0.05) {
        cat("\n--- Block 4 vs 5 within each Axis (shown because Block×Axis significant) ---\n")
        print(pairs(emmeans(mA, ~ Block | Axis), adjust = "tukey"))
      }

      rm(mA, em_blk, ml_pair); invisible(gc())
    }
  }

  # ---------- (B) Within each block: compare sequence lengths per phase (all axes) ----------
  for (ph in c("Preparation","Execution")) {
    for (blk in c("4","5")) {

      dd <- rb45_long %>%
        filter(phase == ph, Block == blk) %>%
        transmute(
          subject = factor(subject),
          Trial   = factor(Trial),
          phase, Block,
          SeqLen = factor(SeqLen, levels = c("6 steps","12 steps","18 steps")),
          Axis, Accuracy, RMS
        ) %>%
        filter(is.finite(RMS), !is.na(Accuracy), !is.na(SeqLen), !is.na(Axis)) %>%
        droplevels()

      if (nrow(dd) == 0 || nlevels(dd$SeqLen) < 2) next

      cat("\n\n====================\n",
          "TEST (Within block, all axes) | Phase: ", ph, " | Block: ", blk,
          "\n====================\n", sep = "")

      # REML model for estimates/EMMs
      mB <- .fit_all_axes_REML(
        form_full   = RMS ~ SeqLen * Axis + Accuracy + (1 + Axis | subject) + (1 | Trial),
        form_simple = RMS ~ SeqLen * Axis + Accuracy + (1 | subject) + (1 | Trial),
        data = dd
      )

      cat("\n--- Model Summary (lmerTest; Satterthwaite) ---\n"); print(summary(mB))
      cat("\n--- Type II Wald χ² ---\n"); print(car::Anova(mB, type = 2, test.statistic = "Chisq"))
      cat("\n--- Type III Wald χ² (sum contrasts recommended) ---\n"); print(car::Anova(mB, type = 3, test.statistic = "Chisq"))

      # ML LRT for overall SeqLen (remove SeqLen and SeqLen:Axis)
      cat("\n--- Likelihood-Ratio χ² (ML) for SeqLen ---\n")
      ml_pair <- .fit_ml_pair(
        full_fixef_rhs    = "SeqLen * Axis + Accuracy",
        reduced_fixef_rhs = "Axis + Accuracy",
        data = dd
      )
      print(anova(ml_pair$reduced, ml_pair$full))  # Chi-square, df, p-value

      # EMMs & Tukey among sequence lengths, averaged equally over axes
      em_len <- emmeans(mB, ~ SeqLen, weights = "equal")
      cat("\n--- EMMs for SeqLen (collapsed across axes) ---\n"); print(summary(em_len))
      cat("\n--- Pairwise (Tukey) among 6/12/18 within Block ", blk, " ---\n", sep = ""); print(pairs(em_len, adjust = "tukey"))

      # Optional: if SeqLen×Axis significant, show SeqLen contrasts within each Axis
      B3 <- car::Anova(mB, type = 3, test.statistic = "Chisq")
      if ("SeqLen:Axis" %in% rownames(B3) && is.finite(B3["SeqLen:Axis","Pr(>Chisq)"]) &&
          B3["SeqLen:Axis","Pr(>Chisq)"] < 0.05) {
        cat("\n--- SeqLen contrasts within each Axis (shown because SeqLen×Axis significant) ---\n")
        print(pairs(emmeans(mB, ~ SeqLen | Axis), adjust = "tukey"))
      }

      rm(mB, em_len, ml_pair); invisible(gc())
    }
  }
}

# Run the all-axes test-phase comparisons
pairwise_test_blocks_and_lengths_allaxes(rms_combined)
# ==== #2.1c: Execution-phase % difference — Block 4 vs Block 5 (per axis & overall) ====


suppressPackageStartupMessages({
  library(dplyr); library(tidyr); library(tibble)
  library(lme4);  library(lmerTest); library(emmeans)
})

emm_options(lmer.df = "asymptotic")

percent_table_exec_block4_vs5 <- function(rms_combined) {
  if (!exists("sw_all")) {
    stop("This analysis needs `sw_all` (step-wise table) to derive sequence lengths for Blocks 4–5).")
  }

  # Per-trial sequence length lookup (6/12/18)
  seq_lookup <- sw_all %>%
    group_by(subject, Block, trial) %>%
    summarise(step_count = max(step_count, na.rm = TRUE), .groups = "drop") %>%
    filter(Block %in% c(4, 5)) %>%
    transmute(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial),
      SeqLen    = factor(
        paste0(step_count, " steps"),
        levels = c("6 steps","12 steps","18 steps")
      )
    )

  # Execution-only rows for Blocks 4–5, joined with SeqLen
  rb45_exec <- rms_combined %>%
    filter(phase == "Execution", Block %in% c("4","5")) %>%
    mutate(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial)
    ) %>%
    left_join(seq_lookup, by = c("subject","Block_chr","trial_chr")) %>%
    mutate(
      Block = factor(Block, levels = c("4","5")),
      SeqLen = droplevels(SeqLen),
      Trial  = factor(Trial)
    )

  # ----- Per-axis models (adjusted for SeqLen) -----
  axis_rows <- lapply(c(x = "X", y = "Y", z = "Z"), function(ax_lab) {
    col <- paste0("rms_", tolower(ax_lab))
    dd <- rb45_exec %>%
      transmute(subject, Trial, Block, Accuracy, SeqLen, RMS = .data[[col]]) %>%
      tidyr::drop_na(subject, Trial, Block, Accuracy, SeqLen, RMS) %>%
      droplevels()

    if (nrow(dd) == 0 || nlevels(dd$Block) < 2) return(NULL)

    m <- lmer(
      RMS ~ Block + SeqLen + Accuracy + (1 | subject) + (1 | Trial),
      data = dd, REML = TRUE
    )

    em <- summary(emmeans(m, ~ Block)) %>% as_tibble()
    b4 <- em %>% filter(Block == "4") %>% pull(emmean)
    b5 <- em %>% filter(Block == "5") %>% pull(emmean)

    tibble(
      Scope = "Per Axis",
      Axis  = ax_lab,
      Block4_EMM = b4,
      Block5_EMM = b5,
      Diff_5_minus_4 = b5 - b4,
      Percent_Faster_B4_vs_B5 = 100 * (b5 - b4) / b5
    )
  })

  per_axis_tbl <- bind_rows(axis_rows)

  # ----- Overall across axes (adjusted for Axis and SeqLen) -----
  overall_dd <- rb45_exec %>%
    select(subject, Trial, Block, Accuracy, SeqLen, rms_x, rms_y, rms_z) %>%
    tidyr::drop_na(subject, Trial, Block, Accuracy, SeqLen, rms_x, rms_y, rms_z) %>%
    pivot_longer(c(rms_x, rms_y, rms_z), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = dplyr::recode(Axis, "rms_x" = "X", "rms_y" = "Y", "rms_z" = "Z"),
      Axis = factor(Axis, levels = c("X","Y","Z"))
    ) %>%
    drop_na(RMS) %>%
    droplevels()

  overall_row <- {
    if (nrow(overall_dd) > 0 && nlevels(overall_dd$Block) > 1) {
      m_all <- lmer(
        RMS ~ Block + Axis + SeqLen + Accuracy + (1 | subject) + (1 | Trial),
        data = overall_dd, REML = TRUE
      )
      em_all <- summary(emmeans(m_all, ~ Block)) %>% as_tibble()
      b4 <- em_all %>% filter(Block == "4") %>% pull(emmean)
      b5 <- em_all %>% filter(Block == "5") %>% pull(emmean)
      tibble(
        Scope = "Overall (All Axes)",
        Axis  = "All",
        Block4_EMM = b4,
        Block5_EMM = b5,
        Diff_5_minus_4 = b5 - b4,
        Percent_Faster_B4_vs_B5 = 100 * (b5 - b4) / b5
      )
    } else {
      NULL
    }
  }

  # If both parts are empty, return a well-formed empty table (prevents mutate errors)
  if ((is.null(per_axis_tbl) || nrow(per_axis_tbl) == 0) && is.null(overall_row)) {
    message("No valid data for Block 4 vs 5 percentage table after filtering; returning empty table.")
    return(tibble(
      Scope = character(),
      Axis  = character(),
      Block4_EMM = double(),
      Block5_EMM = double(),
      Diff_5_minus_4 = double(),
      Percent_Faster_B4_vs_B5 = double()
    ))
  }

  out_tbl <- bind_rows(
    per_axis_tbl,
    if (is.null(overall_row)) tibble(
      Scope = character(), Axis = character(),
      Block4_EMM = double(), Block5_EMM = double(),
      Diff_5_minus_4 = double(), Percent_Faster_B4_vs_B5 = double()
    ) else overall_row
  )

  if (nrow(out_tbl) == 0) {
    message("No rows in Block 4 vs 5 percentage table; returning empty table.")
    return(out_tbl)
  }

  out_tbl <- out_tbl %>%
    mutate(
      Block4_EMM = round(Block4_EMM, 3),
      Block5_EMM = round(Block5_EMM, 3),
      Diff_5_minus_4 = round(Diff_5_minus_4, 3),
      Percent_Faster_B4_vs_B5 = round(Percent_Faster_B4_vs_B5, 1)
    ) %>%
    arrange(match(Scope, c("Per Axis","Overall (All Axes)")), Axis)

  cat("\n\n==============================================\n")
  cat("Execution phase — % faster of Block 4 vs Block 5\n")
  cat("Percent = 100 * (Block5_EMM - Block4_EMM) / Block5_EMM\n")
  cat("EMMs are adjusted for SeqLen (per-axis) and for Axis + SeqLen (overall).\n")
  cat("==============================================\n")
  print(out_tbl)

  invisible(out_tbl)
}

# ---- Run it ----
percent_table_exec_block4_vs5(rms_combined)
No valid data for Block 4 vs 5 percentage table after filtering; returning empty table.
# A tibble: 0 × 6
# ℹ 6 variables: Scope <chr>, Axis <chr>, Block4_EMM <dbl>, Block5_EMM <dbl>,
#   Diff_5_minus_4 <dbl>, Percent_Faster_B4_vs_B5 <dbl>

#B3.1 Concatenation analysis

# --- Build step-wise datasets for training (Blocks 1–3) and test (Blocks 4–5) ---

# Uses your earlier helper:
# compute_stepwise_rms(tagged_exec_df, max_steps_keep = 18)
# -> one row per detected step per trial: subject, Block, trial, Step, RMS (x/y/z), Axis ("x","y","z"), step_count
# And accuracy join helper:
# add_accuracy_to(df_core, df_lookup = all_data_mixed)

# 1) Compute all step-wise rows (up to 18) from tagged_data
stepwise_all <- compute_stepwise_rms(tagged_data, max_steps_keep = 18) %>%
  # Add trial-level Accuracy
  add_accuracy_to(., all_data_mixed) %>%
  # Ensure IDs/Axis are present in the expected format
  dplyr::mutate(
    trial_id = if ("trial_id" %in% names(.)) trial_id else interaction(subject, Block, trial, drop = TRUE),
    Axis     = factor(as.character(Axis), levels = c("x","y","z"))
  )
Warning in left_join(., acc_tbl, by = c("subject", "Block", "trial")): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 1 of `x` matches multiple rows in `y`.
ℹ Row 3021 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
  "many-to-many"` to silence this warning.
# 2) TRAINING subsets used by .report_step_block(...)
# Block 1 -> 6 steps nominally
stepwise_6  <- stepwise_all %>% dplyr::filter(Block == 1)
# Block 2 -> 12 steps nominally
stepwise_12 <- stepwise_all %>% dplyr::filter(Block == 2)
# Block 3 -> 18 steps nominally
stepwise_18 <- stepwise_all %>% dplyr::filter(Block == 3)

# 3) TEST subsets by actual per-trial step_count (Blocks 4–5, mixed sequence lengths)
# Block 4
sw_b4_6  <- stepwise_all %>% dplyr::filter(Block == 4, step_count == 6)
sw_b4_12 <- stepwise_all %>% dplyr::filter(Block == 4, step_count == 12)
sw_b4_18 <- stepwise_all %>% dplyr::filter(Block == 4, step_count == 18)

# Block 5
sw_b5_6  <- stepwise_all %>% dplyr::filter(Block == 5, step_count == 6)
sw_b5_12 <- stepwise_all %>% dplyr::filter(Block == 5, step_count == 12)
sw_b5_18 <- stepwise_all %>% dplyr::filter(Block == 5, step_count == 18)
# ---- Option A (fixed): identical schema/names, faster & RAM-light ----
library(data.table)
library(dplyr)

# Helper: ensure step_count exists even if compute_stepwise_rms did not add it (safety net)
ensure_step_count <- function(df) {
  if (!("step_count" %in% names(df))) {
    df %>%
      group_by(subject, Block, trial) %>%
      mutate(step_count = max(Step, na.rm = TRUE)) %>%  # or n_distinct(Step) if you prefer
      ungroup()
  } else df
}

# 1) Trial-level lookup ONLY for Accuracy (step_count is NOT in all_data_mixed)
acc_lookup <- all_data_mixed %>%
  dplyr::distinct(subject, Block, trial, Accuracy) %>%
  as.data.table()
setkey(acc_lookup, subject, Block, trial)

# 2) Compute step-wise (keep ALL columns; nothing dropped)
stepwise_all <- compute_stepwise_rms(tagged_data, max_steps_keep = 18) %>%
  ensure_step_count() %>%                             # guarantees step_count exists
  as.data.table()

# 3) Fast in-place join that adds only Accuracy (no step_count from lookup)
setkey(stepwise_all, subject, Block, trial)
stepwise_all[acc_lookup, Accuracy := i.Accuracy]

# 4) Ensure Axis levels and trial_id exactly like your slow version
if ("Axis" %in% names(stepwise_all)) {
  stepwise_all[, Axis := factor(as.character(Axis), levels = c("x","y","z"))]
}
if (!("trial_id" %in% names(stepwise_all))) {
  stepwise_all[, trial_id := interaction(subject, Block, trial, drop = TRUE)]
}

# 5) Back to tibble if downstream expects it
stepwise_all <- tibble::as_tibble(stepwise_all)

# --- TRAINING subsets (Blocks 1–3), names unchanged ---
stepwise_6  <- dplyr::filter(stepwise_all, Block == 1)
stepwise_12 <- dplyr::filter(stepwise_all, Block == 2)
stepwise_18 <- dplyr::filter(stepwise_all, Block == 3)

# --- TEST subsets (Blocks 4–5, mixed), names unchanged ---
sw_b4_6  <- dplyr::filter(stepwise_all, Block == 4, step_count == 6)
sw_b4_12 <- dplyr::filter(stepwise_all, Block == 4, step_count == 12)
sw_b4_18 <- dplyr::filter(stepwise_all, Block == 4, step_count == 18)

sw_b5_6  <- dplyr::filter(stepwise_all, Block == 5, step_count == 6)
sw_b5_12 <- dplyr::filter(stepwise_all, Block == 5, step_count == 12)
sw_b5_18 <- dplyr::filter(stepwise_all, Block == 5, step_count == 18)

# Optional sanity checks
stopifnot("Accuracy" %in% names(stepwise_all), "step_count" %in% names(stepwise_all))
if ("Axis" %in% names(stepwise_all)) stopifnot(identical(levels(stepwise_all$Axis), c("x","y","z")))
# ==== TRAINING (Blocks 1–3): stepwise LMM + χ² + EMMs + all-pairs + adjacent (per block × axis) ====

suppressPackageStartupMessages({
  library(dplyr); library(lme4); library(lmerTest); library(emmeans); library(car)
})
emm_options(lmer.df = "asymptotic")

.report_step_block <- function(df_block, block_label) {
  for (ax in c("x","y","z")) {
    dd <- df_block %>% filter(Axis == ax)
    if (nrow(dd) == 0) next

    dd <- dd %>%
      mutate(
        StepF    = factor(Step, levels = sort(unique(Step))),
        subject  = factor(subject),
        trial_id = factor(trial_id),
        Accuracy = droplevels(Accuracy)
      )

    cat("\n\n==============================\n",
        "TRAINING | Block ", block_label, " | Axis ", toupper(ax),
        "\n==============================\n", sep = "")

    m <- suppressWarnings(lmer(RMS ~ StepF + Accuracy + (1|subject) + (1|trial_id),
                               data = dd, REML = TRUE))

    cat("\nType II Wald χ² (StepF & Accuracy):\n")
    print(car::Anova(m, type = 2, test.statistic = "Chisq"))

    if (nlevels(dd$Accuracy) >= 2) {
      # EMMs by Accuracy
      em <- emmeans(m, ~ StepF | Accuracy)
      cat("\nEMMs per step | Accuracy:\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps | Accuracy:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm) | Accuracy:\n")
      print(contrast(em, method = "consec", by = "Accuracy", adjust = "holm"))
    } else {
      # Collapsed over Accuracy
      em <- emmeans(m, ~ StepF)
      cat("\nEMMs per step:\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm):\n")
      print(contrast(em, method = "consec", adjust = "holm"))
    }

    rm(m, em); invisible(gc())
  }
}

# Run training (Blocks 1,2,3)
.report_step_block(stepwise_6,  "1 (6 steps)")


==============================
TRAINING | Block 1 (6 steps) | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    179.588  5  < 2.2e-16 ***
Accuracy  10.277  1   0.001347 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.658 0.115 Inf     0.433     0.884
 2      0.844 0.115 Inf     0.618     1.070
 3      0.957 0.115 Inf     0.731     1.183
 4      0.859 0.115 Inf     0.633     1.085
 5      0.860 0.115 Inf     0.634     1.085
 6      0.711 0.115 Inf     0.485     0.937

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.729 0.114 Inf     0.506     0.953
 2      0.915 0.114 Inf     0.692     1.138
 3      1.028 0.114 Inf     0.805     1.251
 4      0.930 0.114 Inf     0.707     1.153
 5      0.931 0.114 Inf     0.707     1.154
 6      0.782 0.114 Inf     0.559     1.005

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.185713 0.0259 Inf  -7.184  <.0001
 StepF1 - StepF3 -0.298481 0.0259 Inf -11.546  <.0001
 StepF1 - StepF4 -0.200559 0.0259 Inf  -7.758  <.0001
 StepF1 - StepF5 -0.201190 0.0259 Inf  -7.771  <.0001
 StepF1 - StepF6 -0.052615 0.0260 Inf  -2.025  0.3279
 StepF2 - StepF3 -0.112768 0.0259 Inf  -4.362  0.0002
 StepF2 - StepF4 -0.014845 0.0259 Inf  -0.574  0.9927
 StepF2 - StepF5 -0.015477 0.0259 Inf  -0.598  0.9912
 StepF2 - StepF6  0.133098 0.0260 Inf   5.123  <.0001
 StepF3 - StepF4  0.097923 0.0259 Inf   3.788  0.0021
 StepF3 - StepF5  0.097291 0.0259 Inf   3.758  0.0024
 StepF3 - StepF6  0.245866 0.0260 Inf   9.463  <.0001
 StepF4 - StepF5 -0.000631 0.0259 Inf  -0.024  1.0000
 StepF4 - StepF6  0.147944 0.0260 Inf   5.694  <.0001
 StepF5 - StepF6  0.148575 0.0260 Inf   5.711  <.0001

Accuracy = 1:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.185713 0.0259 Inf  -7.184  <.0001
 StepF1 - StepF3 -0.298481 0.0259 Inf -11.546  <.0001
 StepF1 - StepF4 -0.200559 0.0259 Inf  -7.758  <.0001
 StepF1 - StepF5 -0.201190 0.0259 Inf  -7.771  <.0001
 StepF1 - StepF6 -0.052615 0.0260 Inf  -2.025  0.3279
 StepF2 - StepF3 -0.112768 0.0259 Inf  -4.362  0.0002
 StepF2 - StepF4 -0.014845 0.0259 Inf  -0.574  0.9927
 StepF2 - StepF5 -0.015477 0.0259 Inf  -0.598  0.9912
 StepF2 - StepF6  0.133098 0.0260 Inf   5.123  <.0001
 StepF3 - StepF4  0.097923 0.0259 Inf   3.788  0.0021
 StepF3 - StepF5  0.097291 0.0259 Inf   3.758  0.0024
 StepF3 - StepF6  0.245866 0.0260 Inf   9.463  <.0001
 StepF4 - StepF5 -0.000631 0.0259 Inf  -0.024  1.0000
 StepF4 - StepF6  0.147944 0.0260 Inf   5.694  <.0001
 StepF5 - StepF6  0.148575 0.0260 Inf   5.711  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast         estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.185713 0.0259 Inf   7.184  <.0001
 StepF3 - StepF2  0.112768 0.0259 Inf   4.362  <.0001
 StepF4 - StepF3 -0.097923 0.0259 Inf  -3.788  0.0003
 StepF5 - StepF4  0.000631 0.0259 Inf   0.024  0.9805
 StepF6 - StepF5 -0.148575 0.0260 Inf  -5.711  <.0001

Accuracy = 1:
 contrast         estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.185713 0.0259 Inf   7.184  <.0001
 StepF3 - StepF2  0.112768 0.0259 Inf   4.362  <.0001
 StepF4 - StepF3 -0.097923 0.0259 Inf  -3.788  0.0003
 StepF5 - StepF4  0.000631 0.0259 Inf   0.024  0.9805
 StepF6 - StepF5 -0.148575 0.0260 Inf  -5.711  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TRAINING | Block 1 (6 steps) | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    73.3575  5  2.048e-14 ***
Accuracy  8.4768  1   0.003597 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.772 0.138 Inf     0.501      1.04
 2      0.852 0.138 Inf     0.581      1.12
 3      0.987 0.138 Inf     0.716      1.26
 4      0.884 0.138 Inf     0.613      1.16
 5      0.804 0.138 Inf     0.533      1.07
 6      0.840 0.138 Inf     0.569      1.11

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.846 0.137 Inf     0.578      1.11
 2      0.926 0.137 Inf     0.658      1.19
 3      1.061 0.137 Inf     0.793      1.33
 4      0.958 0.137 Inf     0.690      1.23
 5      0.877 0.137 Inf     0.609      1.15
 6      0.914 0.137 Inf     0.645      1.18

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.0804 0.0277 Inf  -2.907  0.0424
 StepF1 - StepF3  -0.2152 0.0277 Inf  -7.781  <.0001
 StepF1 - StepF4  -0.1121 0.0277 Inf  -4.055  0.0007
 StepF1 - StepF5  -0.0316 0.0277 Inf  -1.142  0.8640
 StepF1 - StepF6  -0.0678 0.0278 Inf  -2.441  0.1423
 StepF2 - StepF3  -0.1348 0.0277 Inf  -4.874  <.0001
 StepF2 - StepF4  -0.0317 0.0277 Inf  -1.147  0.8615
 StepF2 - StepF5   0.0488 0.0277 Inf   1.762  0.4909
 StepF2 - StepF6   0.0126 0.0278 Inf   0.452  0.9977
 StepF3 - StepF4   0.1030 0.0277 Inf   3.727  0.0027
 StepF3 - StepF5   0.1836 0.0277 Inf   6.629  <.0001
 StepF3 - StepF6   0.1473 0.0278 Inf   5.301  <.0001
 StepF4 - StepF5   0.0805 0.0277 Inf   2.907  0.0424
 StepF4 - StepF6   0.0443 0.0278 Inf   1.593  0.6031
 StepF5 - StepF6  -0.0362 0.0278 Inf  -1.302  0.7842

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.0804 0.0277 Inf  -2.907  0.0424
 StepF1 - StepF3  -0.2152 0.0277 Inf  -7.781  <.0001
 StepF1 - StepF4  -0.1121 0.0277 Inf  -4.055  0.0007
 StepF1 - StepF5  -0.0316 0.0277 Inf  -1.142  0.8640
 StepF1 - StepF6  -0.0678 0.0278 Inf  -2.441  0.1423
 StepF2 - StepF3  -0.1348 0.0277 Inf  -4.874  <.0001
 StepF2 - StepF4  -0.0317 0.0277 Inf  -1.147  0.8615
 StepF2 - StepF5   0.0488 0.0277 Inf   1.762  0.4909
 StepF2 - StepF6   0.0126 0.0278 Inf   0.452  0.9977
 StepF3 - StepF4   0.1030 0.0277 Inf   3.727  0.0027
 StepF3 - StepF5   0.1836 0.0277 Inf   6.629  <.0001
 StepF3 - StepF6   0.1473 0.0278 Inf   5.301  <.0001
 StepF4 - StepF5   0.0805 0.0277 Inf   2.907  0.0424
 StepF4 - StepF6   0.0443 0.0278 Inf   1.593  0.6031
 StepF5 - StepF6  -0.0362 0.0278 Inf  -1.302  0.7842

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.0804 0.0277 Inf   2.907  0.0109
 StepF3 - StepF2   0.1348 0.0277 Inf   4.874  <.0001
 StepF4 - StepF3  -0.1030 0.0277 Inf  -3.727  0.0008
 StepF5 - StepF4  -0.0805 0.0277 Inf  -2.907  0.0109
 StepF6 - StepF5   0.0362 0.0278 Inf   1.302  0.1929

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.0804 0.0277 Inf   2.907  0.0109
 StepF3 - StepF2   0.1348 0.0277 Inf   4.874  <.0001
 StepF4 - StepF3  -0.1030 0.0277 Inf  -3.727  0.0008
 StepF5 - StepF4  -0.0805 0.0277 Inf  -2.907  0.0109
 StepF6 - StepF5   0.0362 0.0278 Inf   1.302  0.1929

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TRAINING | Block 1 (6 steps) | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    112.9170  5  < 2.2e-16 ***
Accuracy   7.4374  1   0.006388 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.43 0.215 Inf      1.01      1.85
 2       1.71 0.215 Inf      1.28      2.13
 3       1.83 0.215 Inf      1.41      2.26
 4       1.72 0.215 Inf      1.30      2.14
 5       1.79 0.215 Inf      1.36      2.21
 6       1.50 0.215 Inf      1.08      1.92

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.57 0.211 Inf      1.15      1.98
 2       1.84 0.211 Inf      1.43      2.25
 3       1.97 0.211 Inf      1.55      2.38
 4       1.85 0.211 Inf      1.44      2.27
 5       1.92 0.211 Inf      1.51      2.33
 6       1.63 0.211 Inf      1.22      2.04

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2742 0.0480 Inf  -5.714  <.0001
 StepF1 - StepF3  -0.4029 0.0480 Inf  -8.397  <.0001
 StepF1 - StepF4  -0.2867 0.0480 Inf  -5.974  <.0001
 StepF1 - StepF5  -0.3540 0.0481 Inf  -7.367  <.0001
 StepF1 - StepF6  -0.0648 0.0482 Inf  -1.344  0.7602
 StepF2 - StepF3  -0.1288 0.0480 Inf  -2.684  0.0784
 StepF2 - StepF4  -0.0125 0.0480 Inf  -0.261  0.9998
 StepF2 - StepF5  -0.0799 0.0481 Inf  -1.662  0.5573
 StepF2 - StepF6   0.2093 0.0482 Inf   4.340  0.0002
 StepF3 - StepF4   0.1163 0.0480 Inf   2.423  0.1481
 StepF3 - StepF5   0.0489 0.0481 Inf   1.018  0.9121
 StepF3 - StepF6   0.3381 0.0482 Inf   7.009  <.0001
 StepF4 - StepF5  -0.0674 0.0481 Inf  -1.402  0.7261
 StepF4 - StepF6   0.2218 0.0482 Inf   4.599  0.0001
 StepF5 - StepF6   0.2892 0.0483 Inf   5.988  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2742 0.0480 Inf  -5.714  <.0001
 StepF1 - StepF3  -0.4029 0.0480 Inf  -8.397  <.0001
 StepF1 - StepF4  -0.2867 0.0480 Inf  -5.974  <.0001
 StepF1 - StepF5  -0.3540 0.0481 Inf  -7.367  <.0001
 StepF1 - StepF6  -0.0648 0.0482 Inf  -1.344  0.7602
 StepF2 - StepF3  -0.1288 0.0480 Inf  -2.684  0.0784
 StepF2 - StepF4  -0.0125 0.0480 Inf  -0.261  0.9998
 StepF2 - StepF5  -0.0799 0.0481 Inf  -1.662  0.5573
 StepF2 - StepF6   0.2093 0.0482 Inf   4.340  0.0002
 StepF3 - StepF4   0.1163 0.0480 Inf   2.423  0.1481
 StepF3 - StepF5   0.0489 0.0481 Inf   1.018  0.9121
 StepF3 - StepF6   0.3381 0.0482 Inf   7.009  <.0001
 StepF4 - StepF5  -0.0674 0.0481 Inf  -1.402  0.7261
 StepF4 - StepF6   0.2218 0.0482 Inf   4.599  0.0001
 StepF5 - StepF6   0.2892 0.0483 Inf   5.988  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2742 0.0480 Inf   5.714  <.0001
 StepF3 - StepF2   0.1288 0.0480 Inf   2.684  0.0218
 StepF4 - StepF3  -0.1163 0.0480 Inf  -2.423  0.0308
 StepF5 - StepF4   0.0674 0.0481 Inf   1.402  0.1610
 StepF6 - StepF5  -0.2892 0.0483 Inf  -5.988  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2742 0.0480 Inf   5.714  <.0001
 StepF3 - StepF2   0.1288 0.0480 Inf   2.684  0.0218
 StepF4 - StepF3  -0.1163 0.0480 Inf  -2.423  0.0308
 StepF5 - StepF4   0.0674 0.0481 Inf   1.402  0.1610
 StepF6 - StepF5  -0.2892 0.0483 Inf  -5.988  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
.report_step_block(stepwise_12, "2 (12 steps)")


==============================
TRAINING | Block 2 (12 steps) | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    220.005 11    < 2e-16 ***
Accuracy   2.943  1    0.08625 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.616 0.0736 Inf     0.471     0.760
 2      0.815 0.0736 Inf     0.671     0.960
 3      0.795 0.0736 Inf     0.650     0.939
 4      0.685 0.0736 Inf     0.540     0.829
 5      0.688 0.0736 Inf     0.544     0.832
 6      0.695 0.0736 Inf     0.551     0.840
 7      0.628 0.0736 Inf     0.483     0.772
 8      0.625 0.0736 Inf     0.481     0.769
 9      0.643 0.0736 Inf     0.499     0.787
 10     0.654 0.0736 Inf     0.510     0.799
 11     0.608 0.0736 Inf     0.464     0.752
 12     0.539 0.0736 Inf     0.395     0.683

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.655 0.0726 Inf     0.513     0.797
 2      0.855 0.0726 Inf     0.713     0.997
 3      0.834 0.0726 Inf     0.692     0.976
 4      0.724 0.0726 Inf     0.582     0.866
 5      0.727 0.0726 Inf     0.585     0.870
 6      0.735 0.0726 Inf     0.592     0.877
 7      0.667 0.0726 Inf     0.525     0.809
 8      0.664 0.0726 Inf     0.522     0.807
 9      0.682 0.0726 Inf     0.540     0.825
 10     0.694 0.0726 Inf     0.551     0.836
 11     0.647 0.0726 Inf     0.505     0.790
 12     0.578 0.0726 Inf     0.436     0.721

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.19980 0.0246 Inf  -8.136  <.0001
 StepF1 - StepF3   -0.17892 0.0246 Inf  -7.286  <.0001
 StepF1 - StepF4   -0.06889 0.0246 Inf  -2.805  0.1777
 StepF1 - StepF5   -0.07242 0.0246 Inf  -2.949  0.1241
 StepF1 - StepF6   -0.07963 0.0246 Inf  -3.242  0.0541
 StepF1 - StepF7   -0.01188 0.0246 Inf  -0.484  1.0000
 StepF1 - StepF8   -0.00943 0.0246 Inf  -0.384  1.0000
 StepF1 - StepF9   -0.02731 0.0246 Inf  -1.112  0.9942
 StepF1 - StepF10  -0.03863 0.0246 Inf  -1.573  0.9190
 StepF1 - StepF11   0.00776 0.0246 Inf   0.316  1.0000
 StepF1 - StepF12   0.07663 0.0246 Inf   3.117  0.0784
 StepF2 - StepF3    0.02088 0.0246 Inf   0.850  0.9995
 StepF2 - StepF4    0.13092 0.0246 Inf   5.331  <.0001
 StepF2 - StepF5    0.12739 0.0246 Inf   5.187  <.0001
 StepF2 - StepF6    0.12018 0.0246 Inf   4.893  0.0001
 StepF2 - StepF7    0.18792 0.0246 Inf   7.652  <.0001
 StepF2 - StepF8    0.19037 0.0246 Inf   7.752  <.0001
 StepF2 - StepF9    0.17250 0.0246 Inf   7.024  <.0001
 StepF2 - StepF10   0.16117 0.0246 Inf   6.563  <.0001
 StepF2 - StepF11   0.20756 0.0246 Inf   8.452  <.0001
 StepF2 - StepF12   0.27643 0.0246 Inf  11.244  <.0001
 StepF3 - StepF4    0.11004 0.0246 Inf   4.481  0.0005
 StepF3 - StepF5    0.10650 0.0246 Inf   4.337  0.0009
 StepF3 - StepF6    0.09929 0.0246 Inf   4.043  0.0031
 StepF3 - StepF7    0.16704 0.0246 Inf   6.802  <.0001
 StepF3 - StepF8    0.16949 0.0246 Inf   6.901  <.0001
 StepF3 - StepF9    0.15162 0.0246 Inf   6.174  <.0001
 StepF3 - StepF10   0.14029 0.0246 Inf   5.713  <.0001
 StepF3 - StepF11   0.18668 0.0246 Inf   7.601  <.0001
 StepF3 - StepF12   0.25555 0.0246 Inf  10.395  <.0001
 StepF4 - StepF5   -0.00353 0.0246 Inf  -0.144  1.0000
 StepF4 - StepF6   -0.01074 0.0246 Inf  -0.437  1.0000
 StepF4 - StepF7    0.05700 0.0246 Inf   2.321  0.4614
 StepF4 - StepF8    0.05945 0.0246 Inf   2.421  0.3916
 StepF4 - StepF9    0.04158 0.0246 Inf   1.693  0.8719
 StepF4 - StepF10   0.03025 0.0246 Inf   1.232  0.9865
 StepF4 - StepF11   0.07664 0.0246 Inf   3.121  0.0775
 StepF4 - StepF12   0.14551 0.0246 Inf   5.919  <.0001
 StepF5 - StepF6   -0.00721 0.0246 Inf  -0.294  1.0000
 StepF5 - StepF7    0.06053 0.0246 Inf   2.465  0.3623
 StepF5 - StepF8    0.06299 0.0246 Inf   2.565  0.2999
 StepF5 - StepF9    0.04511 0.0246 Inf   1.837  0.7977
 StepF5 - StepF10   0.03379 0.0246 Inf   1.376  0.9682
 StepF5 - StepF11   0.08017 0.0246 Inf   3.265  0.0505
 StepF5 - StepF12   0.14905 0.0246 Inf   6.063  <.0001
 StepF6 - StepF7    0.06774 0.0246 Inf   2.758  0.1981
 StepF6 - StepF8    0.07020 0.0246 Inf   2.858  0.1561
 StepF6 - StepF9    0.05232 0.0246 Inf   2.130  0.6006
 StepF6 - StepF10   0.04100 0.0246 Inf   1.669  0.8822
 StepF6 - StepF11   0.08738 0.0246 Inf   3.558  0.0193
 StepF6 - StepF12   0.15626 0.0246 Inf   6.356  <.0001
 StepF7 - StepF8    0.00245 0.0246 Inf   0.100  1.0000
 StepF7 - StepF9   -0.01542 0.0246 Inf  -0.628  1.0000
 StepF7 - StepF10  -0.02675 0.0246 Inf  -1.089  0.9952
 StepF7 - StepF11   0.01964 0.0246 Inf   0.800  0.9997
 StepF7 - StepF12   0.08851 0.0246 Inf   3.600  0.0166
 StepF8 - StepF9   -0.01787 0.0246 Inf  -0.728  0.9999
 StepF8 - StepF10  -0.02920 0.0246 Inf  -1.189  0.9899
 StepF8 - StepF11   0.01719 0.0246 Inf   0.700  0.9999
 StepF8 - StepF12   0.08606 0.0246 Inf   3.501  0.0235
 StepF9 - StepF10  -0.01132 0.0246 Inf  -0.461  1.0000
 StepF9 - StepF11   0.03506 0.0246 Inf   1.428  0.9583
 StepF9 - StepF12   0.10393 0.0246 Inf   4.228  0.0014
 StepF10 - StepF11  0.04639 0.0246 Inf   1.889  0.7666
 StepF10 - StepF12  0.11526 0.0246 Inf   4.688  0.0002
 StepF11 - StepF12  0.06887 0.0246 Inf   2.801  0.1791

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.19980 0.0246 Inf  -8.136  <.0001
 StepF1 - StepF3   -0.17892 0.0246 Inf  -7.286  <.0001
 StepF1 - StepF4   -0.06889 0.0246 Inf  -2.805  0.1777
 StepF1 - StepF5   -0.07242 0.0246 Inf  -2.949  0.1241
 StepF1 - StepF6   -0.07963 0.0246 Inf  -3.242  0.0541
 StepF1 - StepF7   -0.01188 0.0246 Inf  -0.484  1.0000
 StepF1 - StepF8   -0.00943 0.0246 Inf  -0.384  1.0000
 StepF1 - StepF9   -0.02731 0.0246 Inf  -1.112  0.9942
 StepF1 - StepF10  -0.03863 0.0246 Inf  -1.573  0.9190
 StepF1 - StepF11   0.00776 0.0246 Inf   0.316  1.0000
 StepF1 - StepF12   0.07663 0.0246 Inf   3.117  0.0784
 StepF2 - StepF3    0.02088 0.0246 Inf   0.850  0.9995
 StepF2 - StepF4    0.13092 0.0246 Inf   5.331  <.0001
 StepF2 - StepF5    0.12739 0.0246 Inf   5.187  <.0001
 StepF2 - StepF6    0.12018 0.0246 Inf   4.893  0.0001
 StepF2 - StepF7    0.18792 0.0246 Inf   7.652  <.0001
 StepF2 - StepF8    0.19037 0.0246 Inf   7.752  <.0001
 StepF2 - StepF9    0.17250 0.0246 Inf   7.024  <.0001
 StepF2 - StepF10   0.16117 0.0246 Inf   6.563  <.0001
 StepF2 - StepF11   0.20756 0.0246 Inf   8.452  <.0001
 StepF2 - StepF12   0.27643 0.0246 Inf  11.244  <.0001
 StepF3 - StepF4    0.11004 0.0246 Inf   4.481  0.0005
 StepF3 - StepF5    0.10650 0.0246 Inf   4.337  0.0009
 StepF3 - StepF6    0.09929 0.0246 Inf   4.043  0.0031
 StepF3 - StepF7    0.16704 0.0246 Inf   6.802  <.0001
 StepF3 - StepF8    0.16949 0.0246 Inf   6.901  <.0001
 StepF3 - StepF9    0.15162 0.0246 Inf   6.174  <.0001
 StepF3 - StepF10   0.14029 0.0246 Inf   5.713  <.0001
 StepF3 - StepF11   0.18668 0.0246 Inf   7.601  <.0001
 StepF3 - StepF12   0.25555 0.0246 Inf  10.395  <.0001
 StepF4 - StepF5   -0.00353 0.0246 Inf  -0.144  1.0000
 StepF4 - StepF6   -0.01074 0.0246 Inf  -0.437  1.0000
 StepF4 - StepF7    0.05700 0.0246 Inf   2.321  0.4614
 StepF4 - StepF8    0.05945 0.0246 Inf   2.421  0.3916
 StepF4 - StepF9    0.04158 0.0246 Inf   1.693  0.8719
 StepF4 - StepF10   0.03025 0.0246 Inf   1.232  0.9865
 StepF4 - StepF11   0.07664 0.0246 Inf   3.121  0.0775
 StepF4 - StepF12   0.14551 0.0246 Inf   5.919  <.0001
 StepF5 - StepF6   -0.00721 0.0246 Inf  -0.294  1.0000
 StepF5 - StepF7    0.06053 0.0246 Inf   2.465  0.3623
 StepF5 - StepF8    0.06299 0.0246 Inf   2.565  0.2999
 StepF5 - StepF9    0.04511 0.0246 Inf   1.837  0.7977
 StepF5 - StepF10   0.03379 0.0246 Inf   1.376  0.9682
 StepF5 - StepF11   0.08017 0.0246 Inf   3.265  0.0505
 StepF5 - StepF12   0.14905 0.0246 Inf   6.063  <.0001
 StepF6 - StepF7    0.06774 0.0246 Inf   2.758  0.1981
 StepF6 - StepF8    0.07020 0.0246 Inf   2.858  0.1561
 StepF6 - StepF9    0.05232 0.0246 Inf   2.130  0.6006
 StepF6 - StepF10   0.04100 0.0246 Inf   1.669  0.8822
 StepF6 - StepF11   0.08738 0.0246 Inf   3.558  0.0193
 StepF6 - StepF12   0.15626 0.0246 Inf   6.356  <.0001
 StepF7 - StepF8    0.00245 0.0246 Inf   0.100  1.0000
 StepF7 - StepF9   -0.01542 0.0246 Inf  -0.628  1.0000
 StepF7 - StepF10  -0.02675 0.0246 Inf  -1.089  0.9952
 StepF7 - StepF11   0.01964 0.0246 Inf   0.800  0.9997
 StepF7 - StepF12   0.08851 0.0246 Inf   3.600  0.0166
 StepF8 - StepF9   -0.01787 0.0246 Inf  -0.728  0.9999
 StepF8 - StepF10  -0.02920 0.0246 Inf  -1.189  0.9899
 StepF8 - StepF11   0.01719 0.0246 Inf   0.700  0.9999
 StepF8 - StepF12   0.08606 0.0246 Inf   3.501  0.0235
 StepF9 - StepF10  -0.01132 0.0246 Inf  -0.461  1.0000
 StepF9 - StepF11   0.03506 0.0246 Inf   1.428  0.9583
 StepF9 - StepF12   0.10393 0.0246 Inf   4.228  0.0014
 StepF10 - StepF11  0.04639 0.0246 Inf   1.889  0.7666
 StepF10 - StepF12  0.11526 0.0246 Inf   4.688  0.0002
 StepF11 - StepF12  0.06887 0.0246 Inf   2.801  0.1791

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.19980 0.0246 Inf   8.136  <.0001
 StepF3 - StepF2   -0.02088 0.0246 Inf  -0.850  1.0000
 StepF4 - StepF3   -0.11004 0.0246 Inf  -4.481  0.0001
 StepF5 - StepF4    0.00353 0.0246 Inf   0.144  1.0000
 StepF6 - StepF5    0.00721 0.0246 Inf   0.294  1.0000
 StepF7 - StepF6   -0.06774 0.0246 Inf  -2.758  0.0465
 StepF8 - StepF7   -0.00245 0.0246 Inf  -0.100  1.0000
 StepF9 - StepF8    0.01787 0.0246 Inf   0.728  1.0000
 StepF10 - StepF9   0.01132 0.0246 Inf   0.461  1.0000
 StepF11 - StepF10 -0.04639 0.0246 Inf  -1.889  0.4124
 StepF12 - StepF11 -0.06887 0.0246 Inf  -2.801  0.0458

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.19980 0.0246 Inf   8.136  <.0001
 StepF3 - StepF2   -0.02088 0.0246 Inf  -0.850  1.0000
 StepF4 - StepF3   -0.11004 0.0246 Inf  -4.481  0.0001
 StepF5 - StepF4    0.00353 0.0246 Inf   0.144  1.0000
 StepF6 - StepF5    0.00721 0.0246 Inf   0.294  1.0000
 StepF7 - StepF6   -0.06774 0.0246 Inf  -2.758  0.0465
 StepF8 - StepF7   -0.00245 0.0246 Inf  -0.100  1.0000
 StepF9 - StepF8    0.01787 0.0246 Inf   0.728  1.0000
 StepF10 - StepF9   0.01132 0.0246 Inf   0.461  1.0000
 StepF11 - StepF10 -0.04639 0.0246 Inf  -1.889  0.4124
 StepF12 - StepF11 -0.06887 0.0246 Inf  -2.801  0.0458

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TRAINING | Block 2 (12 steps) | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    128.3750 11    < 2e-16 ***
Accuracy   4.9514  1    0.02607 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.776 0.0863 Inf     0.606     0.945
 2      0.767 0.0863 Inf     0.598     0.936
 3      0.862 0.0863 Inf     0.693     1.031
 4      0.761 0.0863 Inf     0.592     0.930
 5      0.706 0.0863 Inf     0.537     0.875
 6      0.722 0.0863 Inf     0.553     0.891
 7      0.801 0.0863 Inf     0.632     0.970
 8      0.675 0.0863 Inf     0.506     0.844
 9      0.698 0.0863 Inf     0.528     0.867
 10     0.714 0.0863 Inf     0.545     0.883
 11     0.675 0.0863 Inf     0.506     0.844
 12     0.600 0.0863 Inf     0.431     0.770

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.830 0.0854 Inf     0.663     0.997
 2      0.822 0.0854 Inf     0.654     0.989
 3      0.916 0.0854 Inf     0.749     1.084
 4      0.816 0.0854 Inf     0.648     0.983
 5      0.761 0.0854 Inf     0.593     0.928
 6      0.776 0.0854 Inf     0.609     0.943
 7      0.855 0.0854 Inf     0.688     1.022
 8      0.729 0.0854 Inf     0.562     0.896
 9      0.752 0.0854 Inf     0.585     0.919
 10     0.769 0.0854 Inf     0.601     0.936
 11     0.729 0.0854 Inf     0.562     0.897
 12     0.655 0.0854 Inf     0.488     0.822

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.008381 0.0283 Inf   0.296  1.0000
 StepF1 - StepF3   -0.086446 0.0283 Inf  -3.050  0.0947
 StepF1 - StepF4    0.014324 0.0283 Inf   0.505  1.0000
 StepF1 - StepF5    0.069302 0.0283 Inf   2.445  0.3755
 StepF1 - StepF6    0.053860 0.0283 Inf   1.900  0.7595
 StepF1 - StepF7   -0.025134 0.0283 Inf  -0.887  0.9993
 StepF1 - StepF8    0.100789 0.0283 Inf   3.556  0.0195
 StepF1 - StepF9    0.078038 0.0283 Inf   2.753  0.2006
 StepF1 - StepF10   0.061207 0.0283 Inf   2.159  0.5795
 StepF1 - StepF11   0.100532 0.0283 Inf   3.547  0.0201
 StepF1 - StepF12   0.175112 0.0284 Inf   6.171  <.0001
 StepF2 - StepF3   -0.094827 0.0283 Inf  -3.345  0.0392
 StepF2 - StepF4    0.005944 0.0283 Inf   0.210  1.0000
 StepF2 - StepF5    0.060922 0.0283 Inf   2.149  0.5869
 StepF2 - StepF6    0.045479 0.0283 Inf   1.604  0.9080
 StepF2 - StepF7   -0.033514 0.0283 Inf  -1.182  0.9903
 StepF2 - StepF8    0.092408 0.0283 Inf   3.260  0.0512
 StepF2 - StepF9    0.069657 0.0283 Inf   2.457  0.3672
 StepF2 - StepF10   0.052826 0.0283 Inf   1.864  0.7819
 StepF2 - StepF11   0.092151 0.0283 Inf   3.251  0.0527
 StepF2 - StepF12   0.166731 0.0284 Inf   5.876  <.0001
 StepF3 - StepF4    0.100770 0.0283 Inf   3.555  0.0195
 StepF3 - StepF5    0.155748 0.0283 Inf   5.495  <.0001
 StepF3 - StepF6    0.140306 0.0283 Inf   4.950  <.0001
 StepF3 - StepF7    0.061312 0.0283 Inf   2.163  0.5768
 StepF3 - StepF8    0.187235 0.0283 Inf   6.605  <.0001
 StepF3 - StepF9    0.164484 0.0283 Inf   5.803  <.0001
 StepF3 - StepF10   0.147653 0.0283 Inf   5.209  <.0001
 StepF3 - StepF11   0.186978 0.0283 Inf   6.596  <.0001
 StepF3 - StepF12   0.261558 0.0284 Inf   9.218  <.0001
 StepF4 - StepF5    0.054978 0.0283 Inf   1.940  0.7343
 StepF4 - StepF6    0.039536 0.0283 Inf   1.395  0.9648
 StepF4 - StepF7   -0.039458 0.0283 Inf  -1.392  0.9653
 StepF4 - StepF8    0.086464 0.0283 Inf   3.050  0.0945
 StepF4 - StepF9    0.063714 0.0283 Inf   2.248  0.5145
 StepF4 - StepF10   0.046883 0.0283 Inf   1.654  0.8887
 StepF4 - StepF11   0.086208 0.0283 Inf   3.041  0.0969
 StepF4 - StepF12   0.160788 0.0284 Inf   5.666  <.0001
 StepF5 - StepF6   -0.015442 0.0283 Inf  -0.545  1.0000
 StepF5 - StepF7   -0.094436 0.0283 Inf  -3.332  0.0410
 StepF5 - StepF8    0.031486 0.0283 Inf   1.111  0.9943
 StepF5 - StepF9    0.008736 0.0283 Inf   0.308  1.0000
 StepF5 - StepF10  -0.008095 0.0283 Inf  -0.286  1.0000
 StepF5 - StepF11   0.031230 0.0283 Inf   1.102  0.9947
 StepF5 - StepF12   0.105810 0.0284 Inf   3.729  0.0104
 StepF6 - StepF7   -0.078994 0.0283 Inf  -2.787  0.1855
 StepF6 - StepF8    0.046929 0.0283 Inf   1.656  0.8881
 StepF6 - StepF9    0.024178 0.0283 Inf   0.853  0.9995
 StepF6 - StepF10   0.007347 0.0283 Inf   0.259  1.0000
 StepF6 - StepF11   0.046672 0.0283 Inf   1.647  0.8918
 StepF6 - StepF12   0.121252 0.0284 Inf   4.273  0.0012
 StepF7 - StepF8    0.125922 0.0283 Inf   4.442  0.0005
 StepF7 - StepF9    0.103172 0.0283 Inf   3.640  0.0145
 StepF7 - StepF10   0.086340 0.0283 Inf   3.046  0.0956
 StepF7 - StepF11   0.125666 0.0283 Inf   4.433  0.0006
 StepF7 - StepF12   0.200245 0.0284 Inf   7.057  <.0001
 StepF8 - StepF9   -0.022751 0.0283 Inf  -0.803  0.9997
 StepF8 - StepF10  -0.039582 0.0283 Inf  -1.396  0.9645
 StepF8 - StepF11  -0.000257 0.0283 Inf  -0.009  1.0000
 StepF8 - StepF12   0.074323 0.0284 Inf   2.619  0.2686
 StepF9 - StepF10  -0.016831 0.0283 Inf  -0.594  1.0000
 StepF9 - StepF11   0.022494 0.0283 Inf   0.794  0.9997
 StepF9 - StepF12   0.097074 0.0284 Inf   3.421  0.0307
 StepF10 - StepF11  0.039325 0.0283 Inf   1.387  0.9662
 StepF10 - StepF12  0.113905 0.0284 Inf   4.014  0.0035
 StepF11 - StepF12  0.074580 0.0284 Inf   2.628  0.2636

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.008381 0.0283 Inf   0.296  1.0000
 StepF1 - StepF3   -0.086446 0.0283 Inf  -3.050  0.0947
 StepF1 - StepF4    0.014324 0.0283 Inf   0.505  1.0000
 StepF1 - StepF5    0.069302 0.0283 Inf   2.445  0.3755
 StepF1 - StepF6    0.053860 0.0283 Inf   1.900  0.7595
 StepF1 - StepF7   -0.025134 0.0283 Inf  -0.887  0.9993
 StepF1 - StepF8    0.100789 0.0283 Inf   3.556  0.0195
 StepF1 - StepF9    0.078038 0.0283 Inf   2.753  0.2006
 StepF1 - StepF10   0.061207 0.0283 Inf   2.159  0.5795
 StepF1 - StepF11   0.100532 0.0283 Inf   3.547  0.0201
 StepF1 - StepF12   0.175112 0.0284 Inf   6.171  <.0001
 StepF2 - StepF3   -0.094827 0.0283 Inf  -3.345  0.0392
 StepF2 - StepF4    0.005944 0.0283 Inf   0.210  1.0000
 StepF2 - StepF5    0.060922 0.0283 Inf   2.149  0.5869
 StepF2 - StepF6    0.045479 0.0283 Inf   1.604  0.9080
 StepF2 - StepF7   -0.033514 0.0283 Inf  -1.182  0.9903
 StepF2 - StepF8    0.092408 0.0283 Inf   3.260  0.0512
 StepF2 - StepF9    0.069657 0.0283 Inf   2.457  0.3672
 StepF2 - StepF10   0.052826 0.0283 Inf   1.864  0.7819
 StepF2 - StepF11   0.092151 0.0283 Inf   3.251  0.0527
 StepF2 - StepF12   0.166731 0.0284 Inf   5.876  <.0001
 StepF3 - StepF4    0.100770 0.0283 Inf   3.555  0.0195
 StepF3 - StepF5    0.155748 0.0283 Inf   5.495  <.0001
 StepF3 - StepF6    0.140306 0.0283 Inf   4.950  <.0001
 StepF3 - StepF7    0.061312 0.0283 Inf   2.163  0.5768
 StepF3 - StepF8    0.187235 0.0283 Inf   6.605  <.0001
 StepF3 - StepF9    0.164484 0.0283 Inf   5.803  <.0001
 StepF3 - StepF10   0.147653 0.0283 Inf   5.209  <.0001
 StepF3 - StepF11   0.186978 0.0283 Inf   6.596  <.0001
 StepF3 - StepF12   0.261558 0.0284 Inf   9.218  <.0001
 StepF4 - StepF5    0.054978 0.0283 Inf   1.940  0.7343
 StepF4 - StepF6    0.039536 0.0283 Inf   1.395  0.9648
 StepF4 - StepF7   -0.039458 0.0283 Inf  -1.392  0.9653
 StepF4 - StepF8    0.086464 0.0283 Inf   3.050  0.0945
 StepF4 - StepF9    0.063714 0.0283 Inf   2.248  0.5145
 StepF4 - StepF10   0.046883 0.0283 Inf   1.654  0.8887
 StepF4 - StepF11   0.086208 0.0283 Inf   3.041  0.0969
 StepF4 - StepF12   0.160788 0.0284 Inf   5.666  <.0001
 StepF5 - StepF6   -0.015442 0.0283 Inf  -0.545  1.0000
 StepF5 - StepF7   -0.094436 0.0283 Inf  -3.332  0.0410
 StepF5 - StepF8    0.031486 0.0283 Inf   1.111  0.9943
 StepF5 - StepF9    0.008736 0.0283 Inf   0.308  1.0000
 StepF5 - StepF10  -0.008095 0.0283 Inf  -0.286  1.0000
 StepF5 - StepF11   0.031230 0.0283 Inf   1.102  0.9947
 StepF5 - StepF12   0.105810 0.0284 Inf   3.729  0.0104
 StepF6 - StepF7   -0.078994 0.0283 Inf  -2.787  0.1855
 StepF6 - StepF8    0.046929 0.0283 Inf   1.656  0.8881
 StepF6 - StepF9    0.024178 0.0283 Inf   0.853  0.9995
 StepF6 - StepF10   0.007347 0.0283 Inf   0.259  1.0000
 StepF6 - StepF11   0.046672 0.0283 Inf   1.647  0.8918
 StepF6 - StepF12   0.121252 0.0284 Inf   4.273  0.0012
 StepF7 - StepF8    0.125922 0.0283 Inf   4.442  0.0005
 StepF7 - StepF9    0.103172 0.0283 Inf   3.640  0.0145
 StepF7 - StepF10   0.086340 0.0283 Inf   3.046  0.0956
 StepF7 - StepF11   0.125666 0.0283 Inf   4.433  0.0006
 StepF7 - StepF12   0.200245 0.0284 Inf   7.057  <.0001
 StepF8 - StepF9   -0.022751 0.0283 Inf  -0.803  0.9997
 StepF8 - StepF10  -0.039582 0.0283 Inf  -1.396  0.9645
 StepF8 - StepF11  -0.000257 0.0283 Inf  -0.009  1.0000
 StepF8 - StepF12   0.074323 0.0284 Inf   2.619  0.2686
 StepF9 - StepF10  -0.016831 0.0283 Inf  -0.594  1.0000
 StepF9 - StepF11   0.022494 0.0283 Inf   0.794  0.9997
 StepF9 - StepF12   0.097074 0.0284 Inf   3.421  0.0307
 StepF10 - StepF11  0.039325 0.0283 Inf   1.387  0.9662
 StepF10 - StepF12  0.113905 0.0284 Inf   4.014  0.0035
 StepF11 - StepF12  0.074580 0.0284 Inf   2.628  0.2636

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.00838 0.0283 Inf  -0.296  1.0000
 StepF3 - StepF2    0.09483 0.0283 Inf   3.345  0.0074
 StepF4 - StepF3   -0.10077 0.0283 Inf  -3.555  0.0038
 StepF5 - StepF4   -0.05498 0.0283 Inf  -1.940  0.3146
 StepF6 - StepF5    0.01544 0.0283 Inf   0.545  1.0000
 StepF7 - StepF6    0.07899 0.0283 Inf   2.787  0.0426
 StepF8 - StepF7   -0.12592 0.0283 Inf  -4.442  0.0001
 StepF9 - StepF8    0.02275 0.0283 Inf   0.803  1.0000
 StepF10 - StepF9   0.01683 0.0283 Inf   0.594  1.0000
 StepF11 - StepF10 -0.03933 0.0283 Inf  -1.387  0.8267
 StepF12 - StepF11 -0.07458 0.0284 Inf  -2.628  0.0601

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.00838 0.0283 Inf  -0.296  1.0000
 StepF3 - StepF2    0.09483 0.0283 Inf   3.345  0.0074
 StepF4 - StepF3   -0.10077 0.0283 Inf  -3.555  0.0038
 StepF5 - StepF4   -0.05498 0.0283 Inf  -1.940  0.3146
 StepF6 - StepF5    0.01544 0.0283 Inf   0.545  1.0000
 StepF7 - StepF6    0.07899 0.0283 Inf   2.787  0.0426
 StepF8 - StepF7   -0.12592 0.0283 Inf  -4.442  0.0001
 StepF9 - StepF8    0.02275 0.0283 Inf   0.803  1.0000
 StepF10 - StepF9   0.01683 0.0283 Inf   0.594  1.0000
 StepF11 - StepF10 -0.03933 0.0283 Inf  -1.387  0.8267
 StepF12 - StepF11 -0.07458 0.0284 Inf  -2.628  0.0601

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TRAINING | Block 2 (12 steps) | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    163.7656 11    < 2e-16 ***
Accuracy   5.4702  1    0.01934 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.36 0.143 Inf     1.077      1.64
 2       1.61 0.143 Inf     1.329      1.89
 3       1.58 0.143 Inf     1.299      1.86
 4       1.46 0.143 Inf     1.175      1.74
 5       1.47 0.143 Inf     1.188      1.75
 6       1.34 0.143 Inf     1.061      1.62
 7       1.40 0.143 Inf     1.123      1.68
 8       1.32 0.143 Inf     1.037      1.60
 9       1.32 0.143 Inf     1.042      1.60
 10      1.34 0.143 Inf     1.059      1.62
 11      1.31 0.143 Inf     1.025      1.59
 12      1.11 0.143 Inf     0.833      1.39

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.47 0.141 Inf     1.198      1.75
 2       1.73 0.141 Inf     1.449      2.00
 3       1.70 0.141 Inf     1.420      1.97
 4       1.57 0.141 Inf     1.296      1.85
 5       1.58 0.141 Inf     1.309      1.86
 6       1.46 0.141 Inf     1.181      1.73
 7       1.52 0.141 Inf     1.243      1.80
 8       1.43 0.141 Inf     1.158      1.71
 9       1.44 0.141 Inf     1.163      1.71
 10      1.46 0.141 Inf     1.180      1.73
 11      1.42 0.141 Inf     1.146      1.70
 12      1.23 0.141 Inf     0.953      1.51

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.25110 0.0486 Inf  -5.167  <.0001
 StepF1 - StepF3   -0.22154 0.0486 Inf  -4.558  0.0003
 StepF1 - StepF4   -0.09740 0.0486 Inf  -2.004  0.6908
 StepF1 - StepF5   -0.11037 0.0486 Inf  -2.271  0.4976
 StepF1 - StepF6    0.01692 0.0486 Inf   0.348  1.0000
 StepF1 - StepF7   -0.04503 0.0486 Inf  -0.927  0.9989
 StepF1 - StepF8    0.04031 0.0486 Inf   0.829  0.9996
 StepF1 - StepF9    0.03545 0.0486 Inf   0.729  0.9999
 StepF1 - StepF10   0.01848 0.0486 Inf   0.380  1.0000
 StepF1 - StepF11   0.05261 0.0486 Inf   1.083  0.9954
 StepF1 - StepF12   0.24488 0.0486 Inf   5.033  <.0001
 StepF2 - StepF3    0.02956 0.0486 Inf   0.608  1.0000
 StepF2 - StepF4    0.15370 0.0486 Inf   3.163  0.0686
 StepF2 - StepF5    0.14073 0.0486 Inf   2.896  0.1422
 StepF2 - StepF6    0.26802 0.0486 Inf   5.515  <.0001
 StepF2 - StepF7    0.20607 0.0486 Inf   4.240  0.0013
 StepF2 - StepF8    0.29141 0.0486 Inf   5.996  <.0001
 StepF2 - StepF9    0.28655 0.0486 Inf   5.896  <.0001
 StepF2 - StepF10   0.26958 0.0486 Inf   5.547  <.0001
 StepF2 - StepF11   0.30371 0.0486 Inf   6.249  <.0001
 StepF2 - StepF12   0.49598 0.0486 Inf  10.195  <.0001
 StepF3 - StepF4    0.12414 0.0486 Inf   2.554  0.3061
 StepF3 - StepF5    0.11117 0.0486 Inf   2.288  0.4855
 StepF3 - StepF6    0.23846 0.0486 Inf   4.907  0.0001
 StepF3 - StepF7    0.17650 0.0486 Inf   3.632  0.0149
 StepF3 - StepF8    0.26185 0.0486 Inf   5.388  <.0001
 StepF3 - StepF9    0.25699 0.0486 Inf   5.288  <.0001
 StepF3 - StepF10   0.24001 0.0486 Inf   4.939  0.0001
 StepF3 - StepF11   0.27415 0.0486 Inf   5.641  <.0001
 StepF3 - StepF12   0.46641 0.0486 Inf   9.587  <.0001
 StepF4 - StepF5   -0.01297 0.0486 Inf  -0.267  1.0000
 StepF4 - StepF6    0.11432 0.0486 Inf   2.352  0.4391
 StepF4 - StepF7    0.05236 0.0486 Inf   1.077  0.9956
 StepF4 - StepF8    0.13771 0.0486 Inf   2.834  0.1659
 StepF4 - StepF9    0.13284 0.0486 Inf   2.733  0.2097
 StepF4 - StepF10   0.11587 0.0486 Inf   2.384  0.4167
 StepF4 - StepF11   0.15001 0.0486 Inf   3.087  0.0854
 StepF4 - StepF12   0.34227 0.0486 Inf   7.035  <.0001
 StepF5 - StepF6    0.12729 0.0486 Inf   2.619  0.2687
 StepF5 - StepF7    0.06533 0.0486 Inf   1.344  0.9733
 StepF5 - StepF8    0.15067 0.0486 Inf   3.100  0.0821
 StepF5 - StepF9    0.14581 0.0486 Inf   3.000  0.1083
 StepF5 - StepF10   0.12884 0.0486 Inf   2.651  0.2512
 StepF5 - StepF11   0.16297 0.0486 Inf   3.353  0.0382
 StepF5 - StepF12   0.35524 0.0486 Inf   7.302  <.0001
 StepF6 - StepF7   -0.06196 0.0486 Inf  -1.275  0.9823
 StepF6 - StepF8    0.02339 0.0486 Inf   0.481  1.0000
 StepF6 - StepF9    0.01853 0.0486 Inf   0.381  1.0000
 StepF6 - StepF10   0.00155 0.0486 Inf   0.032  1.0000
 StepF6 - StepF11   0.03569 0.0486 Inf   0.734  0.9999
 StepF6 - StepF12   0.22795 0.0486 Inf   4.686  0.0002
 StepF7 - StepF8    0.08534 0.0486 Inf   1.756  0.8417
 StepF7 - StepF9    0.08048 0.0486 Inf   1.656  0.8879
 StepF7 - StepF10   0.06351 0.0486 Inf   1.307  0.9785
 StepF7 - StepF11   0.09764 0.0486 Inf   2.009  0.6873
 StepF7 - StepF12   0.28991 0.0486 Inf   5.959  <.0001
 StepF8 - StepF9   -0.00486 0.0486 Inf  -0.100  1.0000
 StepF8 - StepF10  -0.02183 0.0486 Inf  -0.449  1.0000
 StepF8 - StepF11   0.01230 0.0486 Inf   0.253  1.0000
 StepF8 - StepF12   0.20457 0.0486 Inf   4.205  0.0016
 StepF9 - StepF10  -0.01697 0.0486 Inf  -0.349  1.0000
 StepF9 - StepF11   0.01716 0.0486 Inf   0.353  1.0000
 StepF9 - StepF12   0.20943 0.0486 Inf   4.305  0.0010
 StepF10 - StepF11  0.03413 0.0486 Inf   0.702  0.9999
 StepF10 - StepF12  0.22640 0.0486 Inf   4.654  0.0002
 StepF11 - StepF12  0.19227 0.0486 Inf   3.952  0.0044

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.25110 0.0486 Inf  -5.167  <.0001
 StepF1 - StepF3   -0.22154 0.0486 Inf  -4.558  0.0003
 StepF1 - StepF4   -0.09740 0.0486 Inf  -2.004  0.6908
 StepF1 - StepF5   -0.11037 0.0486 Inf  -2.271  0.4976
 StepF1 - StepF6    0.01692 0.0486 Inf   0.348  1.0000
 StepF1 - StepF7   -0.04503 0.0486 Inf  -0.927  0.9989
 StepF1 - StepF8    0.04031 0.0486 Inf   0.829  0.9996
 StepF1 - StepF9    0.03545 0.0486 Inf   0.729  0.9999
 StepF1 - StepF10   0.01848 0.0486 Inf   0.380  1.0000
 StepF1 - StepF11   0.05261 0.0486 Inf   1.083  0.9954
 StepF1 - StepF12   0.24488 0.0486 Inf   5.033  <.0001
 StepF2 - StepF3    0.02956 0.0486 Inf   0.608  1.0000
 StepF2 - StepF4    0.15370 0.0486 Inf   3.163  0.0686
 StepF2 - StepF5    0.14073 0.0486 Inf   2.896  0.1422
 StepF2 - StepF6    0.26802 0.0486 Inf   5.515  <.0001
 StepF2 - StepF7    0.20607 0.0486 Inf   4.240  0.0013
 StepF2 - StepF8    0.29141 0.0486 Inf   5.996  <.0001
 StepF2 - StepF9    0.28655 0.0486 Inf   5.896  <.0001
 StepF2 - StepF10   0.26958 0.0486 Inf   5.547  <.0001
 StepF2 - StepF11   0.30371 0.0486 Inf   6.249  <.0001
 StepF2 - StepF12   0.49598 0.0486 Inf  10.195  <.0001
 StepF3 - StepF4    0.12414 0.0486 Inf   2.554  0.3061
 StepF3 - StepF5    0.11117 0.0486 Inf   2.288  0.4855
 StepF3 - StepF6    0.23846 0.0486 Inf   4.907  0.0001
 StepF3 - StepF7    0.17650 0.0486 Inf   3.632  0.0149
 StepF3 - StepF8    0.26185 0.0486 Inf   5.388  <.0001
 StepF3 - StepF9    0.25699 0.0486 Inf   5.288  <.0001
 StepF3 - StepF10   0.24001 0.0486 Inf   4.939  0.0001
 StepF3 - StepF11   0.27415 0.0486 Inf   5.641  <.0001
 StepF3 - StepF12   0.46641 0.0486 Inf   9.587  <.0001
 StepF4 - StepF5   -0.01297 0.0486 Inf  -0.267  1.0000
 StepF4 - StepF6    0.11432 0.0486 Inf   2.352  0.4391
 StepF4 - StepF7    0.05236 0.0486 Inf   1.077  0.9956
 StepF4 - StepF8    0.13771 0.0486 Inf   2.834  0.1659
 StepF4 - StepF9    0.13284 0.0486 Inf   2.733  0.2097
 StepF4 - StepF10   0.11587 0.0486 Inf   2.384  0.4167
 StepF4 - StepF11   0.15001 0.0486 Inf   3.087  0.0854
 StepF4 - StepF12   0.34227 0.0486 Inf   7.035  <.0001
 StepF5 - StepF6    0.12729 0.0486 Inf   2.619  0.2687
 StepF5 - StepF7    0.06533 0.0486 Inf   1.344  0.9733
 StepF5 - StepF8    0.15067 0.0486 Inf   3.100  0.0821
 StepF5 - StepF9    0.14581 0.0486 Inf   3.000  0.1083
 StepF5 - StepF10   0.12884 0.0486 Inf   2.651  0.2512
 StepF5 - StepF11   0.16297 0.0486 Inf   3.353  0.0382
 StepF5 - StepF12   0.35524 0.0486 Inf   7.302  <.0001
 StepF6 - StepF7   -0.06196 0.0486 Inf  -1.275  0.9823
 StepF6 - StepF8    0.02339 0.0486 Inf   0.481  1.0000
 StepF6 - StepF9    0.01853 0.0486 Inf   0.381  1.0000
 StepF6 - StepF10   0.00155 0.0486 Inf   0.032  1.0000
 StepF6 - StepF11   0.03569 0.0486 Inf   0.734  0.9999
 StepF6 - StepF12   0.22795 0.0486 Inf   4.686  0.0002
 StepF7 - StepF8    0.08534 0.0486 Inf   1.756  0.8417
 StepF7 - StepF9    0.08048 0.0486 Inf   1.656  0.8879
 StepF7 - StepF10   0.06351 0.0486 Inf   1.307  0.9785
 StepF7 - StepF11   0.09764 0.0486 Inf   2.009  0.6873
 StepF7 - StepF12   0.28991 0.0486 Inf   5.959  <.0001
 StepF8 - StepF9   -0.00486 0.0486 Inf  -0.100  1.0000
 StepF8 - StepF10  -0.02183 0.0486 Inf  -0.449  1.0000
 StepF8 - StepF11   0.01230 0.0486 Inf   0.253  1.0000
 StepF8 - StepF12   0.20457 0.0486 Inf   4.205  0.0016
 StepF9 - StepF10  -0.01697 0.0486 Inf  -0.349  1.0000
 StepF9 - StepF11   0.01716 0.0486 Inf   0.353  1.0000
 StepF9 - StepF12   0.20943 0.0486 Inf   4.305  0.0010
 StepF10 - StepF11  0.03413 0.0486 Inf   0.702  0.9999
 StepF10 - StepF12  0.22640 0.0486 Inf   4.654  0.0002
 StepF11 - StepF12  0.19227 0.0486 Inf   3.952  0.0044

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.25110 0.0486 Inf   5.167  <.0001
 StepF3 - StepF2   -0.02956 0.0486 Inf  -0.608  1.0000
 StepF4 - StepF3   -0.12414 0.0486 Inf  -2.554  0.0851
 StepF5 - StepF4    0.01297 0.0486 Inf   0.267  1.0000
 StepF6 - StepF5   -0.12729 0.0486 Inf  -2.619  0.0793
 StepF7 - StepF6    0.06196 0.0486 Inf   1.275  1.0000
 StepF8 - StepF7   -0.08534 0.0486 Inf  -1.756  0.5535
 StepF9 - StepF8    0.00486 0.0486 Inf   0.100  1.0000
 StepF10 - StepF9   0.01697 0.0486 Inf   0.349  1.0000
 StepF11 - StepF10 -0.03413 0.0486 Inf  -0.702  1.0000
 StepF12 - StepF11 -0.19227 0.0486 Inf  -3.952  0.0008

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.25110 0.0486 Inf   5.167  <.0001
 StepF3 - StepF2   -0.02956 0.0486 Inf  -0.608  1.0000
 StepF4 - StepF3   -0.12414 0.0486 Inf  -2.554  0.0851
 StepF5 - StepF4    0.01297 0.0486 Inf   0.267  1.0000
 StepF6 - StepF5   -0.12729 0.0486 Inf  -2.619  0.0793
 StepF7 - StepF6    0.06196 0.0486 Inf   1.275  1.0000
 StepF8 - StepF7   -0.08534 0.0486 Inf  -1.756  0.5535
 StepF9 - StepF8    0.00486 0.0486 Inf   0.100  1.0000
 StepF10 - StepF9   0.01697 0.0486 Inf   0.349  1.0000
 StepF11 - StepF10 -0.03413 0.0486 Inf  -0.702  1.0000
 StepF12 - StepF11 -0.19227 0.0486 Inf  -3.952  0.0008

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
.report_step_block(stepwise_18, "3 (18 steps)")


==============================
TRAINING | Block 3 (18 steps) | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    95.7435 17  5.433e-13 ***
Accuracy  0.4092  1     0.5224    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.574 0.0499 Inf     0.477     0.672
 2      0.609 0.0499 Inf     0.511     0.707
 3      0.616 0.0499 Inf     0.518     0.714
 4      0.585 0.0499 Inf     0.487     0.683
 5      0.581 0.0499 Inf     0.483     0.678
 6      0.596 0.0499 Inf     0.498     0.694
 7      0.596 0.0499 Inf     0.498     0.694
 8      0.565 0.0499 Inf     0.468     0.663
 9      0.569 0.0499 Inf     0.471     0.667
 10     0.569 0.0499 Inf     0.471     0.666
 11     0.548 0.0499 Inf     0.450     0.646
 12     0.501 0.0499 Inf     0.403     0.599
 13     0.498 0.0499 Inf     0.400     0.596
 14     0.552 0.0499 Inf     0.454     0.650
 15     0.530 0.0499 Inf     0.433     0.628
 16     0.538 0.0499 Inf     0.440     0.636
 17     0.512 0.0499 Inf     0.415     0.610
 18     0.523 0.0499 Inf     0.425     0.620

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.560 0.0496 Inf     0.463     0.658
 2      0.595 0.0496 Inf     0.498     0.692
 3      0.602 0.0496 Inf     0.505     0.699
 4      0.571 0.0496 Inf     0.474     0.668
 5      0.566 0.0496 Inf     0.469     0.664
 6      0.582 0.0496 Inf     0.485     0.679
 7      0.582 0.0496 Inf     0.485     0.679
 8      0.551 0.0496 Inf     0.454     0.648
 9      0.555 0.0496 Inf     0.458     0.652
 10     0.555 0.0496 Inf     0.457     0.652
 11     0.534 0.0496 Inf     0.437     0.631
 12     0.487 0.0496 Inf     0.390     0.584
 13     0.484 0.0496 Inf     0.387     0.581
 14     0.538 0.0496 Inf     0.441     0.635
 15     0.516 0.0496 Inf     0.419     0.614
 16     0.524 0.0496 Inf     0.426     0.621
 17     0.498 0.0496 Inf     0.401     0.596
 18     0.508 0.0496 Inf     0.411     0.606

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.034792 0.0215 Inf  -1.618  0.9797
 StepF1 - StepF3   -0.041594 0.0215 Inf  -1.934  0.8992
 StepF1 - StepF4   -0.010482 0.0215 Inf  -0.487  1.0000
 StepF1 - StepF5   -0.006110 0.0215 Inf  -0.284  1.0000
 StepF1 - StepF6   -0.021781 0.0215 Inf  -1.013  0.9999
 StepF1 - StepF7   -0.021472 0.0215 Inf  -0.998  0.9999
 StepF1 - StepF8    0.009204 0.0215 Inf   0.428  1.0000
 StepF1 - StepF9    0.005469 0.0215 Inf   0.254  1.0000
 StepF1 - StepF10   0.005721 0.0215 Inf   0.266  1.0000
 StepF1 - StepF11   0.026359 0.0215 Inf   1.226  0.9992
 StepF1 - StepF12   0.073382 0.0215 Inf   3.412  0.0638
 StepF1 - StepF13   0.076545 0.0215 Inf   3.559  0.0397
 StepF1 - StepF14   0.022458 0.0215 Inf   1.044  0.9999
 StepF1 - StepF15   0.043951 0.0215 Inf   2.043  0.8480
 StepF1 - StepF16   0.036644 0.0215 Inf   1.704  0.9663
 StepF1 - StepF17   0.061988 0.0215 Inf   2.882  0.2625
 StepF1 - StepF18   0.051906 0.0215 Inf   2.411  0.5991
 StepF2 - StepF3   -0.006801 0.0215 Inf  -0.316  1.0000
 StepF2 - StepF4    0.024311 0.0215 Inf   1.130  0.9997
 StepF2 - StepF5    0.028682 0.0215 Inf   1.334  0.9976
 StepF2 - StepF6    0.013011 0.0215 Inf   0.605  1.0000
 StepF2 - StepF7    0.013321 0.0215 Inf   0.619  1.0000
 StepF2 - StepF8    0.043997 0.0215 Inf   2.046  0.8469
 StepF2 - StepF9    0.040262 0.0215 Inf   1.872  0.9224
 StepF2 - StepF10   0.040514 0.0215 Inf   1.884  0.9183
 StepF2 - StepF11   0.061151 0.0215 Inf   2.843  0.2857
 StepF2 - StepF12   0.108175 0.0215 Inf   5.029  0.0001
 StepF2 - StepF13   0.111338 0.0215 Inf   5.176  <.0001
 StepF2 - StepF14   0.057250 0.0215 Inf   2.662  0.4076
 StepF2 - StepF15   0.078744 0.0215 Inf   3.661  0.0280
 StepF2 - StepF16   0.071437 0.0215 Inf   3.321  0.0840
 StepF2 - StepF17   0.096781 0.0215 Inf   4.500  0.0009
 StepF2 - StepF18   0.086699 0.0215 Inf   4.028  0.0071
 StepF3 - StepF4    0.031112 0.0215 Inf   1.446  0.9938
 StepF3 - StepF5    0.035483 0.0215 Inf   1.650  0.9753
 StepF3 - StepF6    0.019812 0.0215 Inf   0.921  1.0000
 StepF3 - StepF7    0.020122 0.0215 Inf   0.936  1.0000
 StepF3 - StepF8    0.050798 0.0215 Inf   2.362  0.6373
 StepF3 - StepF9    0.047063 0.0215 Inf   2.188  0.7619
 StepF3 - StepF10   0.047315 0.0215 Inf   2.200  0.7541
 StepF3 - StepF11   0.067953 0.0215 Inf   3.159  0.1329
 StepF3 - StepF12   0.114976 0.0215 Inf   5.346  <.0001
 StepF3 - StepF13   0.118139 0.0215 Inf   5.493  <.0001
 StepF3 - StepF14   0.064052 0.0215 Inf   2.978  0.2107
 StepF3 - StepF15   0.085545 0.0215 Inf   3.977  0.0087
 StepF3 - StepF16   0.078238 0.0215 Inf   3.638  0.0304
 StepF3 - StepF17   0.103582 0.0215 Inf   4.816  0.0002
 StepF3 - StepF18   0.093500 0.0215 Inf   4.344  0.0019
 StepF4 - StepF5    0.004372 0.0215 Inf   0.203  1.0000
 StepF4 - StepF6   -0.011299 0.0215 Inf  -0.525  1.0000
 StepF4 - StepF7   -0.010990 0.0215 Inf  -0.511  1.0000
 StepF4 - StepF8    0.019686 0.0215 Inf   0.915  1.0000
 StepF4 - StepF9    0.015951 0.0215 Inf   0.742  1.0000
 StepF4 - StepF10   0.016203 0.0215 Inf   0.753  1.0000
 StepF4 - StepF11   0.036841 0.0215 Inf   1.713  0.9646
 StepF4 - StepF12   0.083864 0.0215 Inf   3.899  0.0118
 StepF4 - StepF13   0.087027 0.0215 Inf   4.046  0.0066
 StepF4 - StepF14   0.032940 0.0215 Inf   1.531  0.9885
 StepF4 - StepF15   0.054433 0.0215 Inf   2.531  0.5064
 StepF4 - StepF16   0.047126 0.0215 Inf   2.191  0.7600
 StepF4 - StepF17   0.072470 0.0215 Inf   3.369  0.0727
 StepF4 - StepF18   0.062388 0.0215 Inf   2.898  0.2531
 StepF5 - StepF6   -0.015671 0.0215 Inf  -0.729  1.0000
 StepF5 - StepF7   -0.015361 0.0215 Inf  -0.714  1.0000
 StepF5 - StepF8    0.015315 0.0215 Inf   0.712  1.0000
 StepF5 - StepF9    0.011580 0.0215 Inf   0.538  1.0000
 StepF5 - StepF10   0.011832 0.0215 Inf   0.550  1.0000
 StepF5 - StepF11   0.032469 0.0215 Inf   1.510  0.9901
 StepF5 - StepF12   0.079493 0.0215 Inf   3.696  0.0248
 StepF5 - StepF13   0.082656 0.0215 Inf   3.843  0.0145
 StepF5 - StepF14   0.028568 0.0215 Inf   1.328  0.9977
 StepF5 - StepF15   0.050062 0.0215 Inf   2.328  0.6631
 StepF5 - StepF16   0.042755 0.0215 Inf   1.988  0.8756
 StepF5 - StepF17   0.068099 0.0215 Inf   3.166  0.1305
 StepF5 - StepF18   0.058016 0.0215 Inf   2.695  0.3834
 StepF6 - StepF7    0.000310 0.0215 Inf   0.014  1.0000
 StepF6 - StepF8    0.030985 0.0215 Inf   1.441  0.9941
 StepF6 - StepF9    0.027250 0.0215 Inf   1.267  0.9987
 StepF6 - StepF10   0.027502 0.0215 Inf   1.279  0.9986
 StepF6 - StepF11   0.048140 0.0215 Inf   2.238  0.7279
 StepF6 - StepF12   0.095163 0.0215 Inf   4.424  0.0013
 StepF6 - StepF13   0.098326 0.0215 Inf   4.572  0.0007
 StepF6 - StepF14   0.044239 0.0215 Inf   2.057  0.8409
 StepF6 - StepF15   0.065732 0.0215 Inf   3.056  0.1740
 StepF6 - StepF16   0.058426 0.0215 Inf   2.716  0.3687
 StepF6 - StepF17   0.083770 0.0215 Inf   3.895  0.0120
 StepF6 - StepF18   0.073687 0.0215 Inf   3.423  0.0615
 StepF7 - StepF8    0.030676 0.0215 Inf   1.426  0.9947
 StepF7 - StepF9    0.026941 0.0215 Inf   1.253  0.9989
 StepF7 - StepF10   0.027193 0.0215 Inf   1.264  0.9988
 StepF7 - StepF11   0.047831 0.0215 Inf   2.224  0.7379
 StepF7 - StepF12   0.094854 0.0215 Inf   4.410  0.0014
 StepF7 - StepF13   0.098017 0.0215 Inf   4.557  0.0007
 StepF7 - StepF14   0.043930 0.0215 Inf   2.042  0.8486
 StepF7 - StepF15   0.065423 0.0215 Inf   3.042  0.1804
 StepF7 - StepF16   0.058116 0.0215 Inf   2.702  0.3787
 StepF7 - StepF17   0.083460 0.0215 Inf   3.880  0.0126
 StepF7 - StepF18   0.073378 0.0215 Inf   3.409  0.0643
 StepF8 - StepF9   -0.003735 0.0215 Inf  -0.174  1.0000
 StepF8 - StepF10  -0.003483 0.0215 Inf  -0.162  1.0000
 StepF8 - StepF11   0.017155 0.0215 Inf   0.798  1.0000
 StepF8 - StepF12   0.064178 0.0215 Inf   2.984  0.2078
 StepF8 - StepF13   0.067341 0.0215 Inf   3.131  0.1434
 StepF8 - StepF14   0.013254 0.0215 Inf   0.616  1.0000
 StepF8 - StepF15   0.034747 0.0215 Inf   1.615  0.9799
 StepF8 - StepF16   0.027440 0.0215 Inf   1.276  0.9986
 StepF8 - StepF17   0.052784 0.0215 Inf   2.454  0.5660
 StepF8 - StepF18   0.042702 0.0215 Inf   1.984  0.8774
 StepF9 - StepF10   0.000252 0.0215 Inf   0.012  1.0000
 StepF9 - StepF11   0.020890 0.0215 Inf   0.971  1.0000
 StepF9 - StepF12   0.067913 0.0215 Inf   3.157  0.1336
 StepF9 - StepF13   0.071076 0.0215 Inf   3.305  0.0882
 StepF9 - StepF14   0.016989 0.0215 Inf   0.790  1.0000
 StepF9 - StepF15   0.038482 0.0215 Inf   1.789  0.9473
 StepF9 - StepF16   0.031175 0.0215 Inf   1.449  0.9937
 StepF9 - StepF17   0.056519 0.0215 Inf   2.628  0.4326
 StepF9 - StepF18   0.046437 0.0215 Inf   2.157  0.7818
 StepF10 - StepF11  0.020638 0.0215 Inf   0.960  1.0000
 StepF10 - StepF12  0.067661 0.0215 Inf   3.146  0.1378
 StepF10 - StepF13  0.070824 0.0215 Inf   3.293  0.0913
 StepF10 - StepF14  0.016737 0.0215 Inf   0.778  1.0000
 StepF10 - StepF15  0.038230 0.0215 Inf   1.777  0.9503
 StepF10 - StepF16  0.030923 0.0215 Inf   1.438  0.9942
 StepF10 - StepF17  0.056267 0.0215 Inf   2.616  0.4413
 StepF10 - StepF18  0.046185 0.0215 Inf   2.146  0.7892
 StepF11 - StepF12  0.047023 0.0215 Inf   2.186  0.7632
 StepF11 - StepF13  0.050186 0.0215 Inf   2.333  0.6588
 StepF11 - StepF14 -0.003901 0.0215 Inf  -0.181  1.0000
 StepF11 - StepF15  0.017592 0.0215 Inf   0.818  1.0000
 StepF11 - StepF16  0.010285 0.0215 Inf   0.478  1.0000
 StepF11 - StepF17  0.035629 0.0215 Inf   1.657  0.9743
 StepF11 - StepF18  0.025547 0.0215 Inf   1.187  0.9994
 StepF12 - StepF13  0.003163 0.0215 Inf   0.147  1.0000
 StepF12 - StepF14 -0.050924 0.0215 Inf  -2.368  0.6328
 StepF12 - StepF15 -0.029431 0.0215 Inf  -1.368  0.9968
 StepF12 - StepF16 -0.036738 0.0215 Inf  -1.708  0.9655
 StepF12 - StepF17 -0.011394 0.0215 Inf  -0.530  1.0000
 StepF12 - StepF18 -0.021476 0.0215 Inf  -0.998  0.9999
 StepF13 - StepF14 -0.054087 0.0215 Inf  -2.515  0.5188
 StepF13 - StepF15 -0.032594 0.0215 Inf  -1.515  0.9897
 StepF13 - StepF16 -0.039901 0.0215 Inf  -1.855  0.9280
 StepF13 - StepF17 -0.014557 0.0215 Inf  -0.677  1.0000
 StepF13 - StepF18 -0.024639 0.0215 Inf  -1.145  0.9997
 StepF14 - StepF15  0.021493 0.0215 Inf   0.999  0.9999
 StepF14 - StepF16  0.014186 0.0215 Inf   0.660  1.0000
 StepF14 - StepF17  0.039530 0.0215 Inf   1.838  0.9334
 StepF14 - StepF18  0.029448 0.0215 Inf   1.368  0.9968
 StepF15 - StepF16 -0.007307 0.0215 Inf  -0.340  1.0000
 StepF15 - StepF17  0.018037 0.0215 Inf   0.839  1.0000
 StepF15 - StepF18  0.007955 0.0215 Inf   0.370  1.0000
 StepF16 - StepF17  0.025344 0.0215 Inf   1.178  0.9995
 StepF16 - StepF18  0.015262 0.0215 Inf   0.709  1.0000
 StepF17 - StepF18 -0.010082 0.0215 Inf  -0.468  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.034792 0.0215 Inf  -1.618  0.9797
 StepF1 - StepF3   -0.041594 0.0215 Inf  -1.934  0.8992
 StepF1 - StepF4   -0.010482 0.0215 Inf  -0.487  1.0000
 StepF1 - StepF5   -0.006110 0.0215 Inf  -0.284  1.0000
 StepF1 - StepF6   -0.021781 0.0215 Inf  -1.013  0.9999
 StepF1 - StepF7   -0.021472 0.0215 Inf  -0.998  0.9999
 StepF1 - StepF8    0.009204 0.0215 Inf   0.428  1.0000
 StepF1 - StepF9    0.005469 0.0215 Inf   0.254  1.0000
 StepF1 - StepF10   0.005721 0.0215 Inf   0.266  1.0000
 StepF1 - StepF11   0.026359 0.0215 Inf   1.226  0.9992
 StepF1 - StepF12   0.073382 0.0215 Inf   3.412  0.0638
 StepF1 - StepF13   0.076545 0.0215 Inf   3.559  0.0397
 StepF1 - StepF14   0.022458 0.0215 Inf   1.044  0.9999
 StepF1 - StepF15   0.043951 0.0215 Inf   2.043  0.8480
 StepF1 - StepF16   0.036644 0.0215 Inf   1.704  0.9663
 StepF1 - StepF17   0.061988 0.0215 Inf   2.882  0.2625
 StepF1 - StepF18   0.051906 0.0215 Inf   2.411  0.5991
 StepF2 - StepF3   -0.006801 0.0215 Inf  -0.316  1.0000
 StepF2 - StepF4    0.024311 0.0215 Inf   1.130  0.9997
 StepF2 - StepF5    0.028682 0.0215 Inf   1.334  0.9976
 StepF2 - StepF6    0.013011 0.0215 Inf   0.605  1.0000
 StepF2 - StepF7    0.013321 0.0215 Inf   0.619  1.0000
 StepF2 - StepF8    0.043997 0.0215 Inf   2.046  0.8469
 StepF2 - StepF9    0.040262 0.0215 Inf   1.872  0.9224
 StepF2 - StepF10   0.040514 0.0215 Inf   1.884  0.9183
 StepF2 - StepF11   0.061151 0.0215 Inf   2.843  0.2857
 StepF2 - StepF12   0.108175 0.0215 Inf   5.029  0.0001
 StepF2 - StepF13   0.111338 0.0215 Inf   5.176  <.0001
 StepF2 - StepF14   0.057250 0.0215 Inf   2.662  0.4076
 StepF2 - StepF15   0.078744 0.0215 Inf   3.661  0.0280
 StepF2 - StepF16   0.071437 0.0215 Inf   3.321  0.0840
 StepF2 - StepF17   0.096781 0.0215 Inf   4.500  0.0009
 StepF2 - StepF18   0.086699 0.0215 Inf   4.028  0.0071
 StepF3 - StepF4    0.031112 0.0215 Inf   1.446  0.9938
 StepF3 - StepF5    0.035483 0.0215 Inf   1.650  0.9753
 StepF3 - StepF6    0.019812 0.0215 Inf   0.921  1.0000
 StepF3 - StepF7    0.020122 0.0215 Inf   0.936  1.0000
 StepF3 - StepF8    0.050798 0.0215 Inf   2.362  0.6373
 StepF3 - StepF9    0.047063 0.0215 Inf   2.188  0.7619
 StepF3 - StepF10   0.047315 0.0215 Inf   2.200  0.7541
 StepF3 - StepF11   0.067953 0.0215 Inf   3.159  0.1329
 StepF3 - StepF12   0.114976 0.0215 Inf   5.346  <.0001
 StepF3 - StepF13   0.118139 0.0215 Inf   5.493  <.0001
 StepF3 - StepF14   0.064052 0.0215 Inf   2.978  0.2107
 StepF3 - StepF15   0.085545 0.0215 Inf   3.977  0.0087
 StepF3 - StepF16   0.078238 0.0215 Inf   3.638  0.0304
 StepF3 - StepF17   0.103582 0.0215 Inf   4.816  0.0002
 StepF3 - StepF18   0.093500 0.0215 Inf   4.344  0.0019
 StepF4 - StepF5    0.004372 0.0215 Inf   0.203  1.0000
 StepF4 - StepF6   -0.011299 0.0215 Inf  -0.525  1.0000
 StepF4 - StepF7   -0.010990 0.0215 Inf  -0.511  1.0000
 StepF4 - StepF8    0.019686 0.0215 Inf   0.915  1.0000
 StepF4 - StepF9    0.015951 0.0215 Inf   0.742  1.0000
 StepF4 - StepF10   0.016203 0.0215 Inf   0.753  1.0000
 StepF4 - StepF11   0.036841 0.0215 Inf   1.713  0.9646
 StepF4 - StepF12   0.083864 0.0215 Inf   3.899  0.0118
 StepF4 - StepF13   0.087027 0.0215 Inf   4.046  0.0066
 StepF4 - StepF14   0.032940 0.0215 Inf   1.531  0.9885
 StepF4 - StepF15   0.054433 0.0215 Inf   2.531  0.5064
 StepF4 - StepF16   0.047126 0.0215 Inf   2.191  0.7600
 StepF4 - StepF17   0.072470 0.0215 Inf   3.369  0.0727
 StepF4 - StepF18   0.062388 0.0215 Inf   2.898  0.2531
 StepF5 - StepF6   -0.015671 0.0215 Inf  -0.729  1.0000
 StepF5 - StepF7   -0.015361 0.0215 Inf  -0.714  1.0000
 StepF5 - StepF8    0.015315 0.0215 Inf   0.712  1.0000
 StepF5 - StepF9    0.011580 0.0215 Inf   0.538  1.0000
 StepF5 - StepF10   0.011832 0.0215 Inf   0.550  1.0000
 StepF5 - StepF11   0.032469 0.0215 Inf   1.510  0.9901
 StepF5 - StepF12   0.079493 0.0215 Inf   3.696  0.0248
 StepF5 - StepF13   0.082656 0.0215 Inf   3.843  0.0145
 StepF5 - StepF14   0.028568 0.0215 Inf   1.328  0.9977
 StepF5 - StepF15   0.050062 0.0215 Inf   2.328  0.6631
 StepF5 - StepF16   0.042755 0.0215 Inf   1.988  0.8756
 StepF5 - StepF17   0.068099 0.0215 Inf   3.166  0.1305
 StepF5 - StepF18   0.058016 0.0215 Inf   2.695  0.3834
 StepF6 - StepF7    0.000310 0.0215 Inf   0.014  1.0000
 StepF6 - StepF8    0.030985 0.0215 Inf   1.441  0.9941
 StepF6 - StepF9    0.027250 0.0215 Inf   1.267  0.9987
 StepF6 - StepF10   0.027502 0.0215 Inf   1.279  0.9986
 StepF6 - StepF11   0.048140 0.0215 Inf   2.238  0.7279
 StepF6 - StepF12   0.095163 0.0215 Inf   4.424  0.0013
 StepF6 - StepF13   0.098326 0.0215 Inf   4.572  0.0007
 StepF6 - StepF14   0.044239 0.0215 Inf   2.057  0.8409
 StepF6 - StepF15   0.065732 0.0215 Inf   3.056  0.1740
 StepF6 - StepF16   0.058426 0.0215 Inf   2.716  0.3687
 StepF6 - StepF17   0.083770 0.0215 Inf   3.895  0.0120
 StepF6 - StepF18   0.073687 0.0215 Inf   3.423  0.0615
 StepF7 - StepF8    0.030676 0.0215 Inf   1.426  0.9947
 StepF7 - StepF9    0.026941 0.0215 Inf   1.253  0.9989
 StepF7 - StepF10   0.027193 0.0215 Inf   1.264  0.9988
 StepF7 - StepF11   0.047831 0.0215 Inf   2.224  0.7379
 StepF7 - StepF12   0.094854 0.0215 Inf   4.410  0.0014
 StepF7 - StepF13   0.098017 0.0215 Inf   4.557  0.0007
 StepF7 - StepF14   0.043930 0.0215 Inf   2.042  0.8486
 StepF7 - StepF15   0.065423 0.0215 Inf   3.042  0.1804
 StepF7 - StepF16   0.058116 0.0215 Inf   2.702  0.3787
 StepF7 - StepF17   0.083460 0.0215 Inf   3.880  0.0126
 StepF7 - StepF18   0.073378 0.0215 Inf   3.409  0.0643
 StepF8 - StepF9   -0.003735 0.0215 Inf  -0.174  1.0000
 StepF8 - StepF10  -0.003483 0.0215 Inf  -0.162  1.0000
 StepF8 - StepF11   0.017155 0.0215 Inf   0.798  1.0000
 StepF8 - StepF12   0.064178 0.0215 Inf   2.984  0.2078
 StepF8 - StepF13   0.067341 0.0215 Inf   3.131  0.1434
 StepF8 - StepF14   0.013254 0.0215 Inf   0.616  1.0000
 StepF8 - StepF15   0.034747 0.0215 Inf   1.615  0.9799
 StepF8 - StepF16   0.027440 0.0215 Inf   1.276  0.9986
 StepF8 - StepF17   0.052784 0.0215 Inf   2.454  0.5660
 StepF8 - StepF18   0.042702 0.0215 Inf   1.984  0.8774
 StepF9 - StepF10   0.000252 0.0215 Inf   0.012  1.0000
 StepF9 - StepF11   0.020890 0.0215 Inf   0.971  1.0000
 StepF9 - StepF12   0.067913 0.0215 Inf   3.157  0.1336
 StepF9 - StepF13   0.071076 0.0215 Inf   3.305  0.0882
 StepF9 - StepF14   0.016989 0.0215 Inf   0.790  1.0000
 StepF9 - StepF15   0.038482 0.0215 Inf   1.789  0.9473
 StepF9 - StepF16   0.031175 0.0215 Inf   1.449  0.9937
 StepF9 - StepF17   0.056519 0.0215 Inf   2.628  0.4326
 StepF9 - StepF18   0.046437 0.0215 Inf   2.157  0.7818
 StepF10 - StepF11  0.020638 0.0215 Inf   0.960  1.0000
 StepF10 - StepF12  0.067661 0.0215 Inf   3.146  0.1378
 StepF10 - StepF13  0.070824 0.0215 Inf   3.293  0.0913
 StepF10 - StepF14  0.016737 0.0215 Inf   0.778  1.0000
 StepF10 - StepF15  0.038230 0.0215 Inf   1.777  0.9503
 StepF10 - StepF16  0.030923 0.0215 Inf   1.438  0.9942
 StepF10 - StepF17  0.056267 0.0215 Inf   2.616  0.4413
 StepF10 - StepF18  0.046185 0.0215 Inf   2.146  0.7892
 StepF11 - StepF12  0.047023 0.0215 Inf   2.186  0.7632
 StepF11 - StepF13  0.050186 0.0215 Inf   2.333  0.6588
 StepF11 - StepF14 -0.003901 0.0215 Inf  -0.181  1.0000
 StepF11 - StepF15  0.017592 0.0215 Inf   0.818  1.0000
 StepF11 - StepF16  0.010285 0.0215 Inf   0.478  1.0000
 StepF11 - StepF17  0.035629 0.0215 Inf   1.657  0.9743
 StepF11 - StepF18  0.025547 0.0215 Inf   1.187  0.9994
 StepF12 - StepF13  0.003163 0.0215 Inf   0.147  1.0000
 StepF12 - StepF14 -0.050924 0.0215 Inf  -2.368  0.6328
 StepF12 - StepF15 -0.029431 0.0215 Inf  -1.368  0.9968
 StepF12 - StepF16 -0.036738 0.0215 Inf  -1.708  0.9655
 StepF12 - StepF17 -0.011394 0.0215 Inf  -0.530  1.0000
 StepF12 - StepF18 -0.021476 0.0215 Inf  -0.998  0.9999
 StepF13 - StepF14 -0.054087 0.0215 Inf  -2.515  0.5188
 StepF13 - StepF15 -0.032594 0.0215 Inf  -1.515  0.9897
 StepF13 - StepF16 -0.039901 0.0215 Inf  -1.855  0.9280
 StepF13 - StepF17 -0.014557 0.0215 Inf  -0.677  1.0000
 StepF13 - StepF18 -0.024639 0.0215 Inf  -1.145  0.9997
 StepF14 - StepF15  0.021493 0.0215 Inf   0.999  0.9999
 StepF14 - StepF16  0.014186 0.0215 Inf   0.660  1.0000
 StepF14 - StepF17  0.039530 0.0215 Inf   1.838  0.9334
 StepF14 - StepF18  0.029448 0.0215 Inf   1.368  0.9968
 StepF15 - StepF16 -0.007307 0.0215 Inf  -0.340  1.0000
 StepF15 - StepF17  0.018037 0.0215 Inf   0.839  1.0000
 StepF15 - StepF18  0.007955 0.0215 Inf   0.370  1.0000
 StepF16 - StepF17  0.025344 0.0215 Inf   1.178  0.9995
 StepF16 - StepF18  0.015262 0.0215 Inf   0.709  1.0000
 StepF17 - StepF18 -0.010082 0.0215 Inf  -0.468  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.034792 0.0215 Inf   1.618  1.0000
 StepF3 - StepF2    0.006801 0.0215 Inf   0.316  1.0000
 StepF4 - StepF3   -0.031112 0.0215 Inf  -1.446  1.0000
 StepF5 - StepF4   -0.004372 0.0215 Inf  -0.203  1.0000
 StepF6 - StepF5    0.015671 0.0215 Inf   0.729  1.0000
 StepF7 - StepF6   -0.000310 0.0215 Inf  -0.014  1.0000
 StepF8 - StepF7   -0.030676 0.0215 Inf  -1.426  1.0000
 StepF9 - StepF8    0.003735 0.0215 Inf   0.174  1.0000
 StepF10 - StepF9  -0.000252 0.0215 Inf  -0.012  1.0000
 StepF11 - StepF10 -0.020638 0.0215 Inf  -0.960  1.0000
 StepF12 - StepF11 -0.047023 0.0215 Inf  -2.186  0.4607
 StepF13 - StepF12 -0.003163 0.0215 Inf  -0.147  1.0000
 StepF14 - StepF13  0.054087 0.0215 Inf   2.515  0.2025
 StepF15 - StepF14 -0.021493 0.0215 Inf  -0.999  1.0000
 StepF16 - StepF15  0.007307 0.0215 Inf   0.340  1.0000
 StepF17 - StepF16 -0.025344 0.0215 Inf  -1.178  1.0000
 StepF18 - StepF17  0.010082 0.0215 Inf   0.468  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.034792 0.0215 Inf   1.618  1.0000
 StepF3 - StepF2    0.006801 0.0215 Inf   0.316  1.0000
 StepF4 - StepF3   -0.031112 0.0215 Inf  -1.446  1.0000
 StepF5 - StepF4   -0.004372 0.0215 Inf  -0.203  1.0000
 StepF6 - StepF5    0.015671 0.0215 Inf   0.729  1.0000
 StepF7 - StepF6   -0.000310 0.0215 Inf  -0.014  1.0000
 StepF8 - StepF7   -0.030676 0.0215 Inf  -1.426  1.0000
 StepF9 - StepF8    0.003735 0.0215 Inf   0.174  1.0000
 StepF10 - StepF9  -0.000252 0.0215 Inf  -0.012  1.0000
 StepF11 - StepF10 -0.020638 0.0215 Inf  -0.960  1.0000
 StepF12 - StepF11 -0.047023 0.0215 Inf  -2.186  0.4607
 StepF13 - StepF12 -0.003163 0.0215 Inf  -0.147  1.0000
 StepF14 - StepF13  0.054087 0.0215 Inf   2.515  0.2025
 StepF15 - StepF14 -0.021493 0.0215 Inf  -0.999  1.0000
 StepF16 - StepF15  0.007307 0.0215 Inf   0.340  1.0000
 StepF17 - StepF16 -0.025344 0.0215 Inf  -1.178  1.0000
 StepF18 - StepF17  0.010082 0.0215 Inf   0.468  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TRAINING | Block 3 (18 steps) | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    165.1538 17     <2e-16 ***
Accuracy   0.5735  1     0.4489    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.591 0.0544 Inf     0.485     0.698
 2      0.679 0.0544 Inf     0.573     0.786
 3      0.698 0.0544 Inf     0.591     0.805
 4      0.594 0.0544 Inf     0.487     0.701
 5      0.603 0.0544 Inf     0.496     0.709
 6      0.636 0.0544 Inf     0.530     0.743
 7      0.660 0.0544 Inf     0.553     0.767
 8      0.577 0.0544 Inf     0.470     0.684
 9      0.602 0.0544 Inf     0.495     0.709
 10     0.661 0.0544 Inf     0.554     0.768
 11     0.653 0.0544 Inf     0.547     0.760
 12     0.536 0.0544 Inf     0.429     0.642
 13     0.550 0.0544 Inf     0.443     0.657
 14     0.563 0.0544 Inf     0.456     0.669
 15     0.600 0.0544 Inf     0.493     0.707
 16     0.553 0.0544 Inf     0.447     0.660
 17     0.569 0.0544 Inf     0.462     0.676
 18     0.535 0.0544 Inf     0.428     0.642

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.573 0.0541 Inf     0.467     0.679
 2      0.661 0.0541 Inf     0.555     0.767
 3      0.680 0.0541 Inf     0.574     0.786
 4      0.576 0.0541 Inf     0.469     0.682
 5      0.585 0.0541 Inf     0.478     0.691
 6      0.618 0.0541 Inf     0.512     0.724
 7      0.642 0.0541 Inf     0.536     0.748
 8      0.559 0.0541 Inf     0.453     0.665
 9      0.584 0.0541 Inf     0.478     0.690
 10     0.643 0.0541 Inf     0.537     0.749
 11     0.635 0.0541 Inf     0.529     0.741
 12     0.518 0.0541 Inf     0.411     0.624
 13     0.532 0.0541 Inf     0.426     0.638
 14     0.545 0.0541 Inf     0.438     0.651
 15     0.582 0.0541 Inf     0.475     0.688
 16     0.535 0.0541 Inf     0.429     0.641
 17     0.551 0.0541 Inf     0.445     0.657
 18     0.517 0.0541 Inf     0.411     0.623

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.087967 0.0229 Inf  -3.846  0.0144
 StepF1 - StepF3   -0.106572 0.0229 Inf  -4.659  0.0005
 StepF1 - StepF4   -0.002399 0.0229 Inf  -0.105  1.0000
 StepF1 - StepF5   -0.011316 0.0229 Inf  -0.495  1.0000
 StepF1 - StepF6   -0.044917 0.0229 Inf  -1.964  0.8865
 StepF1 - StepF7   -0.068425 0.0229 Inf  -2.991  0.2041
 StepF1 - StepF8    0.014541 0.0229 Inf   0.636  1.0000
 StepF1 - StepF9   -0.010449 0.0229 Inf  -0.457  1.0000
 StepF1 - StepF10  -0.069550 0.0229 Inf  -3.040  0.1810
 StepF1 - StepF11  -0.061842 0.0229 Inf  -2.703  0.3777
 StepF1 - StepF12   0.055676 0.0229 Inf   2.434  0.5817
 StepF1 - StepF13   0.041373 0.0229 Inf   1.809  0.9420
 StepF1 - StepF14   0.028642 0.0229 Inf   1.252  0.9989
 StepF1 - StepF15  -0.008389 0.0229 Inf  -0.367  1.0000
 StepF1 - StepF16   0.038291 0.0229 Inf   1.674  0.9715
 StepF1 - StepF17   0.022498 0.0229 Inf   0.984  1.0000
 StepF1 - StepF18   0.056477 0.0229 Inf   2.467  0.5558
 StepF2 - StepF3   -0.018605 0.0229 Inf  -0.813  1.0000
 StepF2 - StepF4    0.085568 0.0229 Inf   3.741  0.0212
 StepF2 - StepF5    0.076651 0.0229 Inf   3.351  0.0769
 StepF2 - StepF6    0.043050 0.0229 Inf   1.882  0.9189
 StepF2 - StepF7    0.019542 0.0229 Inf   0.854  1.0000
 StepF2 - StepF8    0.102508 0.0229 Inf   4.481  0.0010
 StepF2 - StepF9    0.077518 0.0229 Inf   3.389  0.0685
 StepF2 - StepF10   0.018417 0.0229 Inf   0.805  1.0000
 StepF2 - StepF11   0.026125 0.0229 Inf   1.142  0.9997
 StepF2 - StepF12   0.143643 0.0229 Inf   6.279  <.0001
 StepF2 - StepF13   0.129340 0.0229 Inf   5.654  <.0001
 StepF2 - StepF14   0.116609 0.0229 Inf   5.098  0.0001
 StepF2 - StepF15   0.079578 0.0229 Inf   3.479  0.0516
 StepF2 - StepF16   0.126258 0.0229 Inf   5.519  <.0001
 StepF2 - StepF17   0.110465 0.0229 Inf   4.829  0.0002
 StepF2 - StepF18   0.144445 0.0229 Inf   6.310  <.0001
 StepF3 - StepF4    0.104174 0.0229 Inf   4.554  0.0007
 StepF3 - StepF5    0.095257 0.0229 Inf   4.164  0.0041
 StepF3 - StepF6    0.061655 0.0229 Inf   2.695  0.3835
 StepF3 - StepF7    0.038148 0.0229 Inf   1.668  0.9725
 StepF3 - StepF8    0.121113 0.0229 Inf   5.295  <.0001
 StepF3 - StepF9    0.096123 0.0229 Inf   4.202  0.0035
 StepF3 - StepF10   0.037023 0.0229 Inf   1.618  0.9796
 StepF3 - StepF11   0.044730 0.0229 Inf   1.955  0.8901
 StepF3 - StepF12   0.162249 0.0229 Inf   7.093  <.0001
 StepF3 - StepF13   0.147946 0.0229 Inf   6.468  <.0001
 StepF3 - StepF14   0.135214 0.0229 Inf   5.911  <.0001
 StepF3 - StepF15   0.098184 0.0229 Inf   4.292  0.0024
 StepF3 - StepF16   0.144863 0.0229 Inf   6.333  <.0001
 StepF3 - StepF17   0.129071 0.0229 Inf   5.642  <.0001
 StepF3 - StepF18   0.163050 0.0229 Inf   7.123  <.0001
 StepF4 - StepF5   -0.008917 0.0229 Inf  -0.390  1.0000
 StepF4 - StepF6   -0.042519 0.0229 Inf  -1.859  0.9268
 StepF4 - StepF7   -0.066026 0.0229 Inf  -2.886  0.2600
 StepF4 - StepF8    0.016939 0.0229 Inf   0.741  1.0000
 StepF4 - StepF9   -0.008050 0.0229 Inf  -0.352  1.0000
 StepF4 - StepF10  -0.067151 0.0229 Inf  -2.936  0.2327
 StepF4 - StepF11  -0.059443 0.0229 Inf  -2.599  0.4544
 StepF4 - StepF12   0.058075 0.0229 Inf   2.539  0.5002
 StepF4 - StepF13   0.043772 0.0229 Inf   1.914  0.9072
 StepF4 - StepF14   0.031041 0.0229 Inf   1.357  0.9971
 StepF4 - StepF15  -0.005990 0.0229 Inf  -0.262  1.0000
 StepF4 - StepF16   0.040689 0.0229 Inf   1.779  0.9499
 StepF4 - StepF17   0.024897 0.0229 Inf   1.088  0.9998
 StepF4 - StepF18   0.058876 0.0229 Inf   2.572  0.4747
 StepF5 - StepF6   -0.033602 0.0229 Inf  -1.469  0.9927
 StepF5 - StepF7   -0.057109 0.0229 Inf  -2.497  0.5329
 StepF5 - StepF8    0.025857 0.0229 Inf   1.130  0.9997
 StepF5 - StepF9    0.000867 0.0229 Inf   0.038  1.0000
 StepF5 - StepF10  -0.058234 0.0229 Inf  -2.546  0.4948
 StepF5 - StepF11  -0.050526 0.0229 Inf  -2.209  0.7481
 StepF5 - StepF12   0.066992 0.0229 Inf   2.929  0.2365
 StepF5 - StepF13   0.052689 0.0229 Inf   2.303  0.6811
 StepF5 - StepF14   0.039958 0.0229 Inf   1.747  0.9575
 StepF5 - StepF15   0.002927 0.0229 Inf   0.128  1.0000
 StepF5 - StepF16   0.049607 0.0229 Inf   2.169  0.7747
 StepF5 - StepF17   0.033814 0.0229 Inf   1.478  0.9922
 StepF5 - StepF18   0.067793 0.0229 Inf   2.961  0.2191
 StepF6 - StepF7   -0.023507 0.0229 Inf  -1.028  0.9999
 StepF6 - StepF8    0.059458 0.0229 Inf   2.599  0.4540
 StepF6 - StepF9    0.034468 0.0229 Inf   1.507  0.9903
 StepF6 - StepF10  -0.024632 0.0229 Inf  -1.077  0.9998
 StepF6 - StepF11  -0.016925 0.0229 Inf  -0.740  1.0000
 StepF6 - StepF12   0.100594 0.0229 Inf   4.398  0.0015
 StepF6 - StepF13   0.086291 0.0229 Inf   3.772  0.0189
 StepF6 - StepF14   0.073559 0.0229 Inf   3.216  0.1138
 StepF6 - StepF15   0.036529 0.0229 Inf   1.597  0.9822
 StepF6 - StepF16   0.083208 0.0229 Inf   3.638  0.0304
 StepF6 - StepF17   0.067416 0.0229 Inf   2.947  0.2266
 StepF6 - StepF18   0.101395 0.0229 Inf   4.429  0.0013
 StepF7 - StepF8    0.082965 0.0229 Inf   3.627  0.0316
 StepF7 - StepF9    0.057976 0.0229 Inf   2.534  0.5035
 StepF7 - StepF10  -0.001125 0.0229 Inf  -0.049  1.0000
 StepF7 - StepF11   0.006583 0.0229 Inf   0.288  1.0000
 StepF7 - StepF12   0.124101 0.0229 Inf   5.425  <.0001
 StepF7 - StepF13   0.109798 0.0229 Inf   4.800  0.0002
 StepF7 - StepF14   0.097067 0.0229 Inf   4.243  0.0029
 StepF7 - StepF15   0.060036 0.0229 Inf   2.625  0.4350
 StepF7 - StepF16   0.106715 0.0229 Inf   4.665  0.0004
 StepF7 - StepF17   0.090923 0.0229 Inf   3.975  0.0088
 StepF7 - StepF18   0.124902 0.0229 Inf   5.456  <.0001
 StepF8 - StepF9   -0.024990 0.0229 Inf  -1.092  0.9998
 StepF8 - StepF10  -0.084090 0.0229 Inf  -3.676  0.0266
 StepF8 - StepF11  -0.076383 0.0229 Inf  -3.339  0.0796
 StepF8 - StepF12   0.041135 0.0229 Inf   1.798  0.9448
 StepF8 - StepF13   0.026833 0.0229 Inf   1.173  0.9995
 StepF8 - StepF14   0.014101 0.0229 Inf   0.616  1.0000
 StepF8 - StepF15  -0.022930 0.0229 Inf  -1.002  0.9999
 StepF8 - StepF16   0.023750 0.0229 Inf   1.038  0.9999
 StepF8 - StepF17   0.007958 0.0229 Inf   0.348  1.0000
 StepF8 - StepF18   0.041937 0.0229 Inf   1.832  0.9352
 StepF9 - StepF10  -0.059101 0.0229 Inf  -2.584  0.4658
 StepF9 - StepF11  -0.051393 0.0229 Inf  -2.247  0.7219
 StepF9 - StepF12   0.066125 0.0229 Inf   2.891  0.2576
 StepF9 - StepF13   0.051822 0.0229 Inf   2.265  0.7086
 StepF9 - StepF14   0.039091 0.0229 Inf   1.709  0.9653
 StepF9 - StepF15   0.002060 0.0229 Inf   0.090  1.0000
 StepF9 - StepF16   0.048740 0.0229 Inf   2.131  0.7985
 StepF9 - StepF17   0.032947 0.0229 Inf   1.440  0.9941
 StepF9 - StepF18   0.066926 0.0229 Inf   2.924  0.2392
 StepF10 - StepF11  0.007708 0.0229 Inf   0.337  1.0000
 StepF10 - StepF12  0.125226 0.0229 Inf   5.474  <.0001
 StepF10 - StepF13  0.110923 0.0229 Inf   4.849  0.0002
 StepF10 - StepF14  0.098192 0.0229 Inf   4.293  0.0024
 StepF10 - StepF15  0.061161 0.0229 Inf   2.674  0.3990
 StepF10 - StepF16  0.107841 0.0229 Inf   4.714  0.0003
 StepF10 - StepF17  0.092048 0.0229 Inf   4.024  0.0072
 StepF10 - StepF18  0.126027 0.0229 Inf   5.505  <.0001
 StepF11 - StepF12  0.117518 0.0229 Inf   5.137  <.0001
 StepF11 - StepF13  0.103215 0.0229 Inf   4.512  0.0009
 StepF11 - StepF14  0.090484 0.0229 Inf   3.956  0.0095
 StepF11 - StepF15  0.053453 0.0229 Inf   2.337  0.6562
 StepF11 - StepF16  0.100133 0.0229 Inf   4.377  0.0016
 StepF11 - StepF17  0.084340 0.0229 Inf   3.687  0.0256
 StepF11 - StepF18  0.118319 0.0229 Inf   5.169  <.0001
 StepF12 - StepF13 -0.014303 0.0229 Inf  -0.625  1.0000
 StepF12 - StepF14 -0.027034 0.0229 Inf  -1.182  0.9995
 StepF12 - StepF15 -0.064065 0.0229 Inf  -2.801  0.3122
 StepF12 - StepF16 -0.017385 0.0229 Inf  -0.760  1.0000
 StepF12 - StepF17 -0.033178 0.0229 Inf  -1.450  0.9937
 StepF12 - StepF18  0.000801 0.0229 Inf   0.035  1.0000
 StepF13 - StepF14 -0.012731 0.0229 Inf  -0.557  1.0000
 StepF13 - StepF15 -0.049762 0.0229 Inf  -2.175  0.7703
 StepF13 - StepF16 -0.003083 0.0229 Inf  -0.135  1.0000
 StepF13 - StepF17 -0.018875 0.0229 Inf  -0.825  1.0000
 StepF13 - StepF18  0.015104 0.0229 Inf   0.660  1.0000
 StepF14 - StepF15 -0.037031 0.0229 Inf  -1.619  0.9795
 StepF14 - StepF16  0.009649 0.0229 Inf   0.422  1.0000
 StepF14 - StepF17 -0.006144 0.0229 Inf  -0.269  1.0000
 StepF14 - StepF18  0.027836 0.0229 Inf   1.216  0.9992
 StepF15 - StepF16  0.046680 0.0229 Inf   2.041  0.8495
 StepF15 - StepF17  0.030887 0.0229 Inf   1.350  0.9972
 StepF15 - StepF18  0.064866 0.0229 Inf   2.834  0.2915
 StepF16 - StepF17 -0.015792 0.0229 Inf  -0.690  1.0000
 StepF16 - StepF18  0.018187 0.0229 Inf   0.794  1.0000
 StepF17 - StepF18  0.033979 0.0229 Inf   1.484  0.9918

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.087967 0.0229 Inf  -3.846  0.0144
 StepF1 - StepF3   -0.106572 0.0229 Inf  -4.659  0.0005
 StepF1 - StepF4   -0.002399 0.0229 Inf  -0.105  1.0000
 StepF1 - StepF5   -0.011316 0.0229 Inf  -0.495  1.0000
 StepF1 - StepF6   -0.044917 0.0229 Inf  -1.964  0.8865
 StepF1 - StepF7   -0.068425 0.0229 Inf  -2.991  0.2041
 StepF1 - StepF8    0.014541 0.0229 Inf   0.636  1.0000
 StepF1 - StepF9   -0.010449 0.0229 Inf  -0.457  1.0000
 StepF1 - StepF10  -0.069550 0.0229 Inf  -3.040  0.1810
 StepF1 - StepF11  -0.061842 0.0229 Inf  -2.703  0.3777
 StepF1 - StepF12   0.055676 0.0229 Inf   2.434  0.5817
 StepF1 - StepF13   0.041373 0.0229 Inf   1.809  0.9420
 StepF1 - StepF14   0.028642 0.0229 Inf   1.252  0.9989
 StepF1 - StepF15  -0.008389 0.0229 Inf  -0.367  1.0000
 StepF1 - StepF16   0.038291 0.0229 Inf   1.674  0.9715
 StepF1 - StepF17   0.022498 0.0229 Inf   0.984  1.0000
 StepF1 - StepF18   0.056477 0.0229 Inf   2.467  0.5558
 StepF2 - StepF3   -0.018605 0.0229 Inf  -0.813  1.0000
 StepF2 - StepF4    0.085568 0.0229 Inf   3.741  0.0212
 StepF2 - StepF5    0.076651 0.0229 Inf   3.351  0.0769
 StepF2 - StepF6    0.043050 0.0229 Inf   1.882  0.9189
 StepF2 - StepF7    0.019542 0.0229 Inf   0.854  1.0000
 StepF2 - StepF8    0.102508 0.0229 Inf   4.481  0.0010
 StepF2 - StepF9    0.077518 0.0229 Inf   3.389  0.0685
 StepF2 - StepF10   0.018417 0.0229 Inf   0.805  1.0000
 StepF2 - StepF11   0.026125 0.0229 Inf   1.142  0.9997
 StepF2 - StepF12   0.143643 0.0229 Inf   6.279  <.0001
 StepF2 - StepF13   0.129340 0.0229 Inf   5.654  <.0001
 StepF2 - StepF14   0.116609 0.0229 Inf   5.098  0.0001
 StepF2 - StepF15   0.079578 0.0229 Inf   3.479  0.0516
 StepF2 - StepF16   0.126258 0.0229 Inf   5.519  <.0001
 StepF2 - StepF17   0.110465 0.0229 Inf   4.829  0.0002
 StepF2 - StepF18   0.144445 0.0229 Inf   6.310  <.0001
 StepF3 - StepF4    0.104174 0.0229 Inf   4.554  0.0007
 StepF3 - StepF5    0.095257 0.0229 Inf   4.164  0.0041
 StepF3 - StepF6    0.061655 0.0229 Inf   2.695  0.3835
 StepF3 - StepF7    0.038148 0.0229 Inf   1.668  0.9725
 StepF3 - StepF8    0.121113 0.0229 Inf   5.295  <.0001
 StepF3 - StepF9    0.096123 0.0229 Inf   4.202  0.0035
 StepF3 - StepF10   0.037023 0.0229 Inf   1.618  0.9796
 StepF3 - StepF11   0.044730 0.0229 Inf   1.955  0.8901
 StepF3 - StepF12   0.162249 0.0229 Inf   7.093  <.0001
 StepF3 - StepF13   0.147946 0.0229 Inf   6.468  <.0001
 StepF3 - StepF14   0.135214 0.0229 Inf   5.911  <.0001
 StepF3 - StepF15   0.098184 0.0229 Inf   4.292  0.0024
 StepF3 - StepF16   0.144863 0.0229 Inf   6.333  <.0001
 StepF3 - StepF17   0.129071 0.0229 Inf   5.642  <.0001
 StepF3 - StepF18   0.163050 0.0229 Inf   7.123  <.0001
 StepF4 - StepF5   -0.008917 0.0229 Inf  -0.390  1.0000
 StepF4 - StepF6   -0.042519 0.0229 Inf  -1.859  0.9268
 StepF4 - StepF7   -0.066026 0.0229 Inf  -2.886  0.2600
 StepF4 - StepF8    0.016939 0.0229 Inf   0.741  1.0000
 StepF4 - StepF9   -0.008050 0.0229 Inf  -0.352  1.0000
 StepF4 - StepF10  -0.067151 0.0229 Inf  -2.936  0.2327
 StepF4 - StepF11  -0.059443 0.0229 Inf  -2.599  0.4544
 StepF4 - StepF12   0.058075 0.0229 Inf   2.539  0.5002
 StepF4 - StepF13   0.043772 0.0229 Inf   1.914  0.9072
 StepF4 - StepF14   0.031041 0.0229 Inf   1.357  0.9971
 StepF4 - StepF15  -0.005990 0.0229 Inf  -0.262  1.0000
 StepF4 - StepF16   0.040689 0.0229 Inf   1.779  0.9499
 StepF4 - StepF17   0.024897 0.0229 Inf   1.088  0.9998
 StepF4 - StepF18   0.058876 0.0229 Inf   2.572  0.4747
 StepF5 - StepF6   -0.033602 0.0229 Inf  -1.469  0.9927
 StepF5 - StepF7   -0.057109 0.0229 Inf  -2.497  0.5329
 StepF5 - StepF8    0.025857 0.0229 Inf   1.130  0.9997
 StepF5 - StepF9    0.000867 0.0229 Inf   0.038  1.0000
 StepF5 - StepF10  -0.058234 0.0229 Inf  -2.546  0.4948
 StepF5 - StepF11  -0.050526 0.0229 Inf  -2.209  0.7481
 StepF5 - StepF12   0.066992 0.0229 Inf   2.929  0.2365
 StepF5 - StepF13   0.052689 0.0229 Inf   2.303  0.6811
 StepF5 - StepF14   0.039958 0.0229 Inf   1.747  0.9575
 StepF5 - StepF15   0.002927 0.0229 Inf   0.128  1.0000
 StepF5 - StepF16   0.049607 0.0229 Inf   2.169  0.7747
 StepF5 - StepF17   0.033814 0.0229 Inf   1.478  0.9922
 StepF5 - StepF18   0.067793 0.0229 Inf   2.961  0.2191
 StepF6 - StepF7   -0.023507 0.0229 Inf  -1.028  0.9999
 StepF6 - StepF8    0.059458 0.0229 Inf   2.599  0.4540
 StepF6 - StepF9    0.034468 0.0229 Inf   1.507  0.9903
 StepF6 - StepF10  -0.024632 0.0229 Inf  -1.077  0.9998
 StepF6 - StepF11  -0.016925 0.0229 Inf  -0.740  1.0000
 StepF6 - StepF12   0.100594 0.0229 Inf   4.398  0.0015
 StepF6 - StepF13   0.086291 0.0229 Inf   3.772  0.0189
 StepF6 - StepF14   0.073559 0.0229 Inf   3.216  0.1138
 StepF6 - StepF15   0.036529 0.0229 Inf   1.597  0.9822
 StepF6 - StepF16   0.083208 0.0229 Inf   3.638  0.0304
 StepF6 - StepF17   0.067416 0.0229 Inf   2.947  0.2266
 StepF6 - StepF18   0.101395 0.0229 Inf   4.429  0.0013
 StepF7 - StepF8    0.082965 0.0229 Inf   3.627  0.0316
 StepF7 - StepF9    0.057976 0.0229 Inf   2.534  0.5035
 StepF7 - StepF10  -0.001125 0.0229 Inf  -0.049  1.0000
 StepF7 - StepF11   0.006583 0.0229 Inf   0.288  1.0000
 StepF7 - StepF12   0.124101 0.0229 Inf   5.425  <.0001
 StepF7 - StepF13   0.109798 0.0229 Inf   4.800  0.0002
 StepF7 - StepF14   0.097067 0.0229 Inf   4.243  0.0029
 StepF7 - StepF15   0.060036 0.0229 Inf   2.625  0.4350
 StepF7 - StepF16   0.106715 0.0229 Inf   4.665  0.0004
 StepF7 - StepF17   0.090923 0.0229 Inf   3.975  0.0088
 StepF7 - StepF18   0.124902 0.0229 Inf   5.456  <.0001
 StepF8 - StepF9   -0.024990 0.0229 Inf  -1.092  0.9998
 StepF8 - StepF10  -0.084090 0.0229 Inf  -3.676  0.0266
 StepF8 - StepF11  -0.076383 0.0229 Inf  -3.339  0.0796
 StepF8 - StepF12   0.041135 0.0229 Inf   1.798  0.9448
 StepF8 - StepF13   0.026833 0.0229 Inf   1.173  0.9995
 StepF8 - StepF14   0.014101 0.0229 Inf   0.616  1.0000
 StepF8 - StepF15  -0.022930 0.0229 Inf  -1.002  0.9999
 StepF8 - StepF16   0.023750 0.0229 Inf   1.038  0.9999
 StepF8 - StepF17   0.007958 0.0229 Inf   0.348  1.0000
 StepF8 - StepF18   0.041937 0.0229 Inf   1.832  0.9352
 StepF9 - StepF10  -0.059101 0.0229 Inf  -2.584  0.4658
 StepF9 - StepF11  -0.051393 0.0229 Inf  -2.247  0.7219
 StepF9 - StepF12   0.066125 0.0229 Inf   2.891  0.2576
 StepF9 - StepF13   0.051822 0.0229 Inf   2.265  0.7086
 StepF9 - StepF14   0.039091 0.0229 Inf   1.709  0.9653
 StepF9 - StepF15   0.002060 0.0229 Inf   0.090  1.0000
 StepF9 - StepF16   0.048740 0.0229 Inf   2.131  0.7985
 StepF9 - StepF17   0.032947 0.0229 Inf   1.440  0.9941
 StepF9 - StepF18   0.066926 0.0229 Inf   2.924  0.2392
 StepF10 - StepF11  0.007708 0.0229 Inf   0.337  1.0000
 StepF10 - StepF12  0.125226 0.0229 Inf   5.474  <.0001
 StepF10 - StepF13  0.110923 0.0229 Inf   4.849  0.0002
 StepF10 - StepF14  0.098192 0.0229 Inf   4.293  0.0024
 StepF10 - StepF15  0.061161 0.0229 Inf   2.674  0.3990
 StepF10 - StepF16  0.107841 0.0229 Inf   4.714  0.0003
 StepF10 - StepF17  0.092048 0.0229 Inf   4.024  0.0072
 StepF10 - StepF18  0.126027 0.0229 Inf   5.505  <.0001
 StepF11 - StepF12  0.117518 0.0229 Inf   5.137  <.0001
 StepF11 - StepF13  0.103215 0.0229 Inf   4.512  0.0009
 StepF11 - StepF14  0.090484 0.0229 Inf   3.956  0.0095
 StepF11 - StepF15  0.053453 0.0229 Inf   2.337  0.6562
 StepF11 - StepF16  0.100133 0.0229 Inf   4.377  0.0016
 StepF11 - StepF17  0.084340 0.0229 Inf   3.687  0.0256
 StepF11 - StepF18  0.118319 0.0229 Inf   5.169  <.0001
 StepF12 - StepF13 -0.014303 0.0229 Inf  -0.625  1.0000
 StepF12 - StepF14 -0.027034 0.0229 Inf  -1.182  0.9995
 StepF12 - StepF15 -0.064065 0.0229 Inf  -2.801  0.3122
 StepF12 - StepF16 -0.017385 0.0229 Inf  -0.760  1.0000
 StepF12 - StepF17 -0.033178 0.0229 Inf  -1.450  0.9937
 StepF12 - StepF18  0.000801 0.0229 Inf   0.035  1.0000
 StepF13 - StepF14 -0.012731 0.0229 Inf  -0.557  1.0000
 StepF13 - StepF15 -0.049762 0.0229 Inf  -2.175  0.7703
 StepF13 - StepF16 -0.003083 0.0229 Inf  -0.135  1.0000
 StepF13 - StepF17 -0.018875 0.0229 Inf  -0.825  1.0000
 StepF13 - StepF18  0.015104 0.0229 Inf   0.660  1.0000
 StepF14 - StepF15 -0.037031 0.0229 Inf  -1.619  0.9795
 StepF14 - StepF16  0.009649 0.0229 Inf   0.422  1.0000
 StepF14 - StepF17 -0.006144 0.0229 Inf  -0.269  1.0000
 StepF14 - StepF18  0.027836 0.0229 Inf   1.216  0.9992
 StepF15 - StepF16  0.046680 0.0229 Inf   2.041  0.8495
 StepF15 - StepF17  0.030887 0.0229 Inf   1.350  0.9972
 StepF15 - StepF18  0.064866 0.0229 Inf   2.834  0.2915
 StepF16 - StepF17 -0.015792 0.0229 Inf  -0.690  1.0000
 StepF16 - StepF18  0.018187 0.0229 Inf   0.794  1.0000
 StepF17 - StepF18  0.033979 0.0229 Inf   1.484  0.9918

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.08797 0.0229 Inf   3.846  0.0018
 StepF3 - StepF2    0.01861 0.0229 Inf   0.813  1.0000
 StepF4 - StepF3   -0.10417 0.0229 Inf  -4.554  0.0001
 StepF5 - StepF4    0.00892 0.0229 Inf   0.390  1.0000
 StepF6 - StepF5    0.03360 0.0229 Inf   1.469  1.0000
 StepF7 - StepF6    0.02351 0.0229 Inf   1.028  1.0000
 StepF8 - StepF7   -0.08297 0.0229 Inf  -3.627  0.0040
 StepF9 - StepF8    0.02499 0.0229 Inf   1.092  1.0000
 StepF10 - StepF9   0.05910 0.0229 Inf   2.584  0.1271
 StepF11 - StepF10 -0.00771 0.0229 Inf  -0.337  1.0000
 StepF12 - StepF11 -0.11752 0.0229 Inf  -5.137  <.0001
 StepF13 - StepF12  0.01430 0.0229 Inf   0.625  1.0000
 StepF14 - StepF13  0.01273 0.0229 Inf   0.557  1.0000
 StepF15 - StepF14  0.03703 0.0229 Inf   1.619  1.0000
 StepF16 - StepF15 -0.04668 0.0229 Inf  -2.041  0.4954
 StepF17 - StepF16  0.01579 0.0229 Inf   0.690  1.0000
 StepF18 - StepF17 -0.03398 0.0229 Inf  -1.484  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.08797 0.0229 Inf   3.846  0.0018
 StepF3 - StepF2    0.01861 0.0229 Inf   0.813  1.0000
 StepF4 - StepF3   -0.10417 0.0229 Inf  -4.554  0.0001
 StepF5 - StepF4    0.00892 0.0229 Inf   0.390  1.0000
 StepF6 - StepF5    0.03360 0.0229 Inf   1.469  1.0000
 StepF7 - StepF6    0.02351 0.0229 Inf   1.028  1.0000
 StepF8 - StepF7   -0.08297 0.0229 Inf  -3.627  0.0040
 StepF9 - StepF8    0.02499 0.0229 Inf   1.092  1.0000
 StepF10 - StepF9   0.05910 0.0229 Inf   2.584  0.1271
 StepF11 - StepF10 -0.00771 0.0229 Inf  -0.337  1.0000
 StepF12 - StepF11 -0.11752 0.0229 Inf  -5.137  <.0001
 StepF13 - StepF12  0.01430 0.0229 Inf   0.625  1.0000
 StepF14 - StepF13  0.01273 0.0229 Inf   0.557  1.0000
 StepF15 - StepF14  0.03703 0.0229 Inf   1.619  1.0000
 StepF16 - StepF15 -0.04668 0.0229 Inf  -2.041  0.4954
 StepF17 - StepF16  0.01579 0.0229 Inf   0.690  1.0000
 StepF18 - StepF17 -0.03398 0.0229 Inf  -1.484  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TRAINING | Block 3 (18 steps) | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    153.1381 17     <2e-16 ***
Accuracy   1.0975  1     0.2948    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.22 0.124 Inf     0.972      1.46
 2       1.38 0.124 Inf     1.140      1.63
 3       1.39 0.124 Inf     1.150      1.64
 4       1.25 0.124 Inf     1.007      1.49
 5       1.27 0.124 Inf     1.026      1.51
 6       1.29 0.124 Inf     1.050      1.54
 7       1.30 0.124 Inf     1.059      1.55
 8       1.29 0.124 Inf     1.049      1.54
 9       1.24 0.124 Inf     1.001      1.49
 10      1.29 0.124 Inf     1.045      1.53
 11      1.25 0.124 Inf     1.003      1.49
 12      1.13 0.124 Inf     0.887      1.37
 13      1.19 0.124 Inf     0.950      1.44
 14      1.24 0.124 Inf     0.999      1.49
 15      1.19 0.124 Inf     0.949      1.44
 16      1.13 0.124 Inf     0.888      1.37
 17      1.11 0.124 Inf     0.863      1.35
 18      1.08 0.124 Inf     0.836      1.32

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.16 0.123 Inf     0.915      1.40
 2       1.32 0.123 Inf     1.082      1.57
 3       1.33 0.123 Inf     1.092      1.58
 4       1.19 0.123 Inf     0.949      1.43
 5       1.21 0.123 Inf     0.968      1.45
 6       1.23 0.123 Inf     0.992      1.48
 7       1.24 0.123 Inf     1.002      1.49
 8       1.23 0.123 Inf     0.992      1.48
 9       1.18 0.123 Inf     0.943      1.43
 10      1.23 0.123 Inf     0.987      1.47
 11      1.19 0.123 Inf     0.945      1.43
 12      1.07 0.123 Inf     0.829      1.31
 13      1.13 0.123 Inf     0.892      1.38
 14      1.18 0.123 Inf     0.941      1.43
 15      1.13 0.123 Inf     0.891      1.38
 16      1.07 0.123 Inf     0.830      1.31
 17      1.05 0.123 Inf     0.806      1.29
 18      1.02 0.124 Inf     0.778      1.26

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.167063 0.0410 Inf  -4.070  0.0060
 StepF1 - StepF3   -0.177215 0.0410 Inf  -4.318  0.0021
 StepF1 - StepF4   -0.034722 0.0410 Inf  -0.846  1.0000
 StepF1 - StepF5   -0.053457 0.0410 Inf  -1.302  0.9982
 StepF1 - StepF6   -0.077621 0.0410 Inf  -1.891  0.9156
 StepF1 - StepF7   -0.086985 0.0410 Inf  -2.119  0.8053
 StepF1 - StepF8   -0.077022 0.0410 Inf  -1.877  0.9207
 StepF1 - StepF9   -0.028111 0.0410 Inf  -0.685  1.0000
 StepF1 - StepF10  -0.072498 0.0410 Inf  -1.766  0.9530
 StepF1 - StepF11  -0.030733 0.0410 Inf  -0.749  1.0000
 StepF1 - StepF12   0.085614 0.0410 Inf   2.086  0.8248
 StepF1 - StepF13   0.022609 0.0410 Inf   0.551  1.0000
 StepF1 - StepF14  -0.026212 0.0410 Inf  -0.639  1.0000
 StepF1 - StepF15   0.023505 0.0410 Inf   0.573  1.0000
 StepF1 - StepF16   0.084456 0.0410 Inf   2.058  0.8404
 StepF1 - StepF17   0.109189 0.0410 Inf   2.660  0.4086
 StepF1 - StepF18   0.136468 0.0411 Inf   3.323  0.0837
 StepF2 - StepF3   -0.010153 0.0410 Inf  -0.247  1.0000
 StepF2 - StepF4    0.132341 0.0410 Inf   3.224  0.1111
 StepF2 - StepF5    0.113606 0.0410 Inf   2.768  0.3335
 StepF2 - StepF6    0.089441 0.0410 Inf   2.179  0.7678
 StepF2 - StepF7    0.080077 0.0410 Inf   1.951  0.8920
 StepF2 - StepF8    0.090041 0.0410 Inf   2.194  0.7581
 StepF2 - StepF9    0.138951 0.0410 Inf   3.386  0.0692
 StepF2 - StepF10   0.094565 0.0410 Inf   2.304  0.6806
 StepF2 - StepF11   0.136330 0.0410 Inf   3.322  0.0839
 StepF2 - StepF12   0.252676 0.0410 Inf   6.156  <.0001
 StepF2 - StepF13   0.189671 0.0410 Inf   4.621  0.0005
 StepF2 - StepF14   0.140850 0.0410 Inf   3.432  0.0599
 StepF2 - StepF15   0.190567 0.0410 Inf   4.643  0.0005
 StepF2 - StepF16   0.251519 0.0410 Inf   6.128  <.0001
 StepF2 - StepF17   0.276251 0.0410 Inf   6.731  <.0001
 StepF2 - StepF18   0.303531 0.0411 Inf   7.390  <.0001
 StepF3 - StepF4    0.142494 0.0410 Inf   3.472  0.0528
 StepF3 - StepF5    0.123758 0.0410 Inf   3.015  0.1925
 StepF3 - StepF6    0.099594 0.0410 Inf   2.427  0.5874
 StepF3 - StepF7    0.090230 0.0410 Inf   2.198  0.7551
 StepF3 - StepF8    0.100194 0.0410 Inf   2.441  0.5760
 StepF3 - StepF9    0.149104 0.0410 Inf   3.633  0.0309
 StepF3 - StepF10   0.104718 0.0410 Inf   2.551  0.4904
 StepF3 - StepF11   0.146482 0.0410 Inf   3.569  0.0384
 StepF3 - StepF12   0.262829 0.0410 Inf   6.404  <.0001
 StepF3 - StepF13   0.199824 0.0410 Inf   4.869  0.0002
 StepF3 - StepF14   0.151003 0.0410 Inf   3.679  0.0263
 StepF3 - StepF15   0.200720 0.0410 Inf   4.891  0.0001
 StepF3 - StepF16   0.261671 0.0410 Inf   6.376  <.0001
 StepF3 - StepF17   0.286404 0.0410 Inf   6.978  <.0001
 StepF3 - StepF18   0.313684 0.0411 Inf   7.637  <.0001
 StepF4 - StepF5   -0.018735 0.0410 Inf  -0.456  1.0000
 StepF4 - StepF6   -0.042900 0.0410 Inf  -1.045  0.9999
 StepF4 - StepF7   -0.052264 0.0410 Inf  -1.273  0.9986
 StepF4 - StepF8   -0.042300 0.0410 Inf  -1.031  0.9999
 StepF4 - StepF9    0.006610 0.0410 Inf   0.161  1.0000
 StepF4 - StepF10  -0.037776 0.0410 Inf  -0.920  1.0000
 StepF4 - StepF11   0.003989 0.0410 Inf   0.097  1.0000
 StepF4 - StepF12   0.120335 0.0410 Inf   2.932  0.2346
 StepF4 - StepF13   0.057330 0.0410 Inf   1.397  0.9959
 StepF4 - StepF14   0.008510 0.0410 Inf   0.207  1.0000
 StepF4 - StepF15   0.058226 0.0410 Inf   1.419  0.9951
 StepF4 - StepF16   0.119178 0.0410 Inf   2.904  0.2502
 StepF4 - StepF17   0.143910 0.0410 Inf   3.506  0.0472
 StepF4 - StepF18   0.171190 0.0411 Inf   4.168  0.0040
 StepF5 - StepF6   -0.024164 0.0410 Inf  -0.589  1.0000
 StepF5 - StepF7   -0.033528 0.0410 Inf  -0.817  1.0000
 StepF5 - StepF8   -0.023565 0.0410 Inf  -0.574  1.0000
 StepF5 - StepF9    0.025345 0.0410 Inf   0.618  1.0000
 StepF5 - StepF10  -0.019041 0.0410 Inf  -0.464  1.0000
 StepF5 - StepF11   0.022724 0.0410 Inf   0.554  1.0000
 StepF5 - StepF12   0.139071 0.0410 Inf   3.388  0.0686
 StepF5 - StepF13   0.076066 0.0410 Inf   1.853  0.9285
 StepF5 - StepF14   0.027245 0.0410 Inf   0.664  1.0000
 StepF5 - StepF15   0.076962 0.0410 Inf   1.875  0.9212
 StepF5 - StepF16   0.137913 0.0410 Inf   3.360  0.0747
 StepF5 - StepF17   0.162646 0.0410 Inf   3.963  0.0092
 StepF5 - StepF18   0.189925 0.0411 Inf   4.624  0.0005
 StepF6 - StepF7   -0.009364 0.0410 Inf  -0.228  1.0000
 StepF6 - StepF8    0.000600 0.0410 Inf   0.015  1.0000
 StepF6 - StepF9    0.049510 0.0410 Inf   1.206  0.9993
 StepF6 - StepF10   0.005124 0.0410 Inf   0.125  1.0000
 StepF6 - StepF11   0.046888 0.0410 Inf   1.142  0.9997
 StepF6 - StepF12   0.163235 0.0410 Inf   3.977  0.0087
 StepF6 - StepF13   0.100230 0.0410 Inf   2.442  0.5753
 StepF6 - StepF14   0.051409 0.0410 Inf   1.253  0.9989
 StepF6 - StepF15   0.101126 0.0410 Inf   2.464  0.5583
 StepF6 - StepF16   0.162077 0.0410 Inf   3.949  0.0097
 StepF6 - StepF17   0.186810 0.0410 Inf   4.552  0.0007
 StepF6 - StepF18   0.214090 0.0411 Inf   5.212  <.0001
 StepF7 - StepF8    0.009964 0.0410 Inf   0.243  1.0000
 StepF7 - StepF9    0.058874 0.0410 Inf   1.434  0.9944
 StepF7 - StepF10   0.014488 0.0410 Inf   0.353  1.0000
 StepF7 - StepF11   0.056252 0.0410 Inf   1.371  0.9967
 StepF7 - StepF12   0.172599 0.0410 Inf   4.205  0.0034
 StepF7 - StepF13   0.109594 0.0410 Inf   2.670  0.4014
 StepF7 - StepF14   0.060773 0.0410 Inf   1.481  0.9920
 StepF7 - StepF15   0.110490 0.0410 Inf   2.692  0.3858
 StepF7 - StepF16   0.171442 0.0410 Inf   4.177  0.0039
 StepF7 - StepF17   0.196174 0.0410 Inf   4.780  0.0003
 StepF7 - StepF18   0.223454 0.0411 Inf   5.440  <.0001
 StepF8 - StepF9    0.048910 0.0410 Inf   1.192  0.9994
 StepF8 - StepF10   0.004524 0.0410 Inf   0.110  1.0000
 StepF8 - StepF11   0.046289 0.0410 Inf   1.128  0.9997
 StepF8 - StepF12   0.162635 0.0410 Inf   3.963  0.0092
 StepF8 - StepF13   0.099630 0.0410 Inf   2.427  0.5867
 StepF8 - StepF14   0.050810 0.0410 Inf   1.238  0.9990
 StepF8 - StepF15   0.100526 0.0410 Inf   2.449  0.5697
 StepF8 - StepF16   0.161478 0.0410 Inf   3.934  0.0103
 StepF8 - StepF17   0.186210 0.0410 Inf   4.537  0.0008
 StepF8 - StepF18   0.213490 0.0411 Inf   5.198  <.0001
 StepF9 - StepF10  -0.044386 0.0410 Inf  -1.081  0.9998
 StepF9 - StepF11  -0.002622 0.0410 Inf  -0.064  1.0000
 StepF9 - StepF12   0.113725 0.0410 Inf   2.771  0.3316
 StepF9 - StepF13   0.050720 0.0410 Inf   1.236  0.9991
 StepF9 - StepF14   0.001899 0.0410 Inf   0.046  1.0000
 StepF9 - StepF15   0.051616 0.0410 Inf   1.258  0.9988
 StepF9 - StepF16   0.112568 0.0410 Inf   2.743  0.3505
 StepF9 - StepF17   0.137300 0.0410 Inf   3.345  0.0782
 StepF9 - StepF18   0.164580 0.0411 Inf   4.007  0.0077
 StepF10 - StepF11  0.041765 0.0410 Inf   1.018  0.9999
 StepF10 - StepF12  0.158111 0.0410 Inf   3.852  0.0140
 StepF10 - StepF13  0.095106 0.0410 Inf   2.317  0.6708
 StepF10 - StepF14  0.046285 0.0410 Inf   1.128  0.9997
 StepF10 - StepF15  0.096002 0.0410 Inf   2.339  0.6544
 StepF10 - StepF16  0.156954 0.0410 Inf   3.824  0.0156
 StepF10 - StepF17  0.181686 0.0410 Inf   4.427  0.0013
 StepF10 - StepF18  0.208966 0.0411 Inf   5.088  0.0001
 StepF11 - StepF12  0.116347 0.0410 Inf   2.835  0.2908
 StepF11 - StepF13  0.053342 0.0410 Inf   1.300  0.9983
 StepF11 - StepF14  0.004521 0.0410 Inf   0.110  1.0000
 StepF11 - StepF15  0.054238 0.0410 Inf   1.321  0.9979
 StepF11 - StepF16  0.115189 0.0410 Inf   2.807  0.3084
 StepF11 - StepF17  0.139922 0.0410 Inf   3.409  0.0643
 StepF11 - StepF18  0.167201 0.0411 Inf   4.071  0.0060
 StepF12 - StepF13 -0.063005 0.0410 Inf  -1.535  0.9882
 StepF12 - StepF14 -0.111826 0.0410 Inf  -2.725  0.3629
 StepF12 - StepF15 -0.062109 0.0410 Inf  -1.513  0.9899
 StepF12 - StepF16 -0.001157 0.0410 Inf  -0.028  1.0000
 StepF12 - StepF17  0.023575 0.0410 Inf   0.574  1.0000
 StepF12 - StepF18  0.050855 0.0411 Inf   1.238  0.9990
 StepF13 - StepF14 -0.048821 0.0410 Inf  -1.190  0.9994
 StepF13 - StepF15  0.000896 0.0410 Inf   0.022  1.0000
 StepF13 - StepF16  0.061847 0.0410 Inf   1.507  0.9903
 StepF13 - StepF17  0.086580 0.0410 Inf   2.110  0.8112
 StepF13 - StepF18  0.113860 0.0411 Inf   2.772  0.3308
 StepF14 - StepF15  0.049717 0.0410 Inf   1.211  0.9993
 StepF14 - StepF16  0.110668 0.0410 Inf   2.696  0.3827
 StepF14 - StepF17  0.135401 0.0410 Inf   3.299  0.0897
 StepF14 - StepF18  0.162680 0.0411 Inf   3.961  0.0093
 StepF15 - StepF16  0.060951 0.0410 Inf   1.485  0.9917
 StepF15 - StepF17  0.085684 0.0410 Inf   2.088  0.8238
 StepF15 - StepF18  0.112963 0.0411 Inf   2.750  0.3454
 StepF16 - StepF17  0.024733 0.0410 Inf   0.603  1.0000
 StepF16 - StepF18  0.052012 0.0411 Inf   1.266  0.9987
 StepF17 - StepF18  0.027279 0.0411 Inf   0.664  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.167063 0.0410 Inf  -4.070  0.0060
 StepF1 - StepF3   -0.177215 0.0410 Inf  -4.318  0.0021
 StepF1 - StepF4   -0.034722 0.0410 Inf  -0.846  1.0000
 StepF1 - StepF5   -0.053457 0.0410 Inf  -1.302  0.9982
 StepF1 - StepF6   -0.077621 0.0410 Inf  -1.891  0.9156
 StepF1 - StepF7   -0.086985 0.0410 Inf  -2.119  0.8053
 StepF1 - StepF8   -0.077022 0.0410 Inf  -1.877  0.9207
 StepF1 - StepF9   -0.028111 0.0410 Inf  -0.685  1.0000
 StepF1 - StepF10  -0.072498 0.0410 Inf  -1.766  0.9530
 StepF1 - StepF11  -0.030733 0.0410 Inf  -0.749  1.0000
 StepF1 - StepF12   0.085614 0.0410 Inf   2.086  0.8248
 StepF1 - StepF13   0.022609 0.0410 Inf   0.551  1.0000
 StepF1 - StepF14  -0.026212 0.0410 Inf  -0.639  1.0000
 StepF1 - StepF15   0.023505 0.0410 Inf   0.573  1.0000
 StepF1 - StepF16   0.084456 0.0410 Inf   2.058  0.8404
 StepF1 - StepF17   0.109189 0.0410 Inf   2.660  0.4086
 StepF1 - StepF18   0.136468 0.0411 Inf   3.323  0.0837
 StepF2 - StepF3   -0.010153 0.0410 Inf  -0.247  1.0000
 StepF2 - StepF4    0.132341 0.0410 Inf   3.224  0.1111
 StepF2 - StepF5    0.113606 0.0410 Inf   2.768  0.3335
 StepF2 - StepF6    0.089441 0.0410 Inf   2.179  0.7678
 StepF2 - StepF7    0.080077 0.0410 Inf   1.951  0.8920
 StepF2 - StepF8    0.090041 0.0410 Inf   2.194  0.7581
 StepF2 - StepF9    0.138951 0.0410 Inf   3.386  0.0692
 StepF2 - StepF10   0.094565 0.0410 Inf   2.304  0.6806
 StepF2 - StepF11   0.136330 0.0410 Inf   3.322  0.0839
 StepF2 - StepF12   0.252676 0.0410 Inf   6.156  <.0001
 StepF2 - StepF13   0.189671 0.0410 Inf   4.621  0.0005
 StepF2 - StepF14   0.140850 0.0410 Inf   3.432  0.0599
 StepF2 - StepF15   0.190567 0.0410 Inf   4.643  0.0005
 StepF2 - StepF16   0.251519 0.0410 Inf   6.128  <.0001
 StepF2 - StepF17   0.276251 0.0410 Inf   6.731  <.0001
 StepF2 - StepF18   0.303531 0.0411 Inf   7.390  <.0001
 StepF3 - StepF4    0.142494 0.0410 Inf   3.472  0.0528
 StepF3 - StepF5    0.123758 0.0410 Inf   3.015  0.1925
 StepF3 - StepF6    0.099594 0.0410 Inf   2.427  0.5874
 StepF3 - StepF7    0.090230 0.0410 Inf   2.198  0.7551
 StepF3 - StepF8    0.100194 0.0410 Inf   2.441  0.5760
 StepF3 - StepF9    0.149104 0.0410 Inf   3.633  0.0309
 StepF3 - StepF10   0.104718 0.0410 Inf   2.551  0.4904
 StepF3 - StepF11   0.146482 0.0410 Inf   3.569  0.0384
 StepF3 - StepF12   0.262829 0.0410 Inf   6.404  <.0001
 StepF3 - StepF13   0.199824 0.0410 Inf   4.869  0.0002
 StepF3 - StepF14   0.151003 0.0410 Inf   3.679  0.0263
 StepF3 - StepF15   0.200720 0.0410 Inf   4.891  0.0001
 StepF3 - StepF16   0.261671 0.0410 Inf   6.376  <.0001
 StepF3 - StepF17   0.286404 0.0410 Inf   6.978  <.0001
 StepF3 - StepF18   0.313684 0.0411 Inf   7.637  <.0001
 StepF4 - StepF5   -0.018735 0.0410 Inf  -0.456  1.0000
 StepF4 - StepF6   -0.042900 0.0410 Inf  -1.045  0.9999
 StepF4 - StepF7   -0.052264 0.0410 Inf  -1.273  0.9986
 StepF4 - StepF8   -0.042300 0.0410 Inf  -1.031  0.9999
 StepF4 - StepF9    0.006610 0.0410 Inf   0.161  1.0000
 StepF4 - StepF10  -0.037776 0.0410 Inf  -0.920  1.0000
 StepF4 - StepF11   0.003989 0.0410 Inf   0.097  1.0000
 StepF4 - StepF12   0.120335 0.0410 Inf   2.932  0.2346
 StepF4 - StepF13   0.057330 0.0410 Inf   1.397  0.9959
 StepF4 - StepF14   0.008510 0.0410 Inf   0.207  1.0000
 StepF4 - StepF15   0.058226 0.0410 Inf   1.419  0.9951
 StepF4 - StepF16   0.119178 0.0410 Inf   2.904  0.2502
 StepF4 - StepF17   0.143910 0.0410 Inf   3.506  0.0472
 StepF4 - StepF18   0.171190 0.0411 Inf   4.168  0.0040
 StepF5 - StepF6   -0.024164 0.0410 Inf  -0.589  1.0000
 StepF5 - StepF7   -0.033528 0.0410 Inf  -0.817  1.0000
 StepF5 - StepF8   -0.023565 0.0410 Inf  -0.574  1.0000
 StepF5 - StepF9    0.025345 0.0410 Inf   0.618  1.0000
 StepF5 - StepF10  -0.019041 0.0410 Inf  -0.464  1.0000
 StepF5 - StepF11   0.022724 0.0410 Inf   0.554  1.0000
 StepF5 - StepF12   0.139071 0.0410 Inf   3.388  0.0686
 StepF5 - StepF13   0.076066 0.0410 Inf   1.853  0.9285
 StepF5 - StepF14   0.027245 0.0410 Inf   0.664  1.0000
 StepF5 - StepF15   0.076962 0.0410 Inf   1.875  0.9212
 StepF5 - StepF16   0.137913 0.0410 Inf   3.360  0.0747
 StepF5 - StepF17   0.162646 0.0410 Inf   3.963  0.0092
 StepF5 - StepF18   0.189925 0.0411 Inf   4.624  0.0005
 StepF6 - StepF7   -0.009364 0.0410 Inf  -0.228  1.0000
 StepF6 - StepF8    0.000600 0.0410 Inf   0.015  1.0000
 StepF6 - StepF9    0.049510 0.0410 Inf   1.206  0.9993
 StepF6 - StepF10   0.005124 0.0410 Inf   0.125  1.0000
 StepF6 - StepF11   0.046888 0.0410 Inf   1.142  0.9997
 StepF6 - StepF12   0.163235 0.0410 Inf   3.977  0.0087
 StepF6 - StepF13   0.100230 0.0410 Inf   2.442  0.5753
 StepF6 - StepF14   0.051409 0.0410 Inf   1.253  0.9989
 StepF6 - StepF15   0.101126 0.0410 Inf   2.464  0.5583
 StepF6 - StepF16   0.162077 0.0410 Inf   3.949  0.0097
 StepF6 - StepF17   0.186810 0.0410 Inf   4.552  0.0007
 StepF6 - StepF18   0.214090 0.0411 Inf   5.212  <.0001
 StepF7 - StepF8    0.009964 0.0410 Inf   0.243  1.0000
 StepF7 - StepF9    0.058874 0.0410 Inf   1.434  0.9944
 StepF7 - StepF10   0.014488 0.0410 Inf   0.353  1.0000
 StepF7 - StepF11   0.056252 0.0410 Inf   1.371  0.9967
 StepF7 - StepF12   0.172599 0.0410 Inf   4.205  0.0034
 StepF7 - StepF13   0.109594 0.0410 Inf   2.670  0.4014
 StepF7 - StepF14   0.060773 0.0410 Inf   1.481  0.9920
 StepF7 - StepF15   0.110490 0.0410 Inf   2.692  0.3858
 StepF7 - StepF16   0.171442 0.0410 Inf   4.177  0.0039
 StepF7 - StepF17   0.196174 0.0410 Inf   4.780  0.0003
 StepF7 - StepF18   0.223454 0.0411 Inf   5.440  <.0001
 StepF8 - StepF9    0.048910 0.0410 Inf   1.192  0.9994
 StepF8 - StepF10   0.004524 0.0410 Inf   0.110  1.0000
 StepF8 - StepF11   0.046289 0.0410 Inf   1.128  0.9997
 StepF8 - StepF12   0.162635 0.0410 Inf   3.963  0.0092
 StepF8 - StepF13   0.099630 0.0410 Inf   2.427  0.5867
 StepF8 - StepF14   0.050810 0.0410 Inf   1.238  0.9990
 StepF8 - StepF15   0.100526 0.0410 Inf   2.449  0.5697
 StepF8 - StepF16   0.161478 0.0410 Inf   3.934  0.0103
 StepF8 - StepF17   0.186210 0.0410 Inf   4.537  0.0008
 StepF8 - StepF18   0.213490 0.0411 Inf   5.198  <.0001
 StepF9 - StepF10  -0.044386 0.0410 Inf  -1.081  0.9998
 StepF9 - StepF11  -0.002622 0.0410 Inf  -0.064  1.0000
 StepF9 - StepF12   0.113725 0.0410 Inf   2.771  0.3316
 StepF9 - StepF13   0.050720 0.0410 Inf   1.236  0.9991
 StepF9 - StepF14   0.001899 0.0410 Inf   0.046  1.0000
 StepF9 - StepF15   0.051616 0.0410 Inf   1.258  0.9988
 StepF9 - StepF16   0.112568 0.0410 Inf   2.743  0.3505
 StepF9 - StepF17   0.137300 0.0410 Inf   3.345  0.0782
 StepF9 - StepF18   0.164580 0.0411 Inf   4.007  0.0077
 StepF10 - StepF11  0.041765 0.0410 Inf   1.018  0.9999
 StepF10 - StepF12  0.158111 0.0410 Inf   3.852  0.0140
 StepF10 - StepF13  0.095106 0.0410 Inf   2.317  0.6708
 StepF10 - StepF14  0.046285 0.0410 Inf   1.128  0.9997
 StepF10 - StepF15  0.096002 0.0410 Inf   2.339  0.6544
 StepF10 - StepF16  0.156954 0.0410 Inf   3.824  0.0156
 StepF10 - StepF17  0.181686 0.0410 Inf   4.427  0.0013
 StepF10 - StepF18  0.208966 0.0411 Inf   5.088  0.0001
 StepF11 - StepF12  0.116347 0.0410 Inf   2.835  0.2908
 StepF11 - StepF13  0.053342 0.0410 Inf   1.300  0.9983
 StepF11 - StepF14  0.004521 0.0410 Inf   0.110  1.0000
 StepF11 - StepF15  0.054238 0.0410 Inf   1.321  0.9979
 StepF11 - StepF16  0.115189 0.0410 Inf   2.807  0.3084
 StepF11 - StepF17  0.139922 0.0410 Inf   3.409  0.0643
 StepF11 - StepF18  0.167201 0.0411 Inf   4.071  0.0060
 StepF12 - StepF13 -0.063005 0.0410 Inf  -1.535  0.9882
 StepF12 - StepF14 -0.111826 0.0410 Inf  -2.725  0.3629
 StepF12 - StepF15 -0.062109 0.0410 Inf  -1.513  0.9899
 StepF12 - StepF16 -0.001157 0.0410 Inf  -0.028  1.0000
 StepF12 - StepF17  0.023575 0.0410 Inf   0.574  1.0000
 StepF12 - StepF18  0.050855 0.0411 Inf   1.238  0.9990
 StepF13 - StepF14 -0.048821 0.0410 Inf  -1.190  0.9994
 StepF13 - StepF15  0.000896 0.0410 Inf   0.022  1.0000
 StepF13 - StepF16  0.061847 0.0410 Inf   1.507  0.9903
 StepF13 - StepF17  0.086580 0.0410 Inf   2.110  0.8112
 StepF13 - StepF18  0.113860 0.0411 Inf   2.772  0.3308
 StepF14 - StepF15  0.049717 0.0410 Inf   1.211  0.9993
 StepF14 - StepF16  0.110668 0.0410 Inf   2.696  0.3827
 StepF14 - StepF17  0.135401 0.0410 Inf   3.299  0.0897
 StepF14 - StepF18  0.162680 0.0411 Inf   3.961  0.0093
 StepF15 - StepF16  0.060951 0.0410 Inf   1.485  0.9917
 StepF15 - StepF17  0.085684 0.0410 Inf   2.088  0.8238
 StepF15 - StepF18  0.112963 0.0411 Inf   2.750  0.3454
 StepF16 - StepF17  0.024733 0.0410 Inf   0.603  1.0000
 StepF16 - StepF18  0.052012 0.0411 Inf   1.266  0.9987
 StepF17 - StepF18  0.027279 0.0411 Inf   0.664  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.16706 0.0410 Inf   4.070  0.0008
 StepF3 - StepF2    0.01015 0.0410 Inf   0.247  1.0000
 StepF4 - StepF3   -0.14249 0.0410 Inf  -3.472  0.0083
 StepF5 - StepF4    0.01874 0.0410 Inf   0.456  1.0000
 StepF6 - StepF5    0.02416 0.0410 Inf   0.589  1.0000
 StepF7 - StepF6    0.00936 0.0410 Inf   0.228  1.0000
 StepF8 - StepF7   -0.00996 0.0410 Inf  -0.243  1.0000
 StepF9 - StepF8   -0.04891 0.0410 Inf  -1.192  1.0000
 StepF10 - StepF9   0.04439 0.0410 Inf   1.081  1.0000
 StepF11 - StepF10 -0.04176 0.0410 Inf  -1.018  1.0000
 StepF12 - StepF11 -0.11635 0.0410 Inf  -2.835  0.0688
 StepF13 - StepF12  0.06300 0.0410 Inf   1.535  1.0000
 StepF14 - StepF13  0.04882 0.0410 Inf   1.190  1.0000
 StepF15 - StepF14 -0.04972 0.0410 Inf  -1.211  1.0000
 StepF16 - StepF15 -0.06095 0.0410 Inf  -1.485  1.0000
 StepF17 - StepF16 -0.02473 0.0410 Inf  -0.603  1.0000
 StepF18 - StepF17 -0.02728 0.0411 Inf  -0.664  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.16706 0.0410 Inf   4.070  0.0008
 StepF3 - StepF2    0.01015 0.0410 Inf   0.247  1.0000
 StepF4 - StepF3   -0.14249 0.0410 Inf  -3.472  0.0083
 StepF5 - StepF4    0.01874 0.0410 Inf   0.456  1.0000
 StepF6 - StepF5    0.02416 0.0410 Inf   0.589  1.0000
 StepF7 - StepF6    0.00936 0.0410 Inf   0.228  1.0000
 StepF8 - StepF7   -0.00996 0.0410 Inf  -0.243  1.0000
 StepF9 - StepF8   -0.04891 0.0410 Inf  -1.192  1.0000
 StepF10 - StepF9   0.04439 0.0410 Inf   1.081  1.0000
 StepF11 - StepF10 -0.04176 0.0410 Inf  -1.018  1.0000
 StepF12 - StepF11 -0.11635 0.0410 Inf  -2.835  0.0688
 StepF13 - StepF12  0.06300 0.0410 Inf   1.535  1.0000
 StepF14 - StepF13  0.04882 0.0410 Inf   1.190  1.0000
 StepF15 - StepF14 -0.04972 0.0410 Inf  -1.211  1.0000
 StepF16 - StepF15 -0.06095 0.0410 Inf  -1.485  1.0000
 StepF17 - StepF16 -0.02473 0.0410 Inf  -0.603  1.0000
 StepF18 - StepF17 -0.02728 0.0411 Inf  -0.664  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 
# ==== TEST (Blocks 4–5): stepwise LMM + χ² + EMMs + all-pairs + adjacent (per block × seq length × axis) 
suppressPackageStartupMessages({
  library(dplyr); library(lme4); library(lmerTest); library(emmeans); library(car)
})
emm_options(lmer.df = "asymptotic")

.report_step_test <- function(df_block, block_label, seq_label) {
  for (ax in c("x","y","z")) {
    dd <- df_block %>% filter(Axis == ax)
    if (nrow(dd) == 0) next

    dd <- dd %>%
      mutate(
        StepF    = factor(Step, levels = sort(unique(Step))),
        subject  = factor(subject),
        trial_id = factor(trial_id),
        Accuracy = droplevels(Accuracy)
      )

    cat("\n\n==============================\n",
        "TEST | Block ", block_label, " | ", seq_label, " | Axis ", toupper(ax),
        "\n==============================\n", sep = "")

    m <- suppressWarnings(lmer(RMS ~ StepF + Accuracy + (1|subject) + (1|trial_id),
                               data = dd, REML = TRUE))

    cat("\nType II Wald χ² (StepF & Accuracy):\n")
    print(car::Anova(m, type = 2, test.statistic = "Chisq"))

    if (nlevels(dd$Accuracy) >= 2) {
      em <- emmeans(m, ~ StepF | Accuracy)
      cat("\nEMMs per step | Accuracy:\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps | Accuracy:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm) | Accuracy:\n")
      print(contrast(em, method = "consec", by = "Accuracy", adjust = "holm"))
    } else {
      em <- emmeans(m, ~ StepF)
      cat("\nEMMs per step:\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm):\n")
      print(contrast(em, method = "consec", adjust = "holm"))
    }

    rm(m, em); invisible(gc())
  }
}

# Block 4
.report_step_test(sw_b4_6,  "4", "6 steps")


==============================
TEST | Block 4 | 6 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    43.1301  5  3.477e-08 ***
Accuracy  0.4237  1     0.5151    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.683 0.0811 Inf     0.523     0.842
 2      0.814 0.0811 Inf     0.655     0.974
 3      0.807 0.0811 Inf     0.648     0.966
 4      0.758 0.0811 Inf     0.599     0.917
 5      0.623 0.0811 Inf     0.464     0.782
 6      0.649 0.0811 Inf     0.490     0.808

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.650 0.0732 Inf     0.506     0.793
 2      0.782 0.0732 Inf     0.638     0.925
 3      0.774 0.0732 Inf     0.631     0.917
 4      0.725 0.0732 Inf     0.582     0.868
 5      0.590 0.0732 Inf     0.447     0.733
 6      0.616 0.0732 Inf     0.473     0.760

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.13194 0.0396 Inf  -3.335  0.0110
 StepF1 - StepF3 -0.12454 0.0396 Inf  -3.148  0.0204
 StepF1 - StepF4 -0.07542 0.0396 Inf  -1.907  0.3980
 StepF1 - StepF5  0.05961 0.0396 Inf   1.507  0.6598
 StepF1 - StepF6  0.03330 0.0396 Inf   0.842  0.9597
 StepF2 - StepF3  0.00741 0.0396 Inf   0.187  1.0000
 StepF2 - StepF4  0.05652 0.0396 Inf   1.429  0.7095
 StepF2 - StepF5  0.19155 0.0396 Inf   4.842  <.0001
 StepF2 - StepF6  0.16524 0.0396 Inf   4.177  0.0004
 StepF3 - StepF4  0.04911 0.0396 Inf   1.242  0.8164
 StepF3 - StepF5  0.18415 0.0396 Inf   4.655  <.0001
 StepF3 - StepF6  0.15783 0.0396 Inf   3.990  0.0009
 StepF4 - StepF5  0.13503 0.0396 Inf   3.413  0.0084
 StepF4 - StepF6  0.10872 0.0396 Inf   2.748  0.0661
 StepF5 - StepF6 -0.02631 0.0396 Inf  -0.665  0.9857

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.13194 0.0396 Inf  -3.335  0.0110
 StepF1 - StepF3 -0.12454 0.0396 Inf  -3.148  0.0204
 StepF1 - StepF4 -0.07542 0.0396 Inf  -1.907  0.3980
 StepF1 - StepF5  0.05961 0.0396 Inf   1.507  0.6598
 StepF1 - StepF6  0.03330 0.0396 Inf   0.842  0.9597
 StepF2 - StepF3  0.00741 0.0396 Inf   0.187  1.0000
 StepF2 - StepF4  0.05652 0.0396 Inf   1.429  0.7095
 StepF2 - StepF5  0.19155 0.0396 Inf   4.842  <.0001
 StepF2 - StepF6  0.16524 0.0396 Inf   4.177  0.0004
 StepF3 - StepF4  0.04911 0.0396 Inf   1.242  0.8164
 StepF3 - StepF5  0.18415 0.0396 Inf   4.655  <.0001
 StepF3 - StepF6  0.15783 0.0396 Inf   3.990  0.0009
 StepF4 - StepF5  0.13503 0.0396 Inf   3.413  0.0084
 StepF4 - StepF6  0.10872 0.0396 Inf   2.748  0.0661
 StepF5 - StepF6 -0.02631 0.0396 Inf  -0.665  0.9857

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.13194 0.0396 Inf   3.335  0.0034
 StepF3 - StepF2 -0.00741 0.0396 Inf  -0.187  1.0000
 StepF4 - StepF3 -0.04911 0.0396 Inf  -1.242  0.6433
 StepF5 - StepF4 -0.13503 0.0396 Inf  -3.413  0.0032
 StepF6 - StepF5  0.02631 0.0396 Inf   0.665  1.0000

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.13194 0.0396 Inf   3.335  0.0034
 StepF3 - StepF2 -0.00741 0.0396 Inf  -0.187  1.0000
 StepF4 - StepF3 -0.04911 0.0396 Inf  -1.242  0.6433
 StepF5 - StepF4 -0.13503 0.0396 Inf  -3.413  0.0032
 StepF6 - StepF5  0.02631 0.0396 Inf   0.665  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST | Block 4 | 6 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    42.2983  5  5.126e-08 ***
Accuracy  0.0035  1     0.9527    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.695 0.0955 Inf     0.508     0.882
 2      0.899 0.0955 Inf     0.712     1.086
 3      0.876 0.0955 Inf     0.689     1.064
 4      0.757 0.0955 Inf     0.570     0.944
 5      0.685 0.0955 Inf     0.498     0.872
 6      0.749 0.0955 Inf     0.562     0.937

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.692 0.0877 Inf     0.520     0.864
 2      0.896 0.0877 Inf     0.724     1.068
 3      0.873 0.0877 Inf     0.701     1.045
 4      0.754 0.0877 Inf     0.582     0.926
 5      0.682 0.0877 Inf     0.510     0.854
 6      0.746 0.0877 Inf     0.574     0.918

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.20443 0.0441 Inf  -4.633  0.0001
 StepF1 - StepF3 -0.18153 0.0441 Inf  -4.114  0.0006
 StepF1 - StepF4 -0.06227 0.0441 Inf  -1.411  0.7203
 StepF1 - StepF5  0.00977 0.0441 Inf   0.222  0.9999
 StepF1 - StepF6 -0.05459 0.0441 Inf  -1.237  0.8186
 StepF2 - StepF3  0.02290 0.0441 Inf   0.519  0.9955
 StepF2 - StepF4  0.14216 0.0441 Inf   3.222  0.0161
 StepF2 - StepF5  0.21421 0.0441 Inf   4.854  <.0001
 StepF2 - StepF6  0.14984 0.0441 Inf   3.396  0.0090
 StepF3 - StepF4  0.11926 0.0441 Inf   2.703  0.0747
 StepF3 - StepF5  0.19130 0.0441 Inf   4.335  0.0002
 StepF3 - StepF6  0.12694 0.0441 Inf   2.877  0.0463
 StepF4 - StepF5  0.07205 0.0441 Inf   1.633  0.5767
 StepF4 - StepF6  0.00768 0.0441 Inf   0.174  1.0000
 StepF5 - StepF6 -0.06437 0.0441 Inf  -1.459  0.6907

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.20443 0.0441 Inf  -4.633  0.0001
 StepF1 - StepF3 -0.18153 0.0441 Inf  -4.114  0.0006
 StepF1 - StepF4 -0.06227 0.0441 Inf  -1.411  0.7203
 StepF1 - StepF5  0.00977 0.0441 Inf   0.222  0.9999
 StepF1 - StepF6 -0.05459 0.0441 Inf  -1.237  0.8186
 StepF2 - StepF3  0.02290 0.0441 Inf   0.519  0.9955
 StepF2 - StepF4  0.14216 0.0441 Inf   3.222  0.0161
 StepF2 - StepF5  0.21421 0.0441 Inf   4.854  <.0001
 StepF2 - StepF6  0.14984 0.0441 Inf   3.396  0.0090
 StepF3 - StepF4  0.11926 0.0441 Inf   2.703  0.0747
 StepF3 - StepF5  0.19130 0.0441 Inf   4.335  0.0002
 StepF3 - StepF6  0.12694 0.0441 Inf   2.877  0.0463
 StepF4 - StepF5  0.07205 0.0441 Inf   1.633  0.5767
 StepF4 - StepF6  0.00768 0.0441 Inf   0.174  1.0000
 StepF5 - StepF6 -0.06437 0.0441 Inf  -1.459  0.6907

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2044 0.0441 Inf   4.633  <.0001
 StepF3 - StepF2  -0.0229 0.0441 Inf  -0.519  0.6037
 StepF4 - StepF3  -0.1193 0.0441 Inf  -2.703  0.0275
 StepF5 - StepF4  -0.0720 0.0441 Inf  -1.633  0.3076
 StepF6 - StepF5   0.0644 0.0441 Inf   1.459  0.3076

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2044 0.0441 Inf   4.633  <.0001
 StepF3 - StepF2  -0.0229 0.0441 Inf  -0.519  0.6037
 StepF4 - StepF3  -0.1193 0.0441 Inf  -2.703  0.0275
 StepF5 - StepF4  -0.0720 0.0441 Inf  -1.633  0.3076
 StepF6 - StepF5   0.0644 0.0441 Inf   1.459  0.3076

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST | Block 4 | 6 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    48.4285  5  2.904e-09 ***
Accuracy  0.1687  1     0.6813    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.39 0.175 Inf     1.047      1.73
 2       1.66 0.175 Inf     1.314      2.00
 3       1.72 0.175 Inf     1.373      2.06
 4       1.57 0.175 Inf     1.228      1.91
 5       1.33 0.175 Inf     0.985      1.67
 6       1.32 0.175 Inf     0.978      1.66

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.44 0.156 Inf     1.133      1.74
 2       1.70 0.156 Inf     1.400      2.01
 3       1.76 0.156 Inf     1.459      2.07
 4       1.62 0.156 Inf     1.314      1.92
 5       1.38 0.156 Inf     1.071      1.68
 6       1.37 0.156 Inf     1.063      1.67

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.26663 0.0787 Inf  -3.389  0.0092
 StepF1 - StepF3 -0.32572 0.0787 Inf  -4.141  0.0005
 StepF1 - StepF4 -0.18123 0.0787 Inf  -2.304  0.1924
 StepF1 - StepF5  0.06163 0.0787 Inf   0.783  0.9704
 StepF1 - StepF6  0.06944 0.0787 Inf   0.883  0.9507
 StepF2 - StepF3 -0.05909 0.0787 Inf  -0.751  0.9754
 StepF2 - StepF4  0.08540 0.0787 Inf   1.086  0.8873
 StepF2 - StepF5  0.32826 0.0787 Inf   4.173  0.0004
 StepF2 - StepF6  0.33608 0.0787 Inf   4.272  0.0003
 StepF3 - StepF4  0.14449 0.0787 Inf   1.837  0.4419
 StepF3 - StepF5  0.38735 0.0787 Inf   4.924  <.0001
 StepF3 - StepF6  0.39516 0.0787 Inf   5.023  <.0001
 StepF4 - StepF5  0.24286 0.0787 Inf   3.087  0.0247
 StepF4 - StepF6  0.25068 0.0787 Inf   3.187  0.0180
 StepF5 - StepF6  0.00781 0.0787 Inf   0.099  1.0000

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.26663 0.0787 Inf  -3.389  0.0092
 StepF1 - StepF3 -0.32572 0.0787 Inf  -4.141  0.0005
 StepF1 - StepF4 -0.18123 0.0787 Inf  -2.304  0.1924
 StepF1 - StepF5  0.06163 0.0787 Inf   0.783  0.9704
 StepF1 - StepF6  0.06944 0.0787 Inf   0.883  0.9507
 StepF2 - StepF3 -0.05909 0.0787 Inf  -0.751  0.9754
 StepF2 - StepF4  0.08540 0.0787 Inf   1.086  0.8873
 StepF2 - StepF5  0.32826 0.0787 Inf   4.173  0.0004
 StepF2 - StepF6  0.33608 0.0787 Inf   4.272  0.0003
 StepF3 - StepF4  0.14449 0.0787 Inf   1.837  0.4419
 StepF3 - StepF5  0.38735 0.0787 Inf   4.924  <.0001
 StepF3 - StepF6  0.39516 0.0787 Inf   5.023  <.0001
 StepF4 - StepF5  0.24286 0.0787 Inf   3.087  0.0247
 StepF4 - StepF6  0.25068 0.0787 Inf   3.187  0.0180
 StepF5 - StepF6  0.00781 0.0787 Inf   0.099  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.26663 0.0787 Inf   3.389  0.0035
 StepF3 - StepF2  0.05909 0.0787 Inf   0.751  0.9052
 StepF4 - StepF3 -0.14449 0.0787 Inf  -1.837  0.1988
 StepF5 - StepF4 -0.24286 0.0787 Inf  -3.087  0.0081
 StepF6 - StepF5 -0.00781 0.0787 Inf  -0.099  0.9209

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.26663 0.0787 Inf   3.389  0.0035
 StepF3 - StepF2  0.05909 0.0787 Inf   0.751  0.9052
 StepF4 - StepF3 -0.14449 0.0787 Inf  -1.837  0.1988
 StepF5 - StepF4 -0.24286 0.0787 Inf  -3.087  0.0081
 StepF6 - StepF5 -0.00781 0.0787 Inf  -0.099  0.9209

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
.report_step_test(sw_b4_12, "4", "12 steps")


==============================
TEST | Block 4 | 12 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    78.2270 11  3.246e-12 ***
Accuracy  0.2016  1     0.6534    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.696 0.0758 Inf     0.547     0.845
 2      0.786 0.0758 Inf     0.637     0.934
 3      0.783 0.0758 Inf     0.635     0.932
 4      0.716 0.0758 Inf     0.568     0.865
 5      0.678 0.0758 Inf     0.529     0.826
 6      0.763 0.0758 Inf     0.615     0.912
 7      0.725 0.0758 Inf     0.576     0.873
 8      0.708 0.0758 Inf     0.559     0.856
 9      0.678 0.0758 Inf     0.529     0.826
 10     0.628 0.0758 Inf     0.479     0.776
 11     0.641 0.0758 Inf     0.493     0.790
 12     0.538 0.0758 Inf     0.389     0.686

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.681 0.0722 Inf     0.539     0.822
 2      0.770 0.0722 Inf     0.629     0.912
 3      0.768 0.0722 Inf     0.626     0.909
 4      0.701 0.0722 Inf     0.559     0.842
 5      0.662 0.0722 Inf     0.521     0.804
 6      0.748 0.0722 Inf     0.606     0.889
 7      0.709 0.0722 Inf     0.568     0.851
 8      0.692 0.0722 Inf     0.551     0.834
 9      0.662 0.0722 Inf     0.521     0.804
 10     0.612 0.0722 Inf     0.471     0.754
 11     0.626 0.0722 Inf     0.484     0.767
 12     0.522 0.0722 Inf     0.381     0.664

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.08956 0.0374 Inf  -2.392  0.4112
 StepF1 - StepF3   -0.08714 0.0374 Inf  -2.328  0.4566
 StepF1 - StepF4   -0.02027 0.0374 Inf  -0.542  1.0000
 StepF1 - StepF5    0.01834 0.0374 Inf   0.490  1.0000
 StepF1 - StepF6   -0.06717 0.0374 Inf  -1.794  0.8216
 StepF1 - StepF7   -0.02850 0.0374 Inf  -0.761  0.9998
 StepF1 - StepF8   -0.01157 0.0374 Inf  -0.309  1.0000
 StepF1 - StepF9    0.01820 0.0374 Inf   0.486  1.0000
 StepF1 - StepF10   0.06840 0.0374 Inf   1.827  0.8033
 StepF1 - StepF11   0.05474 0.0374 Inf   1.462  0.9506
 StepF1 - StepF12   0.15813 0.0374 Inf   4.224  0.0014
 StepF2 - StepF3    0.00242 0.0374 Inf   0.065  1.0000
 StepF2 - StepF4    0.06928 0.0374 Inf   1.851  0.7896
 StepF2 - StepF5    0.10789 0.0374 Inf   2.882  0.1472
 StepF2 - StepF6    0.02239 0.0374 Inf   0.598  1.0000
 StepF2 - StepF7    0.06106 0.0374 Inf   1.631  0.8979
 StepF2 - StepF8    0.07799 0.0374 Inf   2.083  0.6349
 StepF2 - StepF9    0.10775 0.0374 Inf   2.878  0.1485
 StepF2 - StepF10   0.15796 0.0374 Inf   4.219  0.0015
 StepF2 - StepF11   0.14430 0.0374 Inf   3.855  0.0065
 StepF2 - StepF12   0.24769 0.0374 Inf   6.616  <.0001
 StepF3 - StepF4    0.06687 0.0374 Inf   1.786  0.8260
 StepF3 - StepF5    0.10548 0.0374 Inf   2.818  0.1724
 StepF3 - StepF6    0.01997 0.0374 Inf   0.533  1.0000
 StepF3 - StepF7    0.05864 0.0374 Inf   1.567  0.9211
 StepF3 - StepF8    0.07557 0.0374 Inf   2.019  0.6807
 StepF3 - StepF9    0.10534 0.0374 Inf   2.814  0.1739
 StepF3 - StepF10   0.15554 0.0374 Inf   4.155  0.0019
 StepF3 - StepF11   0.14188 0.0374 Inf   3.790  0.0083
 StepF3 - StepF12   0.24527 0.0374 Inf   6.552  <.0001
 StepF4 - StepF5    0.03861 0.0374 Inf   1.031  0.9970
 StepF4 - StepF6   -0.04689 0.0374 Inf  -1.253  0.9846
 StepF4 - StepF7   -0.00822 0.0374 Inf  -0.220  1.0000
 StepF4 - StepF8    0.00871 0.0374 Inf   0.233  1.0000
 StepF4 - StepF9    0.03847 0.0374 Inf   1.028  0.9971
 StepF4 - StepF10   0.08868 0.0374 Inf   2.369  0.4275
 StepF4 - StepF11   0.07502 0.0374 Inf   2.004  0.6909
 StepF4 - StepF12   0.17840 0.0374 Inf   4.766  0.0001
 StepF5 - StepF6   -0.08551 0.0374 Inf  -2.284  0.4880
 StepF5 - StepF7   -0.04683 0.0374 Inf  -1.251  0.9847
 StepF5 - StepF8   -0.02990 0.0374 Inf  -0.799  0.9997
 StepF5 - StepF9   -0.00014 0.0374 Inf  -0.004  1.0000
 StepF5 - StepF10   0.05007 0.0374 Inf   1.337  0.9743
 StepF5 - StepF11   0.03641 0.0374 Inf   0.973  0.9982
 StepF5 - StepF12   0.13979 0.0374 Inf   3.734  0.0102
 StepF6 - StepF7    0.03867 0.0374 Inf   1.033  0.9970
 StepF6 - StepF8    0.05560 0.0374 Inf   1.485  0.9449
 StepF6 - StepF9    0.08537 0.0374 Inf   2.280  0.4907
 StepF6 - StepF10   0.13557 0.0374 Inf   3.621  0.0154
 StepF6 - StepF11   0.12191 0.0374 Inf   3.257  0.0518
 StepF6 - StepF12   0.22530 0.0374 Inf   6.018  <.0001
 StepF7 - StepF8    0.01693 0.0374 Inf   0.452  1.0000
 StepF7 - StepF9    0.04669 0.0374 Inf   1.247  0.9851
 StepF7 - StepF10   0.09690 0.0374 Inf   2.588  0.2861
 StepF7 - StepF11   0.08324 0.0374 Inf   2.224  0.5323
 StepF7 - StepF12   0.18663 0.0374 Inf   4.985  <.0001
 StepF8 - StepF9    0.02976 0.0374 Inf   0.795  0.9997
 StepF8 - StepF10   0.07997 0.0374 Inf   2.136  0.5965
 StepF8 - StepF11   0.06631 0.0374 Inf   1.771  0.8338
 StepF8 - StepF12   0.16970 0.0374 Inf   4.533  0.0004
 StepF9 - StepF10   0.05020 0.0374 Inf   1.341  0.9738
 StepF9 - StepF11   0.03655 0.0374 Inf   0.976  0.9982
 StepF9 - StepF12   0.13993 0.0374 Inf   3.738  0.0101
 StepF10 - StepF11 -0.01366 0.0374 Inf  -0.365  1.0000
 StepF10 - StepF12  0.08973 0.0374 Inf   2.397  0.4080
 StepF11 - StepF12  0.10339 0.0374 Inf   2.762  0.1966

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.08956 0.0374 Inf  -2.392  0.4112
 StepF1 - StepF3   -0.08714 0.0374 Inf  -2.328  0.4566
 StepF1 - StepF4   -0.02027 0.0374 Inf  -0.542  1.0000
 StepF1 - StepF5    0.01834 0.0374 Inf   0.490  1.0000
 StepF1 - StepF6   -0.06717 0.0374 Inf  -1.794  0.8216
 StepF1 - StepF7   -0.02850 0.0374 Inf  -0.761  0.9998
 StepF1 - StepF8   -0.01157 0.0374 Inf  -0.309  1.0000
 StepF1 - StepF9    0.01820 0.0374 Inf   0.486  1.0000
 StepF1 - StepF10   0.06840 0.0374 Inf   1.827  0.8033
 StepF1 - StepF11   0.05474 0.0374 Inf   1.462  0.9506
 StepF1 - StepF12   0.15813 0.0374 Inf   4.224  0.0014
 StepF2 - StepF3    0.00242 0.0374 Inf   0.065  1.0000
 StepF2 - StepF4    0.06928 0.0374 Inf   1.851  0.7896
 StepF2 - StepF5    0.10789 0.0374 Inf   2.882  0.1472
 StepF2 - StepF6    0.02239 0.0374 Inf   0.598  1.0000
 StepF2 - StepF7    0.06106 0.0374 Inf   1.631  0.8979
 StepF2 - StepF8    0.07799 0.0374 Inf   2.083  0.6349
 StepF2 - StepF9    0.10775 0.0374 Inf   2.878  0.1485
 StepF2 - StepF10   0.15796 0.0374 Inf   4.219  0.0015
 StepF2 - StepF11   0.14430 0.0374 Inf   3.855  0.0065
 StepF2 - StepF12   0.24769 0.0374 Inf   6.616  <.0001
 StepF3 - StepF4    0.06687 0.0374 Inf   1.786  0.8260
 StepF3 - StepF5    0.10548 0.0374 Inf   2.818  0.1724
 StepF3 - StepF6    0.01997 0.0374 Inf   0.533  1.0000
 StepF3 - StepF7    0.05864 0.0374 Inf   1.567  0.9211
 StepF3 - StepF8    0.07557 0.0374 Inf   2.019  0.6807
 StepF3 - StepF9    0.10534 0.0374 Inf   2.814  0.1739
 StepF3 - StepF10   0.15554 0.0374 Inf   4.155  0.0019
 StepF3 - StepF11   0.14188 0.0374 Inf   3.790  0.0083
 StepF3 - StepF12   0.24527 0.0374 Inf   6.552  <.0001
 StepF4 - StepF5    0.03861 0.0374 Inf   1.031  0.9970
 StepF4 - StepF6   -0.04689 0.0374 Inf  -1.253  0.9846
 StepF4 - StepF7   -0.00822 0.0374 Inf  -0.220  1.0000
 StepF4 - StepF8    0.00871 0.0374 Inf   0.233  1.0000
 StepF4 - StepF9    0.03847 0.0374 Inf   1.028  0.9971
 StepF4 - StepF10   0.08868 0.0374 Inf   2.369  0.4275
 StepF4 - StepF11   0.07502 0.0374 Inf   2.004  0.6909
 StepF4 - StepF12   0.17840 0.0374 Inf   4.766  0.0001
 StepF5 - StepF6   -0.08551 0.0374 Inf  -2.284  0.4880
 StepF5 - StepF7   -0.04683 0.0374 Inf  -1.251  0.9847
 StepF5 - StepF8   -0.02990 0.0374 Inf  -0.799  0.9997
 StepF5 - StepF9   -0.00014 0.0374 Inf  -0.004  1.0000
 StepF5 - StepF10   0.05007 0.0374 Inf   1.337  0.9743
 StepF5 - StepF11   0.03641 0.0374 Inf   0.973  0.9982
 StepF5 - StepF12   0.13979 0.0374 Inf   3.734  0.0102
 StepF6 - StepF7    0.03867 0.0374 Inf   1.033  0.9970
 StepF6 - StepF8    0.05560 0.0374 Inf   1.485  0.9449
 StepF6 - StepF9    0.08537 0.0374 Inf   2.280  0.4907
 StepF6 - StepF10   0.13557 0.0374 Inf   3.621  0.0154
 StepF6 - StepF11   0.12191 0.0374 Inf   3.257  0.0518
 StepF6 - StepF12   0.22530 0.0374 Inf   6.018  <.0001
 StepF7 - StepF8    0.01693 0.0374 Inf   0.452  1.0000
 StepF7 - StepF9    0.04669 0.0374 Inf   1.247  0.9851
 StepF7 - StepF10   0.09690 0.0374 Inf   2.588  0.2861
 StepF7 - StepF11   0.08324 0.0374 Inf   2.224  0.5323
 StepF7 - StepF12   0.18663 0.0374 Inf   4.985  <.0001
 StepF8 - StepF9    0.02976 0.0374 Inf   0.795  0.9997
 StepF8 - StepF10   0.07997 0.0374 Inf   2.136  0.5965
 StepF8 - StepF11   0.06631 0.0374 Inf   1.771  0.8338
 StepF8 - StepF12   0.16970 0.0374 Inf   4.533  0.0004
 StepF9 - StepF10   0.05020 0.0374 Inf   1.341  0.9738
 StepF9 - StepF11   0.03655 0.0374 Inf   0.976  0.9982
 StepF9 - StepF12   0.13993 0.0374 Inf   3.738  0.0101
 StepF10 - StepF11 -0.01366 0.0374 Inf  -0.365  1.0000
 StepF10 - StepF12  0.08973 0.0374 Inf   2.397  0.4080
 StepF11 - StepF12  0.10339 0.0374 Inf   2.762  0.1966

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.08956 0.0374 Inf   2.392  0.1674
 StepF3 - StepF2   -0.00242 0.0374 Inf  -0.065  1.0000
 StepF4 - StepF3   -0.06687 0.0374 Inf  -1.786  0.5926
 StepF5 - StepF4   -0.03861 0.0374 Inf  -1.031  1.0000
 StepF6 - StepF5    0.08551 0.0374 Inf   2.284  0.2013
 StepF7 - StepF6   -0.03867 0.0374 Inf  -1.033  1.0000
 StepF8 - StepF7   -0.01693 0.0374 Inf  -0.452  1.0000
 StepF9 - StepF8   -0.02976 0.0374 Inf  -0.795  1.0000
 StepF10 - StepF9  -0.05020 0.0374 Inf  -1.341  1.0000
 StepF11 - StepF10  0.01366 0.0374 Inf   0.365  1.0000
 StepF12 - StepF11 -0.10339 0.0374 Inf  -2.762  0.0633

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.08956 0.0374 Inf   2.392  0.1674
 StepF3 - StepF2   -0.00242 0.0374 Inf  -0.065  1.0000
 StepF4 - StepF3   -0.06687 0.0374 Inf  -1.786  0.5926
 StepF5 - StepF4   -0.03861 0.0374 Inf  -1.031  1.0000
 StepF6 - StepF5    0.08551 0.0374 Inf   2.284  0.2013
 StepF7 - StepF6   -0.03867 0.0374 Inf  -1.033  1.0000
 StepF8 - StepF7   -0.01693 0.0374 Inf  -0.452  1.0000
 StepF9 - StepF8   -0.02976 0.0374 Inf  -0.795  1.0000
 StepF10 - StepF9  -0.05020 0.0374 Inf  -1.341  1.0000
 StepF11 - StepF10  0.01366 0.0374 Inf   0.365  1.0000
 StepF12 - StepF11 -0.10339 0.0374 Inf  -2.762  0.0633

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST | Block 4 | 12 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    111.2583 11     <2e-16 ***
Accuracy   0.3606  1     0.5482    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.726 0.0903 Inf     0.549     0.903
 2      0.879 0.0903 Inf     0.702     1.056
 3      0.940 0.0903 Inf     0.763     1.117
 4      0.780 0.0903 Inf     0.603     0.957
 5      0.739 0.0903 Inf     0.562     0.916
 6      0.826 0.0903 Inf     0.649     1.003
 7      0.802 0.0903 Inf     0.625     0.979
 8      0.706 0.0903 Inf     0.529     0.883
 9      0.710 0.0903 Inf     0.533     0.887
 10     0.729 0.0903 Inf     0.552     0.906
 11     0.696 0.0903 Inf     0.519     0.873
 12     0.557 0.0903 Inf     0.380     0.734

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.701 0.0859 Inf     0.533     0.869
 2      0.854 0.0859 Inf     0.686     1.023
 3      0.915 0.0859 Inf     0.746     1.083
 4      0.755 0.0859 Inf     0.586     0.923
 5      0.714 0.0859 Inf     0.545     0.882
 6      0.801 0.0859 Inf     0.632     0.969
 7      0.777 0.0859 Inf     0.608     0.945
 8      0.681 0.0859 Inf     0.513     0.850
 9      0.685 0.0859 Inf     0.517     0.854
 10     0.704 0.0859 Inf     0.535     0.872
 11     0.671 0.0859 Inf     0.502     0.839
 12     0.533 0.0859 Inf     0.364     0.701

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.15337 0.0436 Inf  -3.514  0.0225
 StepF1 - StepF3   -0.21372 0.0436 Inf  -4.897  0.0001
 StepF1 - StepF4   -0.05384 0.0436 Inf  -1.234  0.9863
 StepF1 - StepF5   -0.01276 0.0436 Inf  -0.292  1.0000
 StepF1 - StepF6   -0.09963 0.0436 Inf  -2.283  0.4889
 StepF1 - StepF7   -0.07584 0.0436 Inf  -1.738  0.8509
 StepF1 - StepF8    0.01952 0.0436 Inf   0.447  1.0000
 StepF1 - StepF9    0.01551 0.0436 Inf   0.355  1.0000
 StepF1 - StepF10  -0.00262 0.0436 Inf  -0.060  1.0000
 StepF1 - StepF11   0.03026 0.0436 Inf   0.693  0.9999
 StepF1 - StepF12   0.16849 0.0436 Inf   3.861  0.0063
 StepF2 - StepF3   -0.06035 0.0436 Inf  -1.383  0.9670
 StepF2 - StepF4    0.09952 0.0436 Inf   2.280  0.4907
 StepF2 - StepF5    0.14061 0.0436 Inf   3.222  0.0576
 StepF2 - StepF6    0.05373 0.0436 Inf   1.231  0.9866
 StepF2 - StepF7    0.07753 0.0436 Inf   1.776  0.8311
 StepF2 - StepF8    0.17289 0.0436 Inf   3.961  0.0043
 StepF2 - StepF9    0.16887 0.0436 Inf   3.869  0.0061
 StepF2 - StepF10   0.15075 0.0436 Inf   3.454  0.0275
 StepF2 - StepF11   0.18363 0.0436 Inf   4.207  0.0015
 StepF2 - StepF12   0.32186 0.0436 Inf   7.375  <.0001
 StepF3 - StepF4    0.15987 0.0436 Inf   3.663  0.0133
 StepF3 - StepF5    0.20096 0.0436 Inf   4.604  0.0003
 StepF3 - StepF6    0.11408 0.0436 Inf   2.614  0.2716
 StepF3 - StepF7    0.13788 0.0436 Inf   3.159  0.0693
 StepF3 - StepF8    0.23324 0.0436 Inf   5.344  <.0001
 StepF3 - StepF9    0.22922 0.0436 Inf   5.252  <.0001
 StepF3 - StepF10   0.21110 0.0436 Inf   4.837  0.0001
 StepF3 - StepF11   0.24397 0.0436 Inf   5.590  <.0001
 StepF3 - StepF12   0.38221 0.0436 Inf   8.757  <.0001
 StepF4 - StepF5    0.04108 0.0436 Inf   0.941  0.9987
 StepF4 - StepF6   -0.04579 0.0436 Inf  -1.049  0.9965
 StepF4 - StepF7   -0.02199 0.0436 Inf  -0.504  1.0000
 StepF4 - StepF8    0.07336 0.0436 Inf   1.681  0.8773
 StepF4 - StepF9    0.06935 0.0436 Inf   1.589  0.9135
 StepF4 - StepF10   0.05122 0.0436 Inf   1.174  0.9909
 StepF4 - StepF11   0.08410 0.0436 Inf   1.927  0.7424
 StepF4 - StepF12   0.22234 0.0436 Inf   5.094  <.0001
 StepF5 - StepF6   -0.08687 0.0436 Inf  -1.990  0.7002
 StepF5 - StepF7   -0.06308 0.0436 Inf  -1.445  0.9545
 StepF5 - StepF8    0.03228 0.0436 Inf   0.740  0.9999
 StepF5 - StepF9    0.02827 0.0436 Inf   0.648  1.0000
 StepF5 - StepF10   0.01014 0.0436 Inf   0.232  1.0000
 StepF5 - StepF11   0.04302 0.0436 Inf   0.986  0.9980
 StepF5 - StepF12   0.18126 0.0436 Inf   4.153  0.0019
 StepF6 - StepF7    0.02380 0.0436 Inf   0.545  1.0000
 StepF6 - StepF8    0.11915 0.0436 Inf   2.730  0.2113
 StepF6 - StepF9    0.11514 0.0436 Inf   2.638  0.2582
 StepF6 - StepF10   0.09701 0.0436 Inf   2.223  0.5328
 StepF6 - StepF11   0.12989 0.0436 Inf   2.976  0.1155
 StepF6 - StepF12   0.26813 0.0436 Inf   6.143  <.0001
 StepF7 - StepF8    0.09536 0.0436 Inf   2.185  0.5607
 StepF7 - StepF9    0.09134 0.0436 Inf   2.093  0.6279
 StepF7 - StepF10   0.07322 0.0436 Inf   1.678  0.8787
 StepF7 - StepF11   0.10610 0.0436 Inf   2.431  0.3848
 StepF7 - StepF12   0.24433 0.0436 Inf   5.598  <.0001
 StepF8 - StepF9   -0.00401 0.0436 Inf  -0.092  1.0000
 StepF8 - StepF10  -0.02214 0.0436 Inf  -0.507  1.0000
 StepF8 - StepF11   0.01074 0.0436 Inf   0.246  1.0000
 StepF8 - StepF12   0.14897 0.0436 Inf   3.413  0.0315
 StepF9 - StepF10  -0.01813 0.0436 Inf  -0.415  1.0000
 StepF9 - StepF11   0.01475 0.0436 Inf   0.338  1.0000
 StepF9 - StepF12   0.15299 0.0436 Inf   3.505  0.0231
 StepF10 - StepF11  0.03288 0.0436 Inf   0.753  0.9998
 StepF10 - StepF12  0.17112 0.0436 Inf   3.921  0.0050
 StepF11 - StepF12  0.13824 0.0436 Inf   3.167  0.0677

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.15337 0.0436 Inf  -3.514  0.0225
 StepF1 - StepF3   -0.21372 0.0436 Inf  -4.897  0.0001
 StepF1 - StepF4   -0.05384 0.0436 Inf  -1.234  0.9863
 StepF1 - StepF5   -0.01276 0.0436 Inf  -0.292  1.0000
 StepF1 - StepF6   -0.09963 0.0436 Inf  -2.283  0.4889
 StepF1 - StepF7   -0.07584 0.0436 Inf  -1.738  0.8509
 StepF1 - StepF8    0.01952 0.0436 Inf   0.447  1.0000
 StepF1 - StepF9    0.01551 0.0436 Inf   0.355  1.0000
 StepF1 - StepF10  -0.00262 0.0436 Inf  -0.060  1.0000
 StepF1 - StepF11   0.03026 0.0436 Inf   0.693  0.9999
 StepF1 - StepF12   0.16849 0.0436 Inf   3.861  0.0063
 StepF2 - StepF3   -0.06035 0.0436 Inf  -1.383  0.9670
 StepF2 - StepF4    0.09952 0.0436 Inf   2.280  0.4907
 StepF2 - StepF5    0.14061 0.0436 Inf   3.222  0.0576
 StepF2 - StepF6    0.05373 0.0436 Inf   1.231  0.9866
 StepF2 - StepF7    0.07753 0.0436 Inf   1.776  0.8311
 StepF2 - StepF8    0.17289 0.0436 Inf   3.961  0.0043
 StepF2 - StepF9    0.16887 0.0436 Inf   3.869  0.0061
 StepF2 - StepF10   0.15075 0.0436 Inf   3.454  0.0275
 StepF2 - StepF11   0.18363 0.0436 Inf   4.207  0.0015
 StepF2 - StepF12   0.32186 0.0436 Inf   7.375  <.0001
 StepF3 - StepF4    0.15987 0.0436 Inf   3.663  0.0133
 StepF3 - StepF5    0.20096 0.0436 Inf   4.604  0.0003
 StepF3 - StepF6    0.11408 0.0436 Inf   2.614  0.2716
 StepF3 - StepF7    0.13788 0.0436 Inf   3.159  0.0693
 StepF3 - StepF8    0.23324 0.0436 Inf   5.344  <.0001
 StepF3 - StepF9    0.22922 0.0436 Inf   5.252  <.0001
 StepF3 - StepF10   0.21110 0.0436 Inf   4.837  0.0001
 StepF3 - StepF11   0.24397 0.0436 Inf   5.590  <.0001
 StepF3 - StepF12   0.38221 0.0436 Inf   8.757  <.0001
 StepF4 - StepF5    0.04108 0.0436 Inf   0.941  0.9987
 StepF4 - StepF6   -0.04579 0.0436 Inf  -1.049  0.9965
 StepF4 - StepF7   -0.02199 0.0436 Inf  -0.504  1.0000
 StepF4 - StepF8    0.07336 0.0436 Inf   1.681  0.8773
 StepF4 - StepF9    0.06935 0.0436 Inf   1.589  0.9135
 StepF4 - StepF10   0.05122 0.0436 Inf   1.174  0.9909
 StepF4 - StepF11   0.08410 0.0436 Inf   1.927  0.7424
 StepF4 - StepF12   0.22234 0.0436 Inf   5.094  <.0001
 StepF5 - StepF6   -0.08687 0.0436 Inf  -1.990  0.7002
 StepF5 - StepF7   -0.06308 0.0436 Inf  -1.445  0.9545
 StepF5 - StepF8    0.03228 0.0436 Inf   0.740  0.9999
 StepF5 - StepF9    0.02827 0.0436 Inf   0.648  1.0000
 StepF5 - StepF10   0.01014 0.0436 Inf   0.232  1.0000
 StepF5 - StepF11   0.04302 0.0436 Inf   0.986  0.9980
 StepF5 - StepF12   0.18126 0.0436 Inf   4.153  0.0019
 StepF6 - StepF7    0.02380 0.0436 Inf   0.545  1.0000
 StepF6 - StepF8    0.11915 0.0436 Inf   2.730  0.2113
 StepF6 - StepF9    0.11514 0.0436 Inf   2.638  0.2582
 StepF6 - StepF10   0.09701 0.0436 Inf   2.223  0.5328
 StepF6 - StepF11   0.12989 0.0436 Inf   2.976  0.1155
 StepF6 - StepF12   0.26813 0.0436 Inf   6.143  <.0001
 StepF7 - StepF8    0.09536 0.0436 Inf   2.185  0.5607
 StepF7 - StepF9    0.09134 0.0436 Inf   2.093  0.6279
 StepF7 - StepF10   0.07322 0.0436 Inf   1.678  0.8787
 StepF7 - StepF11   0.10610 0.0436 Inf   2.431  0.3848
 StepF7 - StepF12   0.24433 0.0436 Inf   5.598  <.0001
 StepF8 - StepF9   -0.00401 0.0436 Inf  -0.092  1.0000
 StepF8 - StepF10  -0.02214 0.0436 Inf  -0.507  1.0000
 StepF8 - StepF11   0.01074 0.0436 Inf   0.246  1.0000
 StepF8 - StepF12   0.14897 0.0436 Inf   3.413  0.0315
 StepF9 - StepF10  -0.01813 0.0436 Inf  -0.415  1.0000
 StepF9 - StepF11   0.01475 0.0436 Inf   0.338  1.0000
 StepF9 - StepF12   0.15299 0.0436 Inf   3.505  0.0231
 StepF10 - StepF11  0.03288 0.0436 Inf   0.753  0.9998
 StepF10 - StepF12  0.17112 0.0436 Inf   3.921  0.0050
 StepF11 - StepF12  0.13824 0.0436 Inf   3.167  0.0677

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.15337 0.0436 Inf   3.514  0.0044
 StepF3 - StepF2    0.06035 0.0436 Inf   1.383  1.0000
 StepF4 - StepF3   -0.15987 0.0436 Inf  -3.663  0.0027
 StepF5 - StepF4   -0.04108 0.0436 Inf  -0.941  1.0000
 StepF6 - StepF5    0.08687 0.0436 Inf   1.990  0.3258
 StepF7 - StepF6   -0.02380 0.0436 Inf  -0.545  1.0000
 StepF8 - StepF7   -0.09536 0.0436 Inf  -2.185  0.2312
 StepF9 - StepF8    0.00401 0.0436 Inf   0.092  1.0000
 StepF10 - StepF9   0.01813 0.0436 Inf   0.415  1.0000
 StepF11 - StepF10 -0.03288 0.0436 Inf  -0.753  1.0000
 StepF12 - StepF11 -0.13824 0.0436 Inf  -3.167  0.0138

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.15337 0.0436 Inf   3.514  0.0044
 StepF3 - StepF2    0.06035 0.0436 Inf   1.383  1.0000
 StepF4 - StepF3   -0.15987 0.0436 Inf  -3.663  0.0027
 StepF5 - StepF4   -0.04108 0.0436 Inf  -0.941  1.0000
 StepF6 - StepF5    0.08687 0.0436 Inf   1.990  0.3258
 StepF7 - StepF6   -0.02380 0.0436 Inf  -0.545  1.0000
 StepF8 - StepF7   -0.09536 0.0436 Inf  -2.185  0.2312
 StepF9 - StepF8    0.00401 0.0436 Inf   0.092  1.0000
 StepF10 - StepF9   0.01813 0.0436 Inf   0.415  1.0000
 StepF11 - StepF10 -0.03288 0.0436 Inf  -0.753  1.0000
 StepF12 - StepF11 -0.13824 0.0436 Inf  -3.167  0.0138

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST | Block 4 | 12 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    115.2456 11     <2e-16 ***
Accuracy   0.1742  1     0.6764    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.45 0.161 Inf     1.134      1.77
 2       1.67 0.161 Inf     1.357      1.99
 3       1.70 0.161 Inf     1.384      2.02
 4       1.55 0.161 Inf     1.234      1.87
 5       1.41 0.161 Inf     1.089      1.72
 6       1.46 0.161 Inf     1.140      1.77
 7       1.50 0.161 Inf     1.180      1.81
 8       1.39 0.161 Inf     1.076      1.71
 9       1.28 0.161 Inf     0.959      1.59
 10      1.34 0.161 Inf     1.020      1.65
 11      1.34 0.161 Inf     1.023      1.66
 12      1.10 0.161 Inf     0.787      1.42

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.49 0.152 Inf     1.189      1.78
 2       1.71 0.152 Inf     1.411      2.01
 3       1.74 0.152 Inf     1.438      2.03
 4       1.59 0.152 Inf     1.288      1.88
 5       1.44 0.152 Inf     1.143      1.74
 6       1.49 0.152 Inf     1.194      1.79
 7       1.53 0.152 Inf     1.235      1.83
 8       1.43 0.152 Inf     1.130      1.72
 9       1.31 0.152 Inf     1.013      1.61
 10      1.37 0.152 Inf     1.075      1.67
 11      1.37 0.152 Inf     1.077      1.67
 12      1.14 0.152 Inf     0.842      1.44

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.22247 0.0724 Inf  -3.074  0.0884
 StepF1 - StepF3   -0.24944 0.0724 Inf  -3.447  0.0282
 StepF1 - StepF4   -0.09932 0.0724 Inf  -1.373  0.9688
 StepF1 - StepF5    0.04563 0.0724 Inf   0.631  1.0000
 StepF1 - StepF6   -0.00519 0.0724 Inf  -0.072  1.0000
 StepF1 - StepF7   -0.04593 0.0724 Inf  -0.635  1.0000
 StepF1 - StepF8    0.05869 0.0724 Inf   0.811  0.9997
 StepF1 - StepF9    0.17577 0.0724 Inf   2.429  0.3862
 StepF1 - StepF10   0.11407 0.0724 Inf   1.576  0.9179
 StepF1 - StepF11   0.11184 0.0724 Inf   1.545  0.9279
 StepF1 - StepF12   0.34719 0.0724 Inf   4.798  0.0001
 StepF2 - StepF3   -0.02697 0.0724 Inf  -0.373  1.0000
 StepF2 - StepF4    0.12315 0.0724 Inf   1.702  0.8679
 StepF2 - StepF5    0.26811 0.0724 Inf   3.705  0.0114
 StepF2 - StepF6    0.21728 0.0724 Inf   3.003  0.1076
 StepF2 - StepF7    0.17655 0.0724 Inf   2.440  0.3790
 StepF2 - StepF8    0.28116 0.0724 Inf   3.885  0.0058
 StepF2 - StepF9    0.39824 0.0724 Inf   5.503  <.0001
 StepF2 - StepF10   0.33654 0.0724 Inf   4.651  0.0002
 StepF2 - StepF11   0.33431 0.0724 Inf   4.620  0.0002
 StepF2 - StepF12   0.56966 0.0724 Inf   7.872  <.0001
 StepF3 - StepF4    0.15012 0.0724 Inf   2.074  0.6413
 StepF3 - StepF5    0.29507 0.0724 Inf   4.078  0.0027
 StepF3 - StepF6    0.24425 0.0724 Inf   3.375  0.0356
 StepF3 - StepF7    0.20351 0.0724 Inf   2.812  0.1746
 StepF3 - StepF8    0.30813 0.0724 Inf   4.258  0.0012
 StepF3 - StepF9    0.42521 0.0724 Inf   5.876  <.0001
 StepF3 - StepF10   0.36351 0.0724 Inf   5.023  <.0001
 StepF3 - StepF11   0.36128 0.0724 Inf   4.992  <.0001
 StepF3 - StepF12   0.59663 0.0724 Inf   8.245  <.0001
 StepF4 - StepF5    0.14495 0.0724 Inf   2.003  0.6915
 StepF4 - StepF6    0.09413 0.0724 Inf   1.301  0.9792
 StepF4 - StepF7    0.05340 0.0724 Inf   0.738  0.9999
 StepF4 - StepF8    0.15801 0.0724 Inf   2.184  0.5617
 StepF4 - StepF9    0.27509 0.0724 Inf   3.801  0.0080
 StepF4 - StepF10   0.21339 0.0724 Inf   2.949  0.1241
 StepF4 - StepF11   0.21116 0.0724 Inf   2.918  0.1344
 StepF4 - StepF12   0.44651 0.0724 Inf   6.170  <.0001
 StepF5 - StepF6   -0.05082 0.0724 Inf  -0.702  0.9999
 StepF5 - StepF7   -0.09156 0.0724 Inf  -1.265  0.9833
 StepF5 - StepF8    0.01306 0.0724 Inf   0.180  1.0000
 StepF5 - StepF9    0.13014 0.0724 Inf   1.798  0.8194
 StepF5 - StepF10   0.06843 0.0724 Inf   0.946  0.9986
 StepF5 - StepF11   0.06621 0.0724 Inf   0.915  0.9990
 StepF5 - StepF12   0.30156 0.0724 Inf   4.167  0.0018
 StepF6 - StepF7   -0.04073 0.0724 Inf  -0.563  1.0000
 StepF6 - StepF8    0.06388 0.0724 Inf   0.883  0.9993
 StepF6 - StepF9    0.18096 0.0724 Inf   2.501  0.3393
 StepF6 - StepF10   0.11926 0.0724 Inf   1.648  0.8912
 StepF6 - StepF11   0.11703 0.0724 Inf   1.617  0.9032
 StepF6 - StepF12   0.35238 0.0724 Inf   4.869  0.0001
 StepF7 - StepF8    0.10462 0.0724 Inf   1.446  0.9544
 StepF7 - StepF9    0.22169 0.0724 Inf   3.064  0.0911
 StepF7 - StepF10   0.15999 0.0724 Inf   2.211  0.5416
 StepF7 - StepF11   0.15776 0.0724 Inf   2.180  0.5642
 StepF7 - StepF12   0.39311 0.0724 Inf   5.432  <.0001
 StepF8 - StepF9    0.11708 0.0724 Inf   1.618  0.9030
 StepF8 - StepF10   0.05538 0.0724 Inf   0.765  0.9998
 StepF8 - StepF11   0.05315 0.0724 Inf   0.734  0.9999
 StepF8 - StepF12   0.28850 0.0724 Inf   3.987  0.0039
 StepF9 - StepF10  -0.06170 0.0724 Inf  -0.853  0.9995
 StepF9 - StepF11  -0.06393 0.0724 Inf  -0.883  0.9993
 StepF9 - StepF12   0.17142 0.0724 Inf   2.369  0.4275
 StepF10 - StepF11 -0.00223 0.0724 Inf  -0.031  1.0000
 StepF10 - StepF12  0.23312 0.0724 Inf   3.221  0.0576
 StepF11 - StepF12  0.23535 0.0724 Inf   3.252  0.0525

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.22247 0.0724 Inf  -3.074  0.0884
 StepF1 - StepF3   -0.24944 0.0724 Inf  -3.447  0.0282
 StepF1 - StepF4   -0.09932 0.0724 Inf  -1.373  0.9688
 StepF1 - StepF5    0.04563 0.0724 Inf   0.631  1.0000
 StepF1 - StepF6   -0.00519 0.0724 Inf  -0.072  1.0000
 StepF1 - StepF7   -0.04593 0.0724 Inf  -0.635  1.0000
 StepF1 - StepF8    0.05869 0.0724 Inf   0.811  0.9997
 StepF1 - StepF9    0.17577 0.0724 Inf   2.429  0.3862
 StepF1 - StepF10   0.11407 0.0724 Inf   1.576  0.9179
 StepF1 - StepF11   0.11184 0.0724 Inf   1.545  0.9279
 StepF1 - StepF12   0.34719 0.0724 Inf   4.798  0.0001
 StepF2 - StepF3   -0.02697 0.0724 Inf  -0.373  1.0000
 StepF2 - StepF4    0.12315 0.0724 Inf   1.702  0.8679
 StepF2 - StepF5    0.26811 0.0724 Inf   3.705  0.0114
 StepF2 - StepF6    0.21728 0.0724 Inf   3.003  0.1076
 StepF2 - StepF7    0.17655 0.0724 Inf   2.440  0.3790
 StepF2 - StepF8    0.28116 0.0724 Inf   3.885  0.0058
 StepF2 - StepF9    0.39824 0.0724 Inf   5.503  <.0001
 StepF2 - StepF10   0.33654 0.0724 Inf   4.651  0.0002
 StepF2 - StepF11   0.33431 0.0724 Inf   4.620  0.0002
 StepF2 - StepF12   0.56966 0.0724 Inf   7.872  <.0001
 StepF3 - StepF4    0.15012 0.0724 Inf   2.074  0.6413
 StepF3 - StepF5    0.29507 0.0724 Inf   4.078  0.0027
 StepF3 - StepF6    0.24425 0.0724 Inf   3.375  0.0356
 StepF3 - StepF7    0.20351 0.0724 Inf   2.812  0.1746
 StepF3 - StepF8    0.30813 0.0724 Inf   4.258  0.0012
 StepF3 - StepF9    0.42521 0.0724 Inf   5.876  <.0001
 StepF3 - StepF10   0.36351 0.0724 Inf   5.023  <.0001
 StepF3 - StepF11   0.36128 0.0724 Inf   4.992  <.0001
 StepF3 - StepF12   0.59663 0.0724 Inf   8.245  <.0001
 StepF4 - StepF5    0.14495 0.0724 Inf   2.003  0.6915
 StepF4 - StepF6    0.09413 0.0724 Inf   1.301  0.9792
 StepF4 - StepF7    0.05340 0.0724 Inf   0.738  0.9999
 StepF4 - StepF8    0.15801 0.0724 Inf   2.184  0.5617
 StepF4 - StepF9    0.27509 0.0724 Inf   3.801  0.0080
 StepF4 - StepF10   0.21339 0.0724 Inf   2.949  0.1241
 StepF4 - StepF11   0.21116 0.0724 Inf   2.918  0.1344
 StepF4 - StepF12   0.44651 0.0724 Inf   6.170  <.0001
 StepF5 - StepF6   -0.05082 0.0724 Inf  -0.702  0.9999
 StepF5 - StepF7   -0.09156 0.0724 Inf  -1.265  0.9833
 StepF5 - StepF8    0.01306 0.0724 Inf   0.180  1.0000
 StepF5 - StepF9    0.13014 0.0724 Inf   1.798  0.8194
 StepF5 - StepF10   0.06843 0.0724 Inf   0.946  0.9986
 StepF5 - StepF11   0.06621 0.0724 Inf   0.915  0.9990
 StepF5 - StepF12   0.30156 0.0724 Inf   4.167  0.0018
 StepF6 - StepF7   -0.04073 0.0724 Inf  -0.563  1.0000
 StepF6 - StepF8    0.06388 0.0724 Inf   0.883  0.9993
 StepF6 - StepF9    0.18096 0.0724 Inf   2.501  0.3393
 StepF6 - StepF10   0.11926 0.0724 Inf   1.648  0.8912
 StepF6 - StepF11   0.11703 0.0724 Inf   1.617  0.9032
 StepF6 - StepF12   0.35238 0.0724 Inf   4.869  0.0001
 StepF7 - StepF8    0.10462 0.0724 Inf   1.446  0.9544
 StepF7 - StepF9    0.22169 0.0724 Inf   3.064  0.0911
 StepF7 - StepF10   0.15999 0.0724 Inf   2.211  0.5416
 StepF7 - StepF11   0.15776 0.0724 Inf   2.180  0.5642
 StepF7 - StepF12   0.39311 0.0724 Inf   5.432  <.0001
 StepF8 - StepF9    0.11708 0.0724 Inf   1.618  0.9030
 StepF8 - StepF10   0.05538 0.0724 Inf   0.765  0.9998
 StepF8 - StepF11   0.05315 0.0724 Inf   0.734  0.9999
 StepF8 - StepF12   0.28850 0.0724 Inf   3.987  0.0039
 StepF9 - StepF10  -0.06170 0.0724 Inf  -0.853  0.9995
 StepF9 - StepF11  -0.06393 0.0724 Inf  -0.883  0.9993
 StepF9 - StepF12   0.17142 0.0724 Inf   2.369  0.4275
 StepF10 - StepF11 -0.00223 0.0724 Inf  -0.031  1.0000
 StepF10 - StepF12  0.23312 0.0724 Inf   3.221  0.0576
 StepF11 - StepF12  0.23535 0.0724 Inf   3.252  0.0525

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.22247 0.0724 Inf   3.074  0.0211
 StepF3 - StepF2    0.02697 0.0724 Inf   0.373  1.0000
 StepF4 - StepF3   -0.15012 0.0724 Inf  -2.074  0.3423
 StepF5 - StepF4   -0.14495 0.0724 Inf  -2.003  0.3613
 StepF6 - StepF5    0.05082 0.0724 Inf   0.702  1.0000
 StepF7 - StepF6    0.04073 0.0724 Inf   0.563  1.0000
 StepF8 - StepF7   -0.10462 0.0724 Inf  -1.446  0.8896
 StepF9 - StepF8   -0.11708 0.0724 Inf  -1.618  0.7399
 StepF10 - StepF9   0.06170 0.0724 Inf   0.853  1.0000
 StepF11 - StepF10  0.00223 0.0724 Inf   0.031  1.0000
 StepF12 - StepF11 -0.23535 0.0724 Inf  -3.252  0.0126

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.22247 0.0724 Inf   3.074  0.0211
 StepF3 - StepF2    0.02697 0.0724 Inf   0.373  1.0000
 StepF4 - StepF3   -0.15012 0.0724 Inf  -2.074  0.3423
 StepF5 - StepF4   -0.14495 0.0724 Inf  -2.003  0.3613
 StepF6 - StepF5    0.05082 0.0724 Inf   0.702  1.0000
 StepF7 - StepF6    0.04073 0.0724 Inf   0.563  1.0000
 StepF8 - StepF7   -0.10462 0.0724 Inf  -1.446  0.8896
 StepF9 - StepF8   -0.11708 0.0724 Inf  -1.618  0.7399
 StepF10 - StepF9   0.06170 0.0724 Inf   0.853  1.0000
 StepF11 - StepF10  0.00223 0.0724 Inf   0.031  1.0000
 StepF12 - StepF11 -0.23535 0.0724 Inf  -3.252  0.0126

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
.report_step_test(sw_b4_18, "4", "18 steps")


==============================
TEST | Block 4 | 18 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    141.0528 17     <2e-16 ***
Accuracy   0.0788  1     0.7789    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.692 0.0770 Inf     0.541     0.843
 2      0.797 0.0770 Inf     0.646     0.948
 3      0.768 0.0770 Inf     0.617     0.919
 4      0.760 0.0770 Inf     0.609     0.911
 5      0.698 0.0770 Inf     0.547     0.849
 6      0.813 0.0770 Inf     0.662     0.964
 7      0.684 0.0770 Inf     0.533     0.835
 8      0.672 0.0770 Inf     0.521     0.823
 9      0.740 0.0770 Inf     0.589     0.891
 10     0.657 0.0770 Inf     0.506     0.808
 11     0.692 0.0770 Inf     0.541     0.843
 12     0.597 0.0770 Inf     0.446     0.748
 13     0.651 0.0770 Inf     0.500     0.802
 14     0.652 0.0770 Inf     0.501     0.803
 15     0.689 0.0770 Inf     0.538     0.840
 16     0.644 0.0770 Inf     0.493     0.795
 17     0.525 0.0770 Inf     0.374     0.676
 18     0.528 0.0770 Inf     0.377     0.679

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.702 0.0738 Inf     0.557     0.846
 2      0.807 0.0738 Inf     0.663     0.952
 3      0.778 0.0738 Inf     0.633     0.923
 4      0.770 0.0738 Inf     0.626     0.915
 5      0.707 0.0738 Inf     0.563     0.852
 6      0.823 0.0738 Inf     0.678     0.968
 7      0.693 0.0738 Inf     0.549     0.838
 8      0.682 0.0738 Inf     0.537     0.827
 9      0.750 0.0738 Inf     0.605     0.894
 10     0.667 0.0738 Inf     0.522     0.812
 11     0.701 0.0738 Inf     0.557     0.846
 12     0.607 0.0738 Inf     0.462     0.752
 13     0.661 0.0738 Inf     0.516     0.805
 14     0.662 0.0738 Inf     0.518     0.807
 15     0.699 0.0738 Inf     0.554     0.844
 16     0.654 0.0738 Inf     0.509     0.799
 17     0.535 0.0738 Inf     0.390     0.680
 18     0.538 0.0738 Inf     0.393     0.682

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate    SE  df z.ratio p.value
 StepF1 - StepF2   -0.105678 0.039 Inf  -2.708  0.3744
 StepF1 - StepF3   -0.076465 0.039 Inf  -1.960  0.8883
 StepF1 - StepF4   -0.068653 0.039 Inf  -1.759  0.9546
 StepF1 - StepF5   -0.005838 0.039 Inf  -0.150  1.0000
 StepF1 - StepF6   -0.121476 0.039 Inf  -3.113  0.1503
 StepF1 - StepF7    0.008102 0.039 Inf   0.208  1.0000
 StepF1 - StepF8    0.019427 0.039 Inf   0.498  1.0000
 StepF1 - StepF9   -0.047971 0.039 Inf  -1.229  0.9991
 StepF1 - StepF10   0.034551 0.039 Inf   0.885  1.0000
 StepF1 - StepF11   0.000256 0.039 Inf   0.007  1.0000
 StepF1 - StepF12   0.094474 0.039 Inf   2.421  0.5916
 StepF1 - StepF13   0.040849 0.039 Inf   1.047  0.9999
 StepF1 - StepF14   0.039273 0.039 Inf   1.006  0.9999
 StepF1 - StepF15   0.002457 0.039 Inf   0.063  1.0000
 StepF1 - StepF16   0.047602 0.039 Inf   1.220  0.9992
 StepF1 - StepF17   0.166479 0.039 Inf   4.266  0.0027
 StepF1 - StepF18   0.163830 0.039 Inf   4.198  0.0035
 StepF2 - StepF3    0.029212 0.039 Inf   0.749  1.0000
 StepF2 - StepF4    0.037025 0.039 Inf   0.949  1.0000
 StepF2 - StepF5    0.099839 0.039 Inf   2.559  0.4849
 StepF2 - StepF6   -0.015798 0.039 Inf  -0.405  1.0000
 StepF2 - StepF7    0.113779 0.039 Inf   2.916  0.2434
 StepF2 - StepF8    0.125104 0.039 Inf   3.206  0.1169
 StepF2 - StepF9    0.057707 0.039 Inf   1.479  0.9921
 StepF2 - StepF10   0.140229 0.039 Inf   3.594  0.0353
 StepF2 - StepF11   0.105933 0.039 Inf   2.715  0.3698
 StepF2 - StepF12   0.200151 0.039 Inf   5.129  <.0001
 StepF2 - StepF13   0.146527 0.039 Inf   3.755  0.0201
 StepF2 - StepF14   0.144950 0.039 Inf   3.715  0.0232
 StepF2 - StepF15   0.108135 0.039 Inf   2.771  0.3314
 StepF2 - StepF16   0.153279 0.039 Inf   3.928  0.0105
 StepF2 - StepF17   0.272156 0.039 Inf   6.975  <.0001
 StepF2 - StepF18   0.269508 0.039 Inf   6.907  <.0001
 StepF3 - StepF4    0.007812 0.039 Inf   0.200  1.0000
 StepF3 - StepF5    0.070627 0.039 Inf   1.810  0.9416
 StepF3 - StepF6   -0.045011 0.039 Inf  -1.153  0.9996
 StepF3 - StepF7    0.084567 0.039 Inf   2.167  0.7756
 StepF3 - StepF8    0.095892 0.039 Inf   2.457  0.5634
 StepF3 - StepF9    0.028495 0.039 Inf   0.730  1.0000
 StepF3 - StepF10   0.111017 0.039 Inf   2.845  0.2845
 StepF3 - StepF11   0.076721 0.039 Inf   1.966  0.8854
 StepF3 - StepF12   0.170939 0.039 Inf   4.381  0.0016
 StepF3 - StepF13   0.117315 0.039 Inf   3.006  0.1968
 StepF3 - StepF14   0.115738 0.039 Inf   2.966  0.2168
 StepF3 - StepF15   0.078923 0.039 Inf   2.023  0.8588
 StepF3 - StepF16   0.124067 0.039 Inf   3.179  0.1258
 StepF3 - StepF17   0.242944 0.039 Inf   6.226  <.0001
 StepF3 - StepF18   0.240295 0.039 Inf   6.158  <.0001
 StepF4 - StepF5    0.062815 0.039 Inf   1.610  0.9807
 StepF4 - StepF6   -0.052823 0.039 Inf  -1.354  0.9971
 StepF4 - StepF7    0.076755 0.039 Inf   1.967  0.8851
 StepF4 - StepF8    0.088080 0.039 Inf   2.257  0.7145
 StepF4 - StepF9    0.020682 0.039 Inf   0.530  1.0000
 StepF4 - StepF10   0.103204 0.039 Inf   2.645  0.4200
 StepF4 - StepF11   0.068909 0.039 Inf   1.766  0.9531
 StepF4 - StepF12   0.163127 0.039 Inf   4.180  0.0038
 StepF4 - StepF13   0.109502 0.039 Inf   2.806  0.3087
 StepF4 - StepF14   0.107926 0.039 Inf   2.766  0.3350
 StepF4 - StepF15   0.071110 0.039 Inf   1.822  0.9381
 StepF4 - StepF16   0.116255 0.039 Inf   2.979  0.2101
 StepF4 - StepF17   0.235132 0.039 Inf   6.026  <.0001
 StepF4 - StepF18   0.232483 0.039 Inf   5.958  <.0001
 StepF5 - StepF6   -0.115637 0.039 Inf  -2.963  0.2181
 StepF5 - StepF7    0.013940 0.039 Inf   0.357  1.0000
 StepF5 - StepF8    0.025265 0.039 Inf   0.647  1.0000
 StepF5 - StepF9   -0.042132 0.039 Inf  -1.080  0.9998
 StepF5 - StepF10   0.040390 0.039 Inf   1.035  0.9999
 StepF5 - StepF11   0.006094 0.039 Inf   0.156  1.0000
 StepF5 - StepF12   0.100312 0.039 Inf   2.571  0.4757
 StepF5 - StepF13   0.046688 0.039 Inf   1.196  0.9994
 StepF5 - StepF14   0.045111 0.039 Inf   1.156  0.9996
 StepF5 - StepF15   0.008296 0.039 Inf   0.213  1.0000
 StepF5 - StepF16   0.053440 0.039 Inf   1.370  0.9967
 StepF5 - StepF17   0.172317 0.039 Inf   4.416  0.0014
 StepF5 - StepF18   0.169669 0.039 Inf   4.348  0.0019
 StepF6 - StepF7    0.129577 0.039 Inf   3.321  0.0841
 StepF6 - StepF8    0.140903 0.039 Inf   3.611  0.0333
 StepF6 - StepF9    0.073505 0.039 Inf   1.884  0.9183
 StepF6 - StepF10   0.156027 0.039 Inf   3.998  0.0080
 StepF6 - StepF11   0.121732 0.039 Inf   3.120  0.1477
 StepF6 - StepF12   0.215950 0.039 Inf   5.534  <.0001
 StepF6 - StepF13   0.162325 0.039 Inf   4.160  0.0042
 StepF6 - StepF14   0.160749 0.039 Inf   4.119  0.0049
 StepF6 - StepF15   0.123933 0.039 Inf   3.176  0.1270
 StepF6 - StepF16   0.169078 0.039 Inf   4.333  0.0020
 StepF6 - StepF17   0.287954 0.039 Inf   7.379  <.0001
 StepF6 - StepF18   0.285306 0.039 Inf   7.312  <.0001
 StepF7 - StepF8    0.011325 0.039 Inf   0.290  1.0000
 StepF7 - StepF9   -0.056072 0.039 Inf  -1.437  0.9943
 StepF7 - StepF10   0.026450 0.039 Inf   0.678  1.0000
 StepF7 - StepF11  -0.007846 0.039 Inf  -0.201  1.0000
 StepF7 - StepF12   0.086372 0.039 Inf   2.213  0.7449
 StepF7 - StepF13   0.032748 0.039 Inf   0.839  1.0000
 StepF7 - StepF14   0.031171 0.039 Inf   0.799  1.0000
 StepF7 - StepF15  -0.005644 0.039 Inf  -0.145  1.0000
 StepF7 - StepF16   0.039500 0.039 Inf   1.012  0.9999
 StepF7 - StepF17   0.158377 0.039 Inf   4.059  0.0063
 StepF7 - StepF18   0.155729 0.039 Inf   3.991  0.0082
 StepF8 - StepF9   -0.067398 0.039 Inf  -1.727  0.9617
 StepF8 - StepF10   0.015125 0.039 Inf   0.388  1.0000
 StepF8 - StepF11  -0.019171 0.039 Inf  -0.491  1.0000
 StepF8 - StepF12   0.075047 0.039 Inf   1.923  0.9034
 StepF8 - StepF13   0.021422 0.039 Inf   0.549  1.0000
 StepF8 - StepF14   0.019846 0.039 Inf   0.509  1.0000
 StepF8 - StepF15  -0.016969 0.039 Inf  -0.435  1.0000
 StepF8 - StepF16   0.028175 0.039 Inf   0.722  1.0000
 StepF8 - StepF17   0.147052 0.039 Inf   3.768  0.0191
 StepF8 - StepF18   0.144403 0.039 Inf   3.701  0.0244
 StepF9 - StepF10   0.082522 0.039 Inf   2.115  0.8081
 StepF9 - StepF11   0.048227 0.039 Inf   1.236  0.9991
 StepF9 - StepF12   0.142444 0.039 Inf   3.650  0.0291
 StepF9 - StepF13   0.088820 0.039 Inf   2.276  0.7009
 StepF9 - StepF14   0.087243 0.039 Inf   2.236  0.7296
 StepF9 - StepF15   0.050428 0.039 Inf   1.292  0.9984
 StepF9 - StepF16   0.095573 0.039 Inf   2.449  0.5698
 StepF9 - StepF17   0.214449 0.039 Inf   5.496  <.0001
 StepF9 - StepF18   0.211801 0.039 Inf   5.428  <.0001
 StepF10 - StepF11 -0.034296 0.039 Inf  -0.879  1.0000
 StepF10 - StepF12  0.059922 0.039 Inf   1.536  0.9881
 StepF10 - StepF13  0.006298 0.039 Inf   0.161  1.0000
 StepF10 - StepF14  0.004721 0.039 Inf   0.121  1.0000
 StepF10 - StepF15 -0.032094 0.039 Inf  -0.822  1.0000
 StepF10 - StepF16  0.013050 0.039 Inf   0.334  1.0000
 StepF10 - StepF17  0.131927 0.039 Inf   3.381  0.0702
 StepF10 - StepF18  0.129279 0.039 Inf   3.313  0.0861
 StepF11 - StepF12  0.094218 0.039 Inf   2.415  0.5967
 StepF11 - StepF13  0.040593 0.039 Inf   1.040  0.9999
 StepF11 - StepF14  0.039017 0.039 Inf   1.000  0.9999
 StepF11 - StepF15  0.002202 0.039 Inf   0.056  1.0000
 StepF11 - StepF16  0.047346 0.039 Inf   1.213  0.9993
 StepF11 - StepF17  0.166223 0.039 Inf   4.260  0.0027
 StepF11 - StepF18  0.163574 0.039 Inf   4.192  0.0036
 StepF12 - StepF13 -0.053624 0.039 Inf  -1.374  0.9966
 StepF12 - StepF14 -0.055201 0.039 Inf  -1.415  0.9952
 StepF12 - StepF15 -0.092016 0.039 Inf  -2.358  0.6401
 StepF12 - StepF16 -0.046872 0.039 Inf  -1.201  0.9993
 StepF12 - StepF17  0.072005 0.039 Inf   1.845  0.9311
 StepF12 - StepF18  0.069356 0.039 Inf   1.777  0.9503
 StepF13 - StepF14 -0.001577 0.039 Inf  -0.040  1.0000
 StepF13 - StepF15 -0.038392 0.039 Inf  -0.984  1.0000
 StepF13 - StepF16  0.006753 0.039 Inf   0.173  1.0000
 StepF13 - StepF17  0.125629 0.039 Inf   3.219  0.1126
 StepF13 - StepF18  0.122981 0.039 Inf   3.152  0.1357
 StepF14 - StepF15 -0.036815 0.039 Inf  -0.943  1.0000
 StepF14 - StepF16  0.008329 0.039 Inf   0.213  1.0000
 StepF14 - StepF17  0.127206 0.039 Inf   3.260  0.1005
 StepF14 - StepF18  0.124557 0.039 Inf   3.192  0.1216
 StepF15 - StepF16  0.045144 0.039 Inf   1.157  0.9996
 StepF15 - StepF17  0.164021 0.039 Inf   4.203  0.0035
 StepF15 - StepF18  0.161373 0.039 Inf   4.135  0.0046
 StepF16 - StepF17  0.118877 0.039 Inf   3.046  0.1782
 StepF16 - StepF18  0.116228 0.039 Inf   2.979  0.2104
 StepF17 - StepF18 -0.002648 0.039 Inf  -0.068  1.0000

Accuracy = 1:
 contrast           estimate    SE  df z.ratio p.value
 StepF1 - StepF2   -0.105678 0.039 Inf  -2.708  0.3744
 StepF1 - StepF3   -0.076465 0.039 Inf  -1.960  0.8883
 StepF1 - StepF4   -0.068653 0.039 Inf  -1.759  0.9546
 StepF1 - StepF5   -0.005838 0.039 Inf  -0.150  1.0000
 StepF1 - StepF6   -0.121476 0.039 Inf  -3.113  0.1503
 StepF1 - StepF7    0.008102 0.039 Inf   0.208  1.0000
 StepF1 - StepF8    0.019427 0.039 Inf   0.498  1.0000
 StepF1 - StepF9   -0.047971 0.039 Inf  -1.229  0.9991
 StepF1 - StepF10   0.034551 0.039 Inf   0.885  1.0000
 StepF1 - StepF11   0.000256 0.039 Inf   0.007  1.0000
 StepF1 - StepF12   0.094474 0.039 Inf   2.421  0.5916
 StepF1 - StepF13   0.040849 0.039 Inf   1.047  0.9999
 StepF1 - StepF14   0.039273 0.039 Inf   1.006  0.9999
 StepF1 - StepF15   0.002457 0.039 Inf   0.063  1.0000
 StepF1 - StepF16   0.047602 0.039 Inf   1.220  0.9992
 StepF1 - StepF17   0.166479 0.039 Inf   4.266  0.0027
 StepF1 - StepF18   0.163830 0.039 Inf   4.198  0.0035
 StepF2 - StepF3    0.029212 0.039 Inf   0.749  1.0000
 StepF2 - StepF4    0.037025 0.039 Inf   0.949  1.0000
 StepF2 - StepF5    0.099839 0.039 Inf   2.559  0.4849
 StepF2 - StepF6   -0.015798 0.039 Inf  -0.405  1.0000
 StepF2 - StepF7    0.113779 0.039 Inf   2.916  0.2434
 StepF2 - StepF8    0.125104 0.039 Inf   3.206  0.1169
 StepF2 - StepF9    0.057707 0.039 Inf   1.479  0.9921
 StepF2 - StepF10   0.140229 0.039 Inf   3.594  0.0353
 StepF2 - StepF11   0.105933 0.039 Inf   2.715  0.3698
 StepF2 - StepF12   0.200151 0.039 Inf   5.129  <.0001
 StepF2 - StepF13   0.146527 0.039 Inf   3.755  0.0201
 StepF2 - StepF14   0.144950 0.039 Inf   3.715  0.0232
 StepF2 - StepF15   0.108135 0.039 Inf   2.771  0.3314
 StepF2 - StepF16   0.153279 0.039 Inf   3.928  0.0105
 StepF2 - StepF17   0.272156 0.039 Inf   6.975  <.0001
 StepF2 - StepF18   0.269508 0.039 Inf   6.907  <.0001
 StepF3 - StepF4    0.007812 0.039 Inf   0.200  1.0000
 StepF3 - StepF5    0.070627 0.039 Inf   1.810  0.9416
 StepF3 - StepF6   -0.045011 0.039 Inf  -1.153  0.9996
 StepF3 - StepF7    0.084567 0.039 Inf   2.167  0.7756
 StepF3 - StepF8    0.095892 0.039 Inf   2.457  0.5634
 StepF3 - StepF9    0.028495 0.039 Inf   0.730  1.0000
 StepF3 - StepF10   0.111017 0.039 Inf   2.845  0.2845
 StepF3 - StepF11   0.076721 0.039 Inf   1.966  0.8854
 StepF3 - StepF12   0.170939 0.039 Inf   4.381  0.0016
 StepF3 - StepF13   0.117315 0.039 Inf   3.006  0.1968
 StepF3 - StepF14   0.115738 0.039 Inf   2.966  0.2168
 StepF3 - StepF15   0.078923 0.039 Inf   2.023  0.8588
 StepF3 - StepF16   0.124067 0.039 Inf   3.179  0.1258
 StepF3 - StepF17   0.242944 0.039 Inf   6.226  <.0001
 StepF3 - StepF18   0.240295 0.039 Inf   6.158  <.0001
 StepF4 - StepF5    0.062815 0.039 Inf   1.610  0.9807
 StepF4 - StepF6   -0.052823 0.039 Inf  -1.354  0.9971
 StepF4 - StepF7    0.076755 0.039 Inf   1.967  0.8851
 StepF4 - StepF8    0.088080 0.039 Inf   2.257  0.7145
 StepF4 - StepF9    0.020682 0.039 Inf   0.530  1.0000
 StepF4 - StepF10   0.103204 0.039 Inf   2.645  0.4200
 StepF4 - StepF11   0.068909 0.039 Inf   1.766  0.9531
 StepF4 - StepF12   0.163127 0.039 Inf   4.180  0.0038
 StepF4 - StepF13   0.109502 0.039 Inf   2.806  0.3087
 StepF4 - StepF14   0.107926 0.039 Inf   2.766  0.3350
 StepF4 - StepF15   0.071110 0.039 Inf   1.822  0.9381
 StepF4 - StepF16   0.116255 0.039 Inf   2.979  0.2101
 StepF4 - StepF17   0.235132 0.039 Inf   6.026  <.0001
 StepF4 - StepF18   0.232483 0.039 Inf   5.958  <.0001
 StepF5 - StepF6   -0.115637 0.039 Inf  -2.963  0.2181
 StepF5 - StepF7    0.013940 0.039 Inf   0.357  1.0000
 StepF5 - StepF8    0.025265 0.039 Inf   0.647  1.0000
 StepF5 - StepF9   -0.042132 0.039 Inf  -1.080  0.9998
 StepF5 - StepF10   0.040390 0.039 Inf   1.035  0.9999
 StepF5 - StepF11   0.006094 0.039 Inf   0.156  1.0000
 StepF5 - StepF12   0.100312 0.039 Inf   2.571  0.4757
 StepF5 - StepF13   0.046688 0.039 Inf   1.196  0.9994
 StepF5 - StepF14   0.045111 0.039 Inf   1.156  0.9996
 StepF5 - StepF15   0.008296 0.039 Inf   0.213  1.0000
 StepF5 - StepF16   0.053440 0.039 Inf   1.370  0.9967
 StepF5 - StepF17   0.172317 0.039 Inf   4.416  0.0014
 StepF5 - StepF18   0.169669 0.039 Inf   4.348  0.0019
 StepF6 - StepF7    0.129577 0.039 Inf   3.321  0.0841
 StepF6 - StepF8    0.140903 0.039 Inf   3.611  0.0333
 StepF6 - StepF9    0.073505 0.039 Inf   1.884  0.9183
 StepF6 - StepF10   0.156027 0.039 Inf   3.998  0.0080
 StepF6 - StepF11   0.121732 0.039 Inf   3.120  0.1477
 StepF6 - StepF12   0.215950 0.039 Inf   5.534  <.0001
 StepF6 - StepF13   0.162325 0.039 Inf   4.160  0.0042
 StepF6 - StepF14   0.160749 0.039 Inf   4.119  0.0049
 StepF6 - StepF15   0.123933 0.039 Inf   3.176  0.1270
 StepF6 - StepF16   0.169078 0.039 Inf   4.333  0.0020
 StepF6 - StepF17   0.287954 0.039 Inf   7.379  <.0001
 StepF6 - StepF18   0.285306 0.039 Inf   7.312  <.0001
 StepF7 - StepF8    0.011325 0.039 Inf   0.290  1.0000
 StepF7 - StepF9   -0.056072 0.039 Inf  -1.437  0.9943
 StepF7 - StepF10   0.026450 0.039 Inf   0.678  1.0000
 StepF7 - StepF11  -0.007846 0.039 Inf  -0.201  1.0000
 StepF7 - StepF12   0.086372 0.039 Inf   2.213  0.7449
 StepF7 - StepF13   0.032748 0.039 Inf   0.839  1.0000
 StepF7 - StepF14   0.031171 0.039 Inf   0.799  1.0000
 StepF7 - StepF15  -0.005644 0.039 Inf  -0.145  1.0000
 StepF7 - StepF16   0.039500 0.039 Inf   1.012  0.9999
 StepF7 - StepF17   0.158377 0.039 Inf   4.059  0.0063
 StepF7 - StepF18   0.155729 0.039 Inf   3.991  0.0082
 StepF8 - StepF9   -0.067398 0.039 Inf  -1.727  0.9617
 StepF8 - StepF10   0.015125 0.039 Inf   0.388  1.0000
 StepF8 - StepF11  -0.019171 0.039 Inf  -0.491  1.0000
 StepF8 - StepF12   0.075047 0.039 Inf   1.923  0.9034
 StepF8 - StepF13   0.021422 0.039 Inf   0.549  1.0000
 StepF8 - StepF14   0.019846 0.039 Inf   0.509  1.0000
 StepF8 - StepF15  -0.016969 0.039 Inf  -0.435  1.0000
 StepF8 - StepF16   0.028175 0.039 Inf   0.722  1.0000
 StepF8 - StepF17   0.147052 0.039 Inf   3.768  0.0191
 StepF8 - StepF18   0.144403 0.039 Inf   3.701  0.0244
 StepF9 - StepF10   0.082522 0.039 Inf   2.115  0.8081
 StepF9 - StepF11   0.048227 0.039 Inf   1.236  0.9991
 StepF9 - StepF12   0.142444 0.039 Inf   3.650  0.0291
 StepF9 - StepF13   0.088820 0.039 Inf   2.276  0.7009
 StepF9 - StepF14   0.087243 0.039 Inf   2.236  0.7296
 StepF9 - StepF15   0.050428 0.039 Inf   1.292  0.9984
 StepF9 - StepF16   0.095573 0.039 Inf   2.449  0.5698
 StepF9 - StepF17   0.214449 0.039 Inf   5.496  <.0001
 StepF9 - StepF18   0.211801 0.039 Inf   5.428  <.0001
 StepF10 - StepF11 -0.034296 0.039 Inf  -0.879  1.0000
 StepF10 - StepF12  0.059922 0.039 Inf   1.536  0.9881
 StepF10 - StepF13  0.006298 0.039 Inf   0.161  1.0000
 StepF10 - StepF14  0.004721 0.039 Inf   0.121  1.0000
 StepF10 - StepF15 -0.032094 0.039 Inf  -0.822  1.0000
 StepF10 - StepF16  0.013050 0.039 Inf   0.334  1.0000
 StepF10 - StepF17  0.131927 0.039 Inf   3.381  0.0702
 StepF10 - StepF18  0.129279 0.039 Inf   3.313  0.0861
 StepF11 - StepF12  0.094218 0.039 Inf   2.415  0.5967
 StepF11 - StepF13  0.040593 0.039 Inf   1.040  0.9999
 StepF11 - StepF14  0.039017 0.039 Inf   1.000  0.9999
 StepF11 - StepF15  0.002202 0.039 Inf   0.056  1.0000
 StepF11 - StepF16  0.047346 0.039 Inf   1.213  0.9993
 StepF11 - StepF17  0.166223 0.039 Inf   4.260  0.0027
 StepF11 - StepF18  0.163574 0.039 Inf   4.192  0.0036
 StepF12 - StepF13 -0.053624 0.039 Inf  -1.374  0.9966
 StepF12 - StepF14 -0.055201 0.039 Inf  -1.415  0.9952
 StepF12 - StepF15 -0.092016 0.039 Inf  -2.358  0.6401
 StepF12 - StepF16 -0.046872 0.039 Inf  -1.201  0.9993
 StepF12 - StepF17  0.072005 0.039 Inf   1.845  0.9311
 StepF12 - StepF18  0.069356 0.039 Inf   1.777  0.9503
 StepF13 - StepF14 -0.001577 0.039 Inf  -0.040  1.0000
 StepF13 - StepF15 -0.038392 0.039 Inf  -0.984  1.0000
 StepF13 - StepF16  0.006753 0.039 Inf   0.173  1.0000
 StepF13 - StepF17  0.125629 0.039 Inf   3.219  0.1126
 StepF13 - StepF18  0.122981 0.039 Inf   3.152  0.1357
 StepF14 - StepF15 -0.036815 0.039 Inf  -0.943  1.0000
 StepF14 - StepF16  0.008329 0.039 Inf   0.213  1.0000
 StepF14 - StepF17  0.127206 0.039 Inf   3.260  0.1005
 StepF14 - StepF18  0.124557 0.039 Inf   3.192  0.1216
 StepF15 - StepF16  0.045144 0.039 Inf   1.157  0.9996
 StepF15 - StepF17  0.164021 0.039 Inf   4.203  0.0035
 StepF15 - StepF18  0.161373 0.039 Inf   4.135  0.0046
 StepF16 - StepF17  0.118877 0.039 Inf   3.046  0.1782
 StepF16 - StepF18  0.116228 0.039 Inf   2.979  0.2104
 StepF17 - StepF18 -0.002648 0.039 Inf  -0.068  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate    SE  df z.ratio p.value
 StepF2 - StepF1    0.10568 0.039 Inf   2.708  0.0947
 StepF3 - StepF2   -0.02921 0.039 Inf  -0.749  1.0000
 StepF4 - StepF3   -0.00781 0.039 Inf  -0.200  1.0000
 StepF5 - StepF4   -0.06281 0.039 Inf  -1.610  1.0000
 StepF6 - StepF5    0.11564 0.039 Inf   2.963  0.0456
 StepF7 - StepF6   -0.12958 0.039 Inf  -3.321  0.0153
 StepF8 - StepF7   -0.01133 0.039 Inf  -0.290  1.0000
 StepF9 - StepF8    0.06740 0.039 Inf   1.727  0.9255
 StepF10 - StepF9  -0.08252 0.039 Inf  -2.115  0.4134
 StepF11 - StepF10  0.03430 0.039 Inf   0.879  1.0000
 StepF12 - StepF11 -0.09422 0.039 Inf  -2.415  0.2048
 StepF13 - StepF12  0.05362 0.039 Inf   1.374  1.0000
 StepF14 - StepF13  0.00158 0.039 Inf   0.040  1.0000
 StepF15 - StepF14  0.03682 0.039 Inf   0.943  1.0000
 StepF16 - StepF15 -0.04514 0.039 Inf  -1.157  1.0000
 StepF17 - StepF16 -0.11888 0.039 Inf  -3.046  0.0371
 StepF18 - StepF17  0.00265 0.039 Inf   0.068  1.0000

Accuracy = 1:
 contrast          estimate    SE  df z.ratio p.value
 StepF2 - StepF1    0.10568 0.039 Inf   2.708  0.0947
 StepF3 - StepF2   -0.02921 0.039 Inf  -0.749  1.0000
 StepF4 - StepF3   -0.00781 0.039 Inf  -0.200  1.0000
 StepF5 - StepF4   -0.06281 0.039 Inf  -1.610  1.0000
 StepF6 - StepF5    0.11564 0.039 Inf   2.963  0.0456
 StepF7 - StepF6   -0.12958 0.039 Inf  -3.321  0.0153
 StepF8 - StepF7   -0.01133 0.039 Inf  -0.290  1.0000
 StepF9 - StepF8    0.06740 0.039 Inf   1.727  0.9255
 StepF10 - StepF9  -0.08252 0.039 Inf  -2.115  0.4134
 StepF11 - StepF10  0.03430 0.039 Inf   0.879  1.0000
 StepF12 - StepF11 -0.09422 0.039 Inf  -2.415  0.2048
 StepF13 - StepF12  0.05362 0.039 Inf   1.374  1.0000
 StepF14 - StepF13  0.00158 0.039 Inf   0.040  1.0000
 StepF15 - StepF14  0.03682 0.039 Inf   0.943  1.0000
 StepF16 - StepF15 -0.04514 0.039 Inf  -1.157  1.0000
 StepF17 - StepF16 -0.11888 0.039 Inf  -3.046  0.0371
 StepF18 - StepF17  0.00265 0.039 Inf   0.068  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST | Block 4 | 18 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    179.2988 17     <2e-16 ***
Accuracy   0.4899  1      0.484    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.773 0.0895 Inf     0.597     0.948
 2      0.918 0.0895 Inf     0.743     1.094
 3      0.886 0.0895 Inf     0.710     1.061
 4      0.744 0.0895 Inf     0.569     0.920
 5      0.779 0.0895 Inf     0.603     0.954
 6      0.864 0.0895 Inf     0.689     1.040
 7      0.767 0.0895 Inf     0.592     0.943
 8      0.689 0.0895 Inf     0.513     0.864
 9      0.738 0.0895 Inf     0.563     0.913
 10     0.794 0.0895 Inf     0.618     0.969
 11     0.695 0.0895 Inf     0.520     0.871
 12     0.622 0.0895 Inf     0.446     0.797
 13     0.684 0.0895 Inf     0.509     0.860
 14     0.652 0.0895 Inf     0.477     0.828
 15     0.700 0.0895 Inf     0.525     0.876
 16     0.660 0.0895 Inf     0.485     0.835
 17     0.627 0.0895 Inf     0.451     0.802
 18     0.562 0.0895 Inf     0.387     0.737

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.800 0.0860 Inf     0.632     0.969
 2      0.946 0.0860 Inf     0.777     1.114
 3      0.913 0.0860 Inf     0.745     1.082
 4      0.772 0.0860 Inf     0.603     0.941
 5      0.806 0.0860 Inf     0.637     0.975
 6      0.892 0.0860 Inf     0.723     1.060
 7      0.795 0.0860 Inf     0.626     0.963
 8      0.716 0.0860 Inf     0.548     0.885
 9      0.766 0.0860 Inf     0.597     0.934
 10     0.821 0.0860 Inf     0.652     0.990
 11     0.723 0.0860 Inf     0.554     0.891
 12     0.649 0.0860 Inf     0.481     0.818
 13     0.712 0.0860 Inf     0.543     0.880
 14     0.680 0.0860 Inf     0.511     0.849
 15     0.728 0.0860 Inf     0.559     0.896
 16     0.687 0.0860 Inf     0.519     0.856
 17     0.654 0.0860 Inf     0.486     0.823
 18     0.590 0.0860 Inf     0.421     0.758

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.14552 0.0416 Inf  -3.500  0.0482
 StepF1 - StepF3   -0.11317 0.0416 Inf  -2.722  0.3648
 StepF1 - StepF4    0.02810 0.0416 Inf   0.676  1.0000
 StepF1 - StepF5   -0.00596 0.0416 Inf  -0.143  1.0000
 StepF1 - StepF6   -0.09175 0.0416 Inf  -2.207  0.7494
 StepF1 - StepF7    0.00528 0.0416 Inf   0.127  1.0000
 StepF1 - StepF8    0.08397 0.0416 Inf   2.020  0.8602
 StepF1 - StepF9    0.03451 0.0416 Inf   0.830  1.0000
 StepF1 - StepF10  -0.02096 0.0416 Inf  -0.504  1.0000
 StepF1 - StepF11   0.07722 0.0416 Inf   1.857  0.9273
 StepF1 - StepF12   0.15090 0.0416 Inf   3.629  0.0313
 StepF1 - StepF13   0.08825 0.0416 Inf   2.123  0.8033
 StepF1 - StepF14   0.12014 0.0416 Inf   2.890  0.2581
 StepF1 - StepF15   0.07243 0.0416 Inf   1.742  0.9585
 StepF1 - StepF16   0.11264 0.0416 Inf   2.709  0.3737
 StepF1 - StepF17   0.14587 0.0416 Inf   3.509  0.0469
 StepF1 - StepF18   0.21053 0.0416 Inf   5.064  0.0001
 StepF2 - StepF3    0.03235 0.0416 Inf   0.778  1.0000
 StepF2 - StepF4    0.17362 0.0416 Inf   4.176  0.0039
 StepF2 - StepF5    0.13956 0.0416 Inf   3.357  0.0755
 StepF2 - StepF6    0.05376 0.0416 Inf   1.293  0.9984
 StepF2 - StepF7    0.15079 0.0416 Inf   3.627  0.0316
 StepF2 - StepF8    0.22949 0.0416 Inf   5.520  <.0001
 StepF2 - StepF9    0.18002 0.0416 Inf   4.330  0.0020
 StepF2 - StepF10   0.12456 0.0416 Inf   2.996  0.2019
 StepF2 - StepF11   0.22273 0.0416 Inf   5.357  <.0001
 StepF2 - StepF12   0.29641 0.0416 Inf   7.129  <.0001
 StepF2 - StepF13   0.23377 0.0416 Inf   5.623  <.0001
 StepF2 - StepF14   0.26566 0.0416 Inf   6.390  <.0001
 StepF2 - StepF15   0.21795 0.0416 Inf   5.242  <.0001
 StepF2 - StepF16   0.25816 0.0416 Inf   6.209  <.0001
 StepF2 - StepF17   0.29139 0.0416 Inf   7.008  <.0001
 StepF2 - StepF18   0.35604 0.0416 Inf   8.564  <.0001
 StepF3 - StepF4    0.14127 0.0416 Inf   3.398  0.0666
 StepF3 - StepF5    0.10721 0.0416 Inf   2.579  0.4695
 StepF3 - StepF6    0.02142 0.0416 Inf   0.515  1.0000
 StepF3 - StepF7    0.11845 0.0416 Inf   2.849  0.2821
 StepF3 - StepF8    0.19714 0.0416 Inf   4.742  0.0003
 StepF3 - StepF9    0.14768 0.0416 Inf   3.552  0.0406
 StepF3 - StepF10   0.09221 0.0416 Inf   2.218  0.7419
 StepF3 - StepF11   0.19039 0.0416 Inf   4.579  0.0007
 StepF3 - StepF12   0.26407 0.0416 Inf   6.351  <.0001
 StepF3 - StepF13   0.20142 0.0416 Inf   4.845  0.0002
 StepF3 - StepF14   0.23331 0.0416 Inf   5.612  <.0001
 StepF3 - StepF15   0.18560 0.0416 Inf   4.464  0.0011
 StepF3 - StepF16   0.22581 0.0416 Inf   5.431  <.0001
 StepF3 - StepF17   0.25904 0.0416 Inf   6.230  <.0001
 StepF3 - StepF18   0.32370 0.0416 Inf   7.786  <.0001
 StepF4 - StepF5   -0.03406 0.0416 Inf  -0.819  1.0000
 StepF4 - StepF6   -0.11985 0.0416 Inf  -2.883  0.2622
 StepF4 - StepF7   -0.02282 0.0416 Inf  -0.549  1.0000
 StepF4 - StepF8    0.05587 0.0416 Inf   1.344  0.9974
 StepF4 - StepF9    0.00641 0.0416 Inf   0.154  1.0000
 StepF4 - StepF10  -0.04906 0.0416 Inf  -1.180  0.9995
 StepF4 - StepF11   0.04912 0.0416 Inf   1.181  0.9995
 StepF4 - StepF12   0.12280 0.0416 Inf   2.954  0.2232
 StepF4 - StepF13   0.06015 0.0416 Inf   1.447  0.9938
 StepF4 - StepF14   0.09204 0.0416 Inf   2.214  0.7447
 StepF4 - StepF15   0.04433 0.0416 Inf   1.066  0.9999
 StepF4 - StepF16   0.08454 0.0416 Inf   2.033  0.8533
 StepF4 - StepF17   0.11777 0.0416 Inf   2.833  0.2921
 StepF4 - StepF18   0.18243 0.0416 Inf   4.388  0.0016
 StepF5 - StepF6   -0.08580 0.0416 Inf  -2.064  0.8373
 StepF5 - StepF7    0.01124 0.0416 Inf   0.270  1.0000
 StepF5 - StepF8    0.08993 0.0416 Inf   2.163  0.7783
 StepF5 - StepF9    0.04046 0.0416 Inf   0.973  1.0000
 StepF5 - StepF10  -0.01500 0.0416 Inf  -0.361  1.0000
 StepF5 - StepF11   0.08317 0.0416 Inf   2.000  0.8696
 StepF5 - StepF12   0.15686 0.0416 Inf   3.773  0.0188
 StepF5 - StepF13   0.09421 0.0416 Inf   2.266  0.7083
 StepF5 - StepF14   0.12610 0.0416 Inf   3.033  0.1843
 StepF5 - StepF15   0.07839 0.0416 Inf   1.885  0.9176
 StepF5 - StepF16   0.11860 0.0416 Inf   2.852  0.2800
 StepF5 - StepF17   0.15183 0.0416 Inf   3.652  0.0290
 StepF5 - StepF18   0.21648 0.0416 Inf   5.207  <.0001
 StepF6 - StepF7    0.09703 0.0416 Inf   2.334  0.6584
 StepF6 - StepF8    0.17573 0.0416 Inf   4.227  0.0032
 StepF6 - StepF9    0.12626 0.0416 Inf   3.037  0.1826
 StepF6 - StepF10   0.07079 0.0416 Inf   1.703  0.9665
 StepF6 - StepF11   0.16897 0.0416 Inf   4.064  0.0062
 StepF6 - StepF12   0.24265 0.0416 Inf   5.836  <.0001
 StepF6 - StepF13   0.18001 0.0416 Inf   4.330  0.0020
 StepF6 - StepF14   0.21190 0.0416 Inf   5.097  0.0001
 StepF6 - StepF15   0.16419 0.0416 Inf   3.949  0.0097
 StepF6 - StepF16   0.20439 0.0416 Inf   4.916  0.0001
 StepF6 - StepF17   0.23763 0.0416 Inf   5.715  <.0001
 StepF6 - StepF18   0.30228 0.0416 Inf   7.270  <.0001
 StepF7 - StepF8    0.07869 0.0416 Inf   1.893  0.9150
 StepF7 - StepF9    0.02923 0.0416 Inf   0.703  1.0000
 StepF7 - StepF10  -0.02624 0.0416 Inf  -0.631  1.0000
 StepF7 - StepF11   0.07194 0.0416 Inf   1.730  0.9610
 StepF7 - StepF12   0.14562 0.0416 Inf   3.502  0.0478
 StepF7 - StepF13   0.08298 0.0416 Inf   1.996  0.8719
 StepF7 - StepF14   0.11487 0.0416 Inf   2.763  0.3370
 StepF7 - StepF15   0.06716 0.0416 Inf   1.615  0.9800
 StepF7 - StepF16   0.10736 0.0416 Inf   2.582  0.4668
 StepF7 - StepF17   0.14059 0.0416 Inf   3.382  0.0700
 StepF7 - StepF18   0.20525 0.0416 Inf   4.937  0.0001
 StepF8 - StepF9   -0.04947 0.0416 Inf  -1.190  0.9994
 StepF8 - StepF10  -0.10493 0.0416 Inf  -2.524  0.5117
 StepF8 - StepF11  -0.00676 0.0416 Inf  -0.162  1.0000
 StepF8 - StepF12   0.06693 0.0416 Inf   1.610  0.9807
 StepF8 - StepF13   0.00428 0.0416 Inf   0.103  1.0000
 StepF8 - StepF14   0.03617 0.0416 Inf   0.870  1.0000
 StepF8 - StepF15  -0.01154 0.0416 Inf  -0.278  1.0000
 StepF8 - StepF16   0.02867 0.0416 Inf   0.690  1.0000
 StepF8 - StepF17   0.06190 0.0416 Inf   1.489  0.9915
 StepF8 - StepF18   0.12656 0.0416 Inf   3.044  0.1794
 StepF9 - StepF10  -0.05547 0.0416 Inf  -1.334  0.9976
 StepF9 - StepF11   0.04271 0.0416 Inf   1.027  0.9999
 StepF9 - StepF12   0.11639 0.0416 Inf   2.799  0.3130
 StepF9 - StepF13   0.05375 0.0416 Inf   1.293  0.9984
 StepF9 - StepF14   0.08564 0.0416 Inf   2.060  0.8393
 StepF9 - StepF15   0.03793 0.0416 Inf   0.912  1.0000
 StepF9 - StepF16   0.07813 0.0416 Inf   1.879  0.9198
 StepF9 - StepF17   0.11137 0.0416 Inf   2.679  0.3954
 StepF9 - StepF18   0.17602 0.0416 Inf   4.234  0.0031
 StepF10 - StepF11  0.09818 0.0416 Inf   2.361  0.6376
 StepF10 - StepF12  0.17186 0.0416 Inf   4.134  0.0046
 StepF10 - StepF13  0.10921 0.0416 Inf   2.627  0.4333
 StepF10 - StepF14  0.14110 0.0416 Inf   3.394  0.0674
 StepF10 - StepF15  0.09339 0.0416 Inf   2.246  0.7222
 StepF10 - StepF16  0.13360 0.0416 Inf   3.213  0.1146
 StepF10 - StepF17  0.16683 0.0416 Inf   4.013  0.0076
 StepF10 - StepF18  0.23149 0.0416 Inf   5.568  <.0001
 StepF11 - StepF12  0.07368 0.0416 Inf   1.772  0.9515
 StepF11 - StepF13  0.01104 0.0416 Inf   0.265  1.0000
 StepF11 - StepF14  0.04293 0.0416 Inf   1.032  0.9999
 StepF11 - StepF15 -0.00478 0.0416 Inf  -0.115  1.0000
 StepF11 - StepF16  0.03542 0.0416 Inf   0.852  1.0000
 StepF11 - StepF17  0.06865 0.0416 Inf   1.651  0.9751
 StepF11 - StepF18  0.13331 0.0416 Inf   3.206  0.1168
 StepF12 - StepF13 -0.06265 0.0416 Inf  -1.507  0.9903
 StepF12 - StepF14 -0.03076 0.0416 Inf  -0.740  1.0000
 StepF12 - StepF15 -0.07846 0.0416 Inf  -1.887  0.9170
 StepF12 - StepF16 -0.03826 0.0416 Inf  -0.920  1.0000
 StepF12 - StepF17 -0.00503 0.0416 Inf  -0.121  1.0000
 StepF12 - StepF18  0.05963 0.0416 Inf   1.434  0.9944
 StepF13 - StepF14  0.03189 0.0416 Inf   0.767  1.0000
 StepF13 - StepF15 -0.01582 0.0416 Inf  -0.380  1.0000
 StepF13 - StepF16  0.02439 0.0416 Inf   0.587  1.0000
 StepF13 - StepF17  0.05762 0.0416 Inf   1.386  0.9962
 StepF13 - StepF18  0.12227 0.0416 Inf   2.941  0.2298
 StepF14 - StepF15 -0.04771 0.0416 Inf  -1.148  0.9996
 StepF14 - StepF16 -0.00750 0.0416 Inf  -0.180  1.0000
 StepF14 - StepF17  0.02573 0.0416 Inf   0.619  1.0000
 StepF14 - StepF18  0.09038 0.0416 Inf   2.174  0.7712
 StepF15 - StepF16  0.04021 0.0416 Inf   0.967  1.0000
 StepF15 - StepF17  0.07344 0.0416 Inf   1.766  0.9530
 StepF15 - StepF18  0.13809 0.0416 Inf   3.321  0.0839
 StepF16 - StepF17  0.03323 0.0416 Inf   0.799  1.0000
 StepF16 - StepF18  0.09789 0.0416 Inf   2.354  0.6429
 StepF17 - StepF18  0.06466 0.0416 Inf   1.555  0.9865

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.14552 0.0416 Inf  -3.500  0.0482
 StepF1 - StepF3   -0.11317 0.0416 Inf  -2.722  0.3648
 StepF1 - StepF4    0.02810 0.0416 Inf   0.676  1.0000
 StepF1 - StepF5   -0.00596 0.0416 Inf  -0.143  1.0000
 StepF1 - StepF6   -0.09175 0.0416 Inf  -2.207  0.7494
 StepF1 - StepF7    0.00528 0.0416 Inf   0.127  1.0000
 StepF1 - StepF8    0.08397 0.0416 Inf   2.020  0.8602
 StepF1 - StepF9    0.03451 0.0416 Inf   0.830  1.0000
 StepF1 - StepF10  -0.02096 0.0416 Inf  -0.504  1.0000
 StepF1 - StepF11   0.07722 0.0416 Inf   1.857  0.9273
 StepF1 - StepF12   0.15090 0.0416 Inf   3.629  0.0313
 StepF1 - StepF13   0.08825 0.0416 Inf   2.123  0.8033
 StepF1 - StepF14   0.12014 0.0416 Inf   2.890  0.2581
 StepF1 - StepF15   0.07243 0.0416 Inf   1.742  0.9585
 StepF1 - StepF16   0.11264 0.0416 Inf   2.709  0.3737
 StepF1 - StepF17   0.14587 0.0416 Inf   3.509  0.0469
 StepF1 - StepF18   0.21053 0.0416 Inf   5.064  0.0001
 StepF2 - StepF3    0.03235 0.0416 Inf   0.778  1.0000
 StepF2 - StepF4    0.17362 0.0416 Inf   4.176  0.0039
 StepF2 - StepF5    0.13956 0.0416 Inf   3.357  0.0755
 StepF2 - StepF6    0.05376 0.0416 Inf   1.293  0.9984
 StepF2 - StepF7    0.15079 0.0416 Inf   3.627  0.0316
 StepF2 - StepF8    0.22949 0.0416 Inf   5.520  <.0001
 StepF2 - StepF9    0.18002 0.0416 Inf   4.330  0.0020
 StepF2 - StepF10   0.12456 0.0416 Inf   2.996  0.2019
 StepF2 - StepF11   0.22273 0.0416 Inf   5.357  <.0001
 StepF2 - StepF12   0.29641 0.0416 Inf   7.129  <.0001
 StepF2 - StepF13   0.23377 0.0416 Inf   5.623  <.0001
 StepF2 - StepF14   0.26566 0.0416 Inf   6.390  <.0001
 StepF2 - StepF15   0.21795 0.0416 Inf   5.242  <.0001
 StepF2 - StepF16   0.25816 0.0416 Inf   6.209  <.0001
 StepF2 - StepF17   0.29139 0.0416 Inf   7.008  <.0001
 StepF2 - StepF18   0.35604 0.0416 Inf   8.564  <.0001
 StepF3 - StepF4    0.14127 0.0416 Inf   3.398  0.0666
 StepF3 - StepF5    0.10721 0.0416 Inf   2.579  0.4695
 StepF3 - StepF6    0.02142 0.0416 Inf   0.515  1.0000
 StepF3 - StepF7    0.11845 0.0416 Inf   2.849  0.2821
 StepF3 - StepF8    0.19714 0.0416 Inf   4.742  0.0003
 StepF3 - StepF9    0.14768 0.0416 Inf   3.552  0.0406
 StepF3 - StepF10   0.09221 0.0416 Inf   2.218  0.7419
 StepF3 - StepF11   0.19039 0.0416 Inf   4.579  0.0007
 StepF3 - StepF12   0.26407 0.0416 Inf   6.351  <.0001
 StepF3 - StepF13   0.20142 0.0416 Inf   4.845  0.0002
 StepF3 - StepF14   0.23331 0.0416 Inf   5.612  <.0001
 StepF3 - StepF15   0.18560 0.0416 Inf   4.464  0.0011
 StepF3 - StepF16   0.22581 0.0416 Inf   5.431  <.0001
 StepF3 - StepF17   0.25904 0.0416 Inf   6.230  <.0001
 StepF3 - StepF18   0.32370 0.0416 Inf   7.786  <.0001
 StepF4 - StepF5   -0.03406 0.0416 Inf  -0.819  1.0000
 StepF4 - StepF6   -0.11985 0.0416 Inf  -2.883  0.2622
 StepF4 - StepF7   -0.02282 0.0416 Inf  -0.549  1.0000
 StepF4 - StepF8    0.05587 0.0416 Inf   1.344  0.9974
 StepF4 - StepF9    0.00641 0.0416 Inf   0.154  1.0000
 StepF4 - StepF10  -0.04906 0.0416 Inf  -1.180  0.9995
 StepF4 - StepF11   0.04912 0.0416 Inf   1.181  0.9995
 StepF4 - StepF12   0.12280 0.0416 Inf   2.954  0.2232
 StepF4 - StepF13   0.06015 0.0416 Inf   1.447  0.9938
 StepF4 - StepF14   0.09204 0.0416 Inf   2.214  0.7447
 StepF4 - StepF15   0.04433 0.0416 Inf   1.066  0.9999
 StepF4 - StepF16   0.08454 0.0416 Inf   2.033  0.8533
 StepF4 - StepF17   0.11777 0.0416 Inf   2.833  0.2921
 StepF4 - StepF18   0.18243 0.0416 Inf   4.388  0.0016
 StepF5 - StepF6   -0.08580 0.0416 Inf  -2.064  0.8373
 StepF5 - StepF7    0.01124 0.0416 Inf   0.270  1.0000
 StepF5 - StepF8    0.08993 0.0416 Inf   2.163  0.7783
 StepF5 - StepF9    0.04046 0.0416 Inf   0.973  1.0000
 StepF5 - StepF10  -0.01500 0.0416 Inf  -0.361  1.0000
 StepF5 - StepF11   0.08317 0.0416 Inf   2.000  0.8696
 StepF5 - StepF12   0.15686 0.0416 Inf   3.773  0.0188
 StepF5 - StepF13   0.09421 0.0416 Inf   2.266  0.7083
 StepF5 - StepF14   0.12610 0.0416 Inf   3.033  0.1843
 StepF5 - StepF15   0.07839 0.0416 Inf   1.885  0.9176
 StepF5 - StepF16   0.11860 0.0416 Inf   2.852  0.2800
 StepF5 - StepF17   0.15183 0.0416 Inf   3.652  0.0290
 StepF5 - StepF18   0.21648 0.0416 Inf   5.207  <.0001
 StepF6 - StepF7    0.09703 0.0416 Inf   2.334  0.6584
 StepF6 - StepF8    0.17573 0.0416 Inf   4.227  0.0032
 StepF6 - StepF9    0.12626 0.0416 Inf   3.037  0.1826
 StepF6 - StepF10   0.07079 0.0416 Inf   1.703  0.9665
 StepF6 - StepF11   0.16897 0.0416 Inf   4.064  0.0062
 StepF6 - StepF12   0.24265 0.0416 Inf   5.836  <.0001
 StepF6 - StepF13   0.18001 0.0416 Inf   4.330  0.0020
 StepF6 - StepF14   0.21190 0.0416 Inf   5.097  0.0001
 StepF6 - StepF15   0.16419 0.0416 Inf   3.949  0.0097
 StepF6 - StepF16   0.20439 0.0416 Inf   4.916  0.0001
 StepF6 - StepF17   0.23763 0.0416 Inf   5.715  <.0001
 StepF6 - StepF18   0.30228 0.0416 Inf   7.270  <.0001
 StepF7 - StepF8    0.07869 0.0416 Inf   1.893  0.9150
 StepF7 - StepF9    0.02923 0.0416 Inf   0.703  1.0000
 StepF7 - StepF10  -0.02624 0.0416 Inf  -0.631  1.0000
 StepF7 - StepF11   0.07194 0.0416 Inf   1.730  0.9610
 StepF7 - StepF12   0.14562 0.0416 Inf   3.502  0.0478
 StepF7 - StepF13   0.08298 0.0416 Inf   1.996  0.8719
 StepF7 - StepF14   0.11487 0.0416 Inf   2.763  0.3370
 StepF7 - StepF15   0.06716 0.0416 Inf   1.615  0.9800
 StepF7 - StepF16   0.10736 0.0416 Inf   2.582  0.4668
 StepF7 - StepF17   0.14059 0.0416 Inf   3.382  0.0700
 StepF7 - StepF18   0.20525 0.0416 Inf   4.937  0.0001
 StepF8 - StepF9   -0.04947 0.0416 Inf  -1.190  0.9994
 StepF8 - StepF10  -0.10493 0.0416 Inf  -2.524  0.5117
 StepF8 - StepF11  -0.00676 0.0416 Inf  -0.162  1.0000
 StepF8 - StepF12   0.06693 0.0416 Inf   1.610  0.9807
 StepF8 - StepF13   0.00428 0.0416 Inf   0.103  1.0000
 StepF8 - StepF14   0.03617 0.0416 Inf   0.870  1.0000
 StepF8 - StepF15  -0.01154 0.0416 Inf  -0.278  1.0000
 StepF8 - StepF16   0.02867 0.0416 Inf   0.690  1.0000
 StepF8 - StepF17   0.06190 0.0416 Inf   1.489  0.9915
 StepF8 - StepF18   0.12656 0.0416 Inf   3.044  0.1794
 StepF9 - StepF10  -0.05547 0.0416 Inf  -1.334  0.9976
 StepF9 - StepF11   0.04271 0.0416 Inf   1.027  0.9999
 StepF9 - StepF12   0.11639 0.0416 Inf   2.799  0.3130
 StepF9 - StepF13   0.05375 0.0416 Inf   1.293  0.9984
 StepF9 - StepF14   0.08564 0.0416 Inf   2.060  0.8393
 StepF9 - StepF15   0.03793 0.0416 Inf   0.912  1.0000
 StepF9 - StepF16   0.07813 0.0416 Inf   1.879  0.9198
 StepF9 - StepF17   0.11137 0.0416 Inf   2.679  0.3954
 StepF9 - StepF18   0.17602 0.0416 Inf   4.234  0.0031
 StepF10 - StepF11  0.09818 0.0416 Inf   2.361  0.6376
 StepF10 - StepF12  0.17186 0.0416 Inf   4.134  0.0046
 StepF10 - StepF13  0.10921 0.0416 Inf   2.627  0.4333
 StepF10 - StepF14  0.14110 0.0416 Inf   3.394  0.0674
 StepF10 - StepF15  0.09339 0.0416 Inf   2.246  0.7222
 StepF10 - StepF16  0.13360 0.0416 Inf   3.213  0.1146
 StepF10 - StepF17  0.16683 0.0416 Inf   4.013  0.0076
 StepF10 - StepF18  0.23149 0.0416 Inf   5.568  <.0001
 StepF11 - StepF12  0.07368 0.0416 Inf   1.772  0.9515
 StepF11 - StepF13  0.01104 0.0416 Inf   0.265  1.0000
 StepF11 - StepF14  0.04293 0.0416 Inf   1.032  0.9999
 StepF11 - StepF15 -0.00478 0.0416 Inf  -0.115  1.0000
 StepF11 - StepF16  0.03542 0.0416 Inf   0.852  1.0000
 StepF11 - StepF17  0.06865 0.0416 Inf   1.651  0.9751
 StepF11 - StepF18  0.13331 0.0416 Inf   3.206  0.1168
 StepF12 - StepF13 -0.06265 0.0416 Inf  -1.507  0.9903
 StepF12 - StepF14 -0.03076 0.0416 Inf  -0.740  1.0000
 StepF12 - StepF15 -0.07846 0.0416 Inf  -1.887  0.9170
 StepF12 - StepF16 -0.03826 0.0416 Inf  -0.920  1.0000
 StepF12 - StepF17 -0.00503 0.0416 Inf  -0.121  1.0000
 StepF12 - StepF18  0.05963 0.0416 Inf   1.434  0.9944
 StepF13 - StepF14  0.03189 0.0416 Inf   0.767  1.0000
 StepF13 - StepF15 -0.01582 0.0416 Inf  -0.380  1.0000
 StepF13 - StepF16  0.02439 0.0416 Inf   0.587  1.0000
 StepF13 - StepF17  0.05762 0.0416 Inf   1.386  0.9962
 StepF13 - StepF18  0.12227 0.0416 Inf   2.941  0.2298
 StepF14 - StepF15 -0.04771 0.0416 Inf  -1.148  0.9996
 StepF14 - StepF16 -0.00750 0.0416 Inf  -0.180  1.0000
 StepF14 - StepF17  0.02573 0.0416 Inf   0.619  1.0000
 StepF14 - StepF18  0.09038 0.0416 Inf   2.174  0.7712
 StepF15 - StepF16  0.04021 0.0416 Inf   0.967  1.0000
 StepF15 - StepF17  0.07344 0.0416 Inf   1.766  0.9530
 StepF15 - StepF18  0.13809 0.0416 Inf   3.321  0.0839
 StepF16 - StepF17  0.03323 0.0416 Inf   0.799  1.0000
 StepF16 - StepF18  0.09789 0.0416 Inf   2.354  0.6429
 StepF17 - StepF18  0.06466 0.0416 Inf   1.555  0.9865

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.1455 0.0416 Inf   3.500  0.0079
 StepF3 - StepF2    -0.0323 0.0416 Inf  -0.778  1.0000
 StepF4 - StepF3    -0.1413 0.0416 Inf  -3.398  0.0109
 StepF5 - StepF4     0.0341 0.0416 Inf   0.819  1.0000
 StepF6 - StepF5     0.0858 0.0416 Inf   2.064  0.5077
 StepF7 - StepF6    -0.0970 0.0416 Inf  -2.334  0.2745
 StepF8 - StepF7    -0.0787 0.0416 Inf  -1.893  0.7007
 StepF9 - StepF8     0.0495 0.0416 Inf   1.190  1.0000
 StepF10 - StepF9    0.0555 0.0416 Inf   1.334  1.0000
 StepF11 - StepF10  -0.0982 0.0416 Inf  -2.361  0.2731
 StepF12 - StepF11  -0.0737 0.0416 Inf  -1.772  0.8400
 StepF13 - StepF12   0.0626 0.0416 Inf   1.507  1.0000
 StepF14 - StepF13  -0.0319 0.0416 Inf  -0.767  1.0000
 StepF15 - StepF14   0.0477 0.0416 Inf   1.148  1.0000
 StepF16 - StepF15  -0.0402 0.0416 Inf  -0.967  1.0000
 StepF17 - StepF16  -0.0332 0.0416 Inf  -0.799  1.0000
 StepF18 - StepF17  -0.0647 0.0416 Inf  -1.555  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.1455 0.0416 Inf   3.500  0.0079
 StepF3 - StepF2    -0.0323 0.0416 Inf  -0.778  1.0000
 StepF4 - StepF3    -0.1413 0.0416 Inf  -3.398  0.0109
 StepF5 - StepF4     0.0341 0.0416 Inf   0.819  1.0000
 StepF6 - StepF5     0.0858 0.0416 Inf   2.064  0.5077
 StepF7 - StepF6    -0.0970 0.0416 Inf  -2.334  0.2745
 StepF8 - StepF7    -0.0787 0.0416 Inf  -1.893  0.7007
 StepF9 - StepF8     0.0495 0.0416 Inf   1.190  1.0000
 StepF10 - StepF9    0.0555 0.0416 Inf   1.334  1.0000
 StepF11 - StepF10  -0.0982 0.0416 Inf  -2.361  0.2731
 StepF12 - StepF11  -0.0737 0.0416 Inf  -1.772  0.8400
 StepF13 - StepF12   0.0626 0.0416 Inf   1.507  1.0000
 StepF14 - StepF13  -0.0319 0.0416 Inf  -0.767  1.0000
 StepF15 - StepF14   0.0477 0.0416 Inf   1.148  1.0000
 StepF16 - StepF15  -0.0402 0.0416 Inf  -0.967  1.0000
 StepF17 - StepF16  -0.0332 0.0416 Inf  -0.799  1.0000
 StepF18 - StepF17  -0.0647 0.0416 Inf  -1.555  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST | Block 4 | 18 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    199.940 17     <2e-16 ***
Accuracy   0.659  1     0.4169    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      1.573 0.164 Inf     1.252      1.89
 2      1.743 0.164 Inf     1.423      2.06
 3      1.674 0.164 Inf     1.353      1.99
 4      1.559 0.164 Inf     1.239      1.88
 5      1.455 0.164 Inf     1.134      1.78
 6      1.535 0.164 Inf     1.214      1.86
 7      1.458 0.164 Inf     1.138      1.78
 8      1.486 0.164 Inf     1.166      1.81
 9      1.435 0.164 Inf     1.115      1.76
 10     1.482 0.164 Inf     1.161      1.80
 11     1.495 0.164 Inf     1.174      1.82
 12     1.293 0.164 Inf     0.972      1.61
 13     1.341 0.164 Inf     1.020      1.66
 14     1.434 0.164 Inf     1.113      1.75
 15     1.430 0.164 Inf     1.110      1.75
 16     1.204 0.164 Inf     0.884      1.52
 17     1.195 0.164 Inf     0.875      1.52
 18     0.973 0.164 Inf     0.652      1.29

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      1.635 0.156 Inf     1.328      1.94
 2      1.805 0.156 Inf     1.499      2.11
 3      1.736 0.156 Inf     1.429      2.04
 4      1.621 0.156 Inf     1.315      1.93
 5      1.517 0.156 Inf     1.210      1.82
 6      1.597 0.156 Inf     1.290      1.90
 7      1.520 0.156 Inf     1.214      1.83
 8      1.548 0.156 Inf     1.242      1.85
 9      1.497 0.156 Inf     1.191      1.80
 10     1.544 0.156 Inf     1.237      1.85
 11     1.557 0.156 Inf     1.251      1.86
 12     1.355 0.156 Inf     1.048      1.66
 13     1.403 0.156 Inf     1.096      1.71
 14     1.496 0.156 Inf     1.189      1.80
 15     1.492 0.156 Inf     1.186      1.80
 16     1.266 0.156 Inf     0.960      1.57
 17     1.257 0.156 Inf     0.951      1.56
 18     1.035 0.156 Inf     0.728      1.34

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.17053 0.0748 Inf  -2.281  0.6977
 StepF1 - StepF3   -0.10093 0.0748 Inf  -1.350  0.9972
 StepF1 - StepF4    0.01334 0.0748 Inf   0.178  1.0000
 StepF1 - StepF5    0.11815 0.0748 Inf   1.580  0.9840
 StepF1 - StepF6    0.03815 0.0748 Inf   0.510  1.0000
 StepF1 - StepF7    0.11434 0.0748 Inf   1.529  0.9887
 StepF1 - StepF8    0.08646 0.0748 Inf   1.156  0.9996
 StepF1 - StepF9    0.13733 0.0748 Inf   1.837  0.9338
 StepF1 - StepF10   0.09098 0.0748 Inf   1.217  0.9992
 StepF1 - StepF11   0.07779 0.0748 Inf   1.040  0.9999
 StepF1 - StepF12   0.28019 0.0748 Inf   3.747  0.0207
 StepF1 - StepF13   0.23191 0.0748 Inf   3.101  0.1549
 StepF1 - StepF14   0.13888 0.0748 Inf   1.857  0.9272
 StepF1 - StepF15   0.14275 0.0748 Inf   1.909  0.9090
 StepF1 - StepF16   0.36866 0.0748 Inf   4.930  0.0001
 StepF1 - StepF17   0.37735 0.0748 Inf   5.046  0.0001
 StepF1 - StepF18   0.59990 0.0748 Inf   8.023  <.0001
 StepF2 - StepF3    0.06961 0.0748 Inf   0.931  1.0000
 StepF2 - StepF4    0.18387 0.0748 Inf   2.459  0.5622
 StepF2 - StepF5    0.28868 0.0748 Inf   3.861  0.0136
 StepF2 - StepF6    0.20868 0.0748 Inf   2.791  0.3186
 StepF2 - StepF7    0.28487 0.0748 Inf   3.810  0.0165
 StepF2 - StepF8    0.25700 0.0748 Inf   3.437  0.0590
 StepF2 - StepF9    0.30786 0.0748 Inf   4.117  0.0050
 StepF2 - StepF10   0.26151 0.0748 Inf   3.497  0.0486
 StepF2 - StepF11   0.24832 0.0748 Inf   3.321  0.0841
 StepF2 - StepF12   0.45072 0.0748 Inf   6.028  <.0001
 StepF2 - StepF13   0.40244 0.0748 Inf   5.382  <.0001
 StepF2 - StepF14   0.30942 0.0748 Inf   4.138  0.0046
 StepF2 - StepF15   0.31328 0.0748 Inf   4.190  0.0037
 StepF2 - StepF16   0.53919 0.0748 Inf   7.211  <.0001
 StepF2 - StepF17   0.54788 0.0748 Inf   7.327  <.0001
 StepF2 - StepF18   0.77043 0.0748 Inf  10.303  <.0001
 StepF3 - StepF4    0.11427 0.0748 Inf   1.528  0.9887
 StepF3 - StepF5    0.21907 0.0748 Inf   2.930  0.2358
 StepF3 - StepF6    0.13908 0.0748 Inf   1.860  0.9264
 StepF3 - StepF7    0.21527 0.0748 Inf   2.879  0.2644
 StepF3 - StepF8    0.18739 0.0748 Inf   2.506  0.5255
 StepF3 - StepF9    0.23826 0.0748 Inf   3.186  0.1235
 StepF3 - StepF10   0.19190 0.0748 Inf   2.566  0.4790
 StepF3 - StepF11   0.17872 0.0748 Inf   2.390  0.6156
 StepF3 - StepF12   0.38111 0.0748 Inf   5.097  0.0001
 StepF3 - StepF13   0.33284 0.0748 Inf   4.451  0.0012
 StepF3 - StepF14   0.23981 0.0748 Inf   3.207  0.1166
 StepF3 - StepF15   0.24367 0.0748 Inf   3.259  0.1008
 StepF3 - StepF16   0.46959 0.0748 Inf   6.280  <.0001
 StepF3 - StepF17   0.47827 0.0748 Inf   6.396  <.0001
 StepF3 - StepF18   0.70083 0.0748 Inf   9.372  <.0001
 StepF4 - StepF5    0.10481 0.0748 Inf   1.402  0.9957
 StepF4 - StepF6    0.02481 0.0748 Inf   0.332  1.0000
 StepF4 - StepF7    0.10100 0.0748 Inf   1.351  0.9972
 StepF4 - StepF8    0.07312 0.0748 Inf   0.978  1.0000
 StepF4 - StepF9    0.12399 0.0748 Inf   1.658  0.9740
 StepF4 - StepF10   0.07764 0.0748 Inf   1.038  0.9999
 StepF4 - StepF11   0.06445 0.0748 Inf   0.862  1.0000
 StepF4 - StepF12   0.26684 0.0748 Inf   3.569  0.0384
 StepF4 - StepF13   0.21857 0.0748 Inf   2.923  0.2395
 StepF4 - StepF14   0.12554 0.0748 Inf   1.679  0.9707
 StepF4 - StepF15   0.12940 0.0748 Inf   1.731  0.9610
 StepF4 - StepF16   0.35532 0.0748 Inf   4.752  0.0003
 StepF4 - StepF17   0.36401 0.0748 Inf   4.868  0.0002
 StepF4 - StepF18   0.58656 0.0748 Inf   7.844  <.0001
 StepF5 - StepF6   -0.08000 0.0748 Inf  -1.070  0.9999
 StepF5 - StepF7   -0.00381 0.0748 Inf  -0.051  1.0000
 StepF5 - StepF8   -0.03168 0.0748 Inf  -0.424  1.0000
 StepF5 - StepF9    0.01918 0.0748 Inf   0.257  1.0000
 StepF5 - StepF10  -0.02717 0.0748 Inf  -0.363  1.0000
 StepF5 - StepF11  -0.04036 0.0748 Inf  -0.540  1.0000
 StepF5 - StepF12   0.16204 0.0748 Inf   2.167  0.7757
 StepF5 - StepF13   0.11376 0.0748 Inf   1.521  0.9893
 StepF5 - StepF14   0.02074 0.0748 Inf   0.277  1.0000
 StepF5 - StepF15   0.02460 0.0748 Inf   0.329  1.0000
 StepF5 - StepF16   0.25051 0.0748 Inf   3.350  0.0770
 StepF5 - StepF17   0.25920 0.0748 Inf   3.466  0.0537
 StepF5 - StepF18   0.48176 0.0748 Inf   6.443  <.0001
 StepF6 - StepF7    0.07619 0.0748 Inf   1.019  0.9999
 StepF6 - StepF8    0.04831 0.0748 Inf   0.646  1.0000
 StepF6 - StepF9    0.09918 0.0748 Inf   1.326  0.9978
 StepF6 - StepF10   0.05283 0.0748 Inf   0.706  1.0000
 StepF6 - StepF11   0.03964 0.0748 Inf   0.530  1.0000
 StepF6 - StepF12   0.24204 0.0748 Inf   3.237  0.1073
 StepF6 - StepF13   0.19376 0.0748 Inf   2.591  0.4600
 StepF6 - StepF14   0.10073 0.0748 Inf   1.347  0.9973
 StepF6 - StepF15   0.10460 0.0748 Inf   1.399  0.9958
 StepF6 - StepF16   0.33051 0.0748 Inf   4.420  0.0014
 StepF6 - StepF17   0.33920 0.0748 Inf   4.536  0.0008
 StepF6 - StepF18   0.56175 0.0748 Inf   7.512  <.0001
 StepF7 - StepF8   -0.02788 0.0748 Inf  -0.373  1.0000
 StepF7 - StepF9    0.02299 0.0748 Inf   0.307  1.0000
 StepF7 - StepF10  -0.02336 0.0748 Inf  -0.312  1.0000
 StepF7 - StepF11  -0.03655 0.0748 Inf  -0.489  1.0000
 StepF7 - StepF12   0.16585 0.0748 Inf   2.218  0.7419
 StepF7 - StepF13   0.11757 0.0748 Inf   1.572  0.9848
 StepF7 - StepF14   0.02454 0.0748 Inf   0.328  1.0000
 StepF7 - StepF15   0.02841 0.0748 Inf   0.380  1.0000
 StepF7 - StepF16   0.25432 0.0748 Inf   3.401  0.0659
 StepF7 - StepF17   0.26301 0.0748 Inf   3.517  0.0456
 StepF7 - StepF18   0.48556 0.0748 Inf   6.494  <.0001
 StepF8 - StepF9    0.05087 0.0748 Inf   0.680  1.0000
 StepF8 - StepF10   0.00451 0.0748 Inf   0.060  1.0000
 StepF8 - StepF11  -0.00867 0.0748 Inf  -0.116  1.0000
 StepF8 - StepF12   0.19372 0.0748 Inf   2.591  0.4604
 StepF8 - StepF13   0.14545 0.0748 Inf   1.945  0.8945
 StepF8 - StepF14   0.05242 0.0748 Inf   0.701  1.0000
 StepF8 - StepF15   0.05628 0.0748 Inf   0.753  1.0000
 StepF8 - StepF16   0.28220 0.0748 Inf   3.774  0.0188
 StepF8 - StepF17   0.29088 0.0748 Inf   3.890  0.0122
 StepF8 - StepF18   0.51344 0.0748 Inf   6.866  <.0001
 StepF9 - StepF10  -0.04635 0.0748 Inf  -0.620  1.0000
 StepF9 - StepF11  -0.05954 0.0748 Inf  -0.796  1.0000
 StepF9 - StepF12   0.14286 0.0748 Inf   1.910  0.9084
 StepF9 - StepF13   0.09458 0.0748 Inf   1.265  0.9987
 StepF9 - StepF14   0.00155 0.0748 Inf   0.021  1.0000
 StepF9 - StepF15   0.00542 0.0748 Inf   0.072  1.0000
 StepF9 - StepF16   0.23133 0.0748 Inf   3.094  0.1581
 StepF9 - StepF17   0.24002 0.0748 Inf   3.210  0.1157
 StepF9 - StepF18   0.46257 0.0748 Inf   6.186  <.0001
 StepF10 - StepF11 -0.01319 0.0748 Inf  -0.176  1.0000
 StepF10 - StepF12  0.18921 0.0748 Inf   2.530  0.5067
 StepF10 - StepF13  0.14094 0.0748 Inf   1.885  0.9179
 StepF10 - StepF14  0.04791 0.0748 Inf   0.641  1.0000
 StepF10 - StepF15  0.05177 0.0748 Inf   0.692  1.0000
 StepF10 - StepF16  0.27768 0.0748 Inf   3.714  0.0233
 StepF10 - StepF17  0.28637 0.0748 Inf   3.830  0.0153
 StepF10 - StepF18  0.50893 0.0748 Inf   6.806  <.0001
 StepF11 - StepF12  0.20239 0.0748 Inf   2.707  0.3755
 StepF11 - StepF13  0.15412 0.0748 Inf   2.061  0.8386
 StepF11 - StepF14  0.06109 0.0748 Inf   0.817  1.0000
 StepF11 - StepF15  0.06495 0.0748 Inf   0.869  1.0000
 StepF11 - StepF16  0.29087 0.0748 Inf   3.890  0.0122
 StepF11 - StepF17  0.29956 0.0748 Inf   4.006  0.0078
 StepF11 - StepF18  0.52211 0.0748 Inf   6.982  <.0001
 StepF12 - StepF13 -0.04827 0.0748 Inf  -0.646  1.0000
 StepF12 - StepF14 -0.14130 0.0748 Inf  -1.890  0.9161
 StepF12 - StepF15 -0.13744 0.0748 Inf  -1.838  0.9334
 StepF12 - StepF16  0.08847 0.0748 Inf   1.183  0.9995
 StepF12 - StepF17  0.09716 0.0748 Inf   1.299  0.9983
 StepF12 - StepF18  0.31972 0.0748 Inf   4.276  0.0026
 StepF13 - StepF14 -0.09303 0.0748 Inf  -1.244  0.9990
 StepF13 - StepF15 -0.08917 0.0748 Inf  -1.192  0.9994
 StepF13 - StepF16  0.13675 0.0748 Inf   1.829  0.9362
 StepF13 - StepF17  0.14543 0.0748 Inf   1.945  0.8946
 StepF13 - StepF18  0.36799 0.0748 Inf   4.921  0.0001
 StepF14 - StepF15  0.00386 0.0748 Inf   0.052  1.0000
 StepF14 - StepF16  0.22978 0.0748 Inf   3.073  0.1667
 StepF14 - StepF17  0.23846 0.0748 Inf   3.189  0.1226
 StepF14 - StepF18  0.46102 0.0748 Inf   6.165  <.0001
 StepF15 - StepF16  0.22591 0.0748 Inf   3.021  0.1898
 StepF15 - StepF17  0.23460 0.0748 Inf   3.137  0.1409
 StepF15 - StepF18  0.45716 0.0748 Inf   6.114  <.0001
 StepF16 - StepF17  0.00869 0.0748 Inf   0.116  1.0000
 StepF16 - StepF18  0.23124 0.0748 Inf   3.092  0.1586
 StepF17 - StepF18  0.22256 0.0748 Inf   2.976  0.2115

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.17053 0.0748 Inf  -2.281  0.6977
 StepF1 - StepF3   -0.10093 0.0748 Inf  -1.350  0.9972
 StepF1 - StepF4    0.01334 0.0748 Inf   0.178  1.0000
 StepF1 - StepF5    0.11815 0.0748 Inf   1.580  0.9840
 StepF1 - StepF6    0.03815 0.0748 Inf   0.510  1.0000
 StepF1 - StepF7    0.11434 0.0748 Inf   1.529  0.9887
 StepF1 - StepF8    0.08646 0.0748 Inf   1.156  0.9996
 StepF1 - StepF9    0.13733 0.0748 Inf   1.837  0.9338
 StepF1 - StepF10   0.09098 0.0748 Inf   1.217  0.9992
 StepF1 - StepF11   0.07779 0.0748 Inf   1.040  0.9999
 StepF1 - StepF12   0.28019 0.0748 Inf   3.747  0.0207
 StepF1 - StepF13   0.23191 0.0748 Inf   3.101  0.1549
 StepF1 - StepF14   0.13888 0.0748 Inf   1.857  0.9272
 StepF1 - StepF15   0.14275 0.0748 Inf   1.909  0.9090
 StepF1 - StepF16   0.36866 0.0748 Inf   4.930  0.0001
 StepF1 - StepF17   0.37735 0.0748 Inf   5.046  0.0001
 StepF1 - StepF18   0.59990 0.0748 Inf   8.023  <.0001
 StepF2 - StepF3    0.06961 0.0748 Inf   0.931  1.0000
 StepF2 - StepF4    0.18387 0.0748 Inf   2.459  0.5622
 StepF2 - StepF5    0.28868 0.0748 Inf   3.861  0.0136
 StepF2 - StepF6    0.20868 0.0748 Inf   2.791  0.3186
 StepF2 - StepF7    0.28487 0.0748 Inf   3.810  0.0165
 StepF2 - StepF8    0.25700 0.0748 Inf   3.437  0.0590
 StepF2 - StepF9    0.30786 0.0748 Inf   4.117  0.0050
 StepF2 - StepF10   0.26151 0.0748 Inf   3.497  0.0486
 StepF2 - StepF11   0.24832 0.0748 Inf   3.321  0.0841
 StepF2 - StepF12   0.45072 0.0748 Inf   6.028  <.0001
 StepF2 - StepF13   0.40244 0.0748 Inf   5.382  <.0001
 StepF2 - StepF14   0.30942 0.0748 Inf   4.138  0.0046
 StepF2 - StepF15   0.31328 0.0748 Inf   4.190  0.0037
 StepF2 - StepF16   0.53919 0.0748 Inf   7.211  <.0001
 StepF2 - StepF17   0.54788 0.0748 Inf   7.327  <.0001
 StepF2 - StepF18   0.77043 0.0748 Inf  10.303  <.0001
 StepF3 - StepF4    0.11427 0.0748 Inf   1.528  0.9887
 StepF3 - StepF5    0.21907 0.0748 Inf   2.930  0.2358
 StepF3 - StepF6    0.13908 0.0748 Inf   1.860  0.9264
 StepF3 - StepF7    0.21527 0.0748 Inf   2.879  0.2644
 StepF3 - StepF8    0.18739 0.0748 Inf   2.506  0.5255
 StepF3 - StepF9    0.23826 0.0748 Inf   3.186  0.1235
 StepF3 - StepF10   0.19190 0.0748 Inf   2.566  0.4790
 StepF3 - StepF11   0.17872 0.0748 Inf   2.390  0.6156
 StepF3 - StepF12   0.38111 0.0748 Inf   5.097  0.0001
 StepF3 - StepF13   0.33284 0.0748 Inf   4.451  0.0012
 StepF3 - StepF14   0.23981 0.0748 Inf   3.207  0.1166
 StepF3 - StepF15   0.24367 0.0748 Inf   3.259  0.1008
 StepF3 - StepF16   0.46959 0.0748 Inf   6.280  <.0001
 StepF3 - StepF17   0.47827 0.0748 Inf   6.396  <.0001
 StepF3 - StepF18   0.70083 0.0748 Inf   9.372  <.0001
 StepF4 - StepF5    0.10481 0.0748 Inf   1.402  0.9957
 StepF4 - StepF6    0.02481 0.0748 Inf   0.332  1.0000
 StepF4 - StepF7    0.10100 0.0748 Inf   1.351  0.9972
 StepF4 - StepF8    0.07312 0.0748 Inf   0.978  1.0000
 StepF4 - StepF9    0.12399 0.0748 Inf   1.658  0.9740
 StepF4 - StepF10   0.07764 0.0748 Inf   1.038  0.9999
 StepF4 - StepF11   0.06445 0.0748 Inf   0.862  1.0000
 StepF4 - StepF12   0.26684 0.0748 Inf   3.569  0.0384
 StepF4 - StepF13   0.21857 0.0748 Inf   2.923  0.2395
 StepF4 - StepF14   0.12554 0.0748 Inf   1.679  0.9707
 StepF4 - StepF15   0.12940 0.0748 Inf   1.731  0.9610
 StepF4 - StepF16   0.35532 0.0748 Inf   4.752  0.0003
 StepF4 - StepF17   0.36401 0.0748 Inf   4.868  0.0002
 StepF4 - StepF18   0.58656 0.0748 Inf   7.844  <.0001
 StepF5 - StepF6   -0.08000 0.0748 Inf  -1.070  0.9999
 StepF5 - StepF7   -0.00381 0.0748 Inf  -0.051  1.0000
 StepF5 - StepF8   -0.03168 0.0748 Inf  -0.424  1.0000
 StepF5 - StepF9    0.01918 0.0748 Inf   0.257  1.0000
 StepF5 - StepF10  -0.02717 0.0748 Inf  -0.363  1.0000
 StepF5 - StepF11  -0.04036 0.0748 Inf  -0.540  1.0000
 StepF5 - StepF12   0.16204 0.0748 Inf   2.167  0.7757
 StepF5 - StepF13   0.11376 0.0748 Inf   1.521  0.9893
 StepF5 - StepF14   0.02074 0.0748 Inf   0.277  1.0000
 StepF5 - StepF15   0.02460 0.0748 Inf   0.329  1.0000
 StepF5 - StepF16   0.25051 0.0748 Inf   3.350  0.0770
 StepF5 - StepF17   0.25920 0.0748 Inf   3.466  0.0537
 StepF5 - StepF18   0.48176 0.0748 Inf   6.443  <.0001
 StepF6 - StepF7    0.07619 0.0748 Inf   1.019  0.9999
 StepF6 - StepF8    0.04831 0.0748 Inf   0.646  1.0000
 StepF6 - StepF9    0.09918 0.0748 Inf   1.326  0.9978
 StepF6 - StepF10   0.05283 0.0748 Inf   0.706  1.0000
 StepF6 - StepF11   0.03964 0.0748 Inf   0.530  1.0000
 StepF6 - StepF12   0.24204 0.0748 Inf   3.237  0.1073
 StepF6 - StepF13   0.19376 0.0748 Inf   2.591  0.4600
 StepF6 - StepF14   0.10073 0.0748 Inf   1.347  0.9973
 StepF6 - StepF15   0.10460 0.0748 Inf   1.399  0.9958
 StepF6 - StepF16   0.33051 0.0748 Inf   4.420  0.0014
 StepF6 - StepF17   0.33920 0.0748 Inf   4.536  0.0008
 StepF6 - StepF18   0.56175 0.0748 Inf   7.512  <.0001
 StepF7 - StepF8   -0.02788 0.0748 Inf  -0.373  1.0000
 StepF7 - StepF9    0.02299 0.0748 Inf   0.307  1.0000
 StepF7 - StepF10  -0.02336 0.0748 Inf  -0.312  1.0000
 StepF7 - StepF11  -0.03655 0.0748 Inf  -0.489  1.0000
 StepF7 - StepF12   0.16585 0.0748 Inf   2.218  0.7419
 StepF7 - StepF13   0.11757 0.0748 Inf   1.572  0.9848
 StepF7 - StepF14   0.02454 0.0748 Inf   0.328  1.0000
 StepF7 - StepF15   0.02841 0.0748 Inf   0.380  1.0000
 StepF7 - StepF16   0.25432 0.0748 Inf   3.401  0.0659
 StepF7 - StepF17   0.26301 0.0748 Inf   3.517  0.0456
 StepF7 - StepF18   0.48556 0.0748 Inf   6.494  <.0001
 StepF8 - StepF9    0.05087 0.0748 Inf   0.680  1.0000
 StepF8 - StepF10   0.00451 0.0748 Inf   0.060  1.0000
 StepF8 - StepF11  -0.00867 0.0748 Inf  -0.116  1.0000
 StepF8 - StepF12   0.19372 0.0748 Inf   2.591  0.4604
 StepF8 - StepF13   0.14545 0.0748 Inf   1.945  0.8945
 StepF8 - StepF14   0.05242 0.0748 Inf   0.701  1.0000
 StepF8 - StepF15   0.05628 0.0748 Inf   0.753  1.0000
 StepF8 - StepF16   0.28220 0.0748 Inf   3.774  0.0188
 StepF8 - StepF17   0.29088 0.0748 Inf   3.890  0.0122
 StepF8 - StepF18   0.51344 0.0748 Inf   6.866  <.0001
 StepF9 - StepF10  -0.04635 0.0748 Inf  -0.620  1.0000
 StepF9 - StepF11  -0.05954 0.0748 Inf  -0.796  1.0000
 StepF9 - StepF12   0.14286 0.0748 Inf   1.910  0.9084
 StepF9 - StepF13   0.09458 0.0748 Inf   1.265  0.9987
 StepF9 - StepF14   0.00155 0.0748 Inf   0.021  1.0000
 StepF9 - StepF15   0.00542 0.0748 Inf   0.072  1.0000
 StepF9 - StepF16   0.23133 0.0748 Inf   3.094  0.1581
 StepF9 - StepF17   0.24002 0.0748 Inf   3.210  0.1157
 StepF9 - StepF18   0.46257 0.0748 Inf   6.186  <.0001
 StepF10 - StepF11 -0.01319 0.0748 Inf  -0.176  1.0000
 StepF10 - StepF12  0.18921 0.0748 Inf   2.530  0.5067
 StepF10 - StepF13  0.14094 0.0748 Inf   1.885  0.9179
 StepF10 - StepF14  0.04791 0.0748 Inf   0.641  1.0000
 StepF10 - StepF15  0.05177 0.0748 Inf   0.692  1.0000
 StepF10 - StepF16  0.27768 0.0748 Inf   3.714  0.0233
 StepF10 - StepF17  0.28637 0.0748 Inf   3.830  0.0153
 StepF10 - StepF18  0.50893 0.0748 Inf   6.806  <.0001
 StepF11 - StepF12  0.20239 0.0748 Inf   2.707  0.3755
 StepF11 - StepF13  0.15412 0.0748 Inf   2.061  0.8386
 StepF11 - StepF14  0.06109 0.0748 Inf   0.817  1.0000
 StepF11 - StepF15  0.06495 0.0748 Inf   0.869  1.0000
 StepF11 - StepF16  0.29087 0.0748 Inf   3.890  0.0122
 StepF11 - StepF17  0.29956 0.0748 Inf   4.006  0.0078
 StepF11 - StepF18  0.52211 0.0748 Inf   6.982  <.0001
 StepF12 - StepF13 -0.04827 0.0748 Inf  -0.646  1.0000
 StepF12 - StepF14 -0.14130 0.0748 Inf  -1.890  0.9161
 StepF12 - StepF15 -0.13744 0.0748 Inf  -1.838  0.9334
 StepF12 - StepF16  0.08847 0.0748 Inf   1.183  0.9995
 StepF12 - StepF17  0.09716 0.0748 Inf   1.299  0.9983
 StepF12 - StepF18  0.31972 0.0748 Inf   4.276  0.0026
 StepF13 - StepF14 -0.09303 0.0748 Inf  -1.244  0.9990
 StepF13 - StepF15 -0.08917 0.0748 Inf  -1.192  0.9994
 StepF13 - StepF16  0.13675 0.0748 Inf   1.829  0.9362
 StepF13 - StepF17  0.14543 0.0748 Inf   1.945  0.8946
 StepF13 - StepF18  0.36799 0.0748 Inf   4.921  0.0001
 StepF14 - StepF15  0.00386 0.0748 Inf   0.052  1.0000
 StepF14 - StepF16  0.22978 0.0748 Inf   3.073  0.1667
 StepF14 - StepF17  0.23846 0.0748 Inf   3.189  0.1226
 StepF14 - StepF18  0.46102 0.0748 Inf   6.165  <.0001
 StepF15 - StepF16  0.22591 0.0748 Inf   3.021  0.1898
 StepF15 - StepF17  0.23460 0.0748 Inf   3.137  0.1409
 StepF15 - StepF18  0.45716 0.0748 Inf   6.114  <.0001
 StepF16 - StepF17  0.00869 0.0748 Inf   0.116  1.0000
 StepF16 - StepF18  0.23124 0.0748 Inf   3.092  0.1586
 StepF17 - StepF18  0.22256 0.0748 Inf   2.976  0.2115

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.17053 0.0748 Inf   2.281  0.3160
 StepF3 - StepF2   -0.06961 0.0748 Inf  -0.931  1.0000
 StepF4 - StepF3   -0.11427 0.0748 Inf  -1.528  1.0000
 StepF5 - StepF4   -0.10481 0.0748 Inf  -1.402  1.0000
 StepF6 - StepF5    0.08000 0.0748 Inf   1.070  1.0000
 StepF7 - StepF6   -0.07619 0.0748 Inf  -1.019  1.0000
 StepF8 - StepF7    0.02788 0.0748 Inf   0.373  1.0000
 StepF9 - StepF8   -0.05087 0.0748 Inf  -0.680  1.0000
 StepF10 - StepF9   0.04635 0.0748 Inf   0.620  1.0000
 StepF11 - StepF10  0.01319 0.0748 Inf   0.176  1.0000
 StepF12 - StepF11 -0.20239 0.0748 Inf  -2.707  0.1019
 StepF13 - StepF12  0.04827 0.0748 Inf   0.646  1.0000
 StepF14 - StepF13  0.09303 0.0748 Inf   1.244  1.0000
 StepF15 - StepF14 -0.00386 0.0748 Inf  -0.052  1.0000
 StepF16 - StepF15 -0.22591 0.0748 Inf  -3.021  0.0428
 StepF17 - StepF16 -0.00869 0.0748 Inf  -0.116  1.0000
 StepF18 - StepF17 -0.22256 0.0748 Inf  -2.976  0.0467

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.17053 0.0748 Inf   2.281  0.3160
 StepF3 - StepF2   -0.06961 0.0748 Inf  -0.931  1.0000
 StepF4 - StepF3   -0.11427 0.0748 Inf  -1.528  1.0000
 StepF5 - StepF4   -0.10481 0.0748 Inf  -1.402  1.0000
 StepF6 - StepF5    0.08000 0.0748 Inf   1.070  1.0000
 StepF7 - StepF6   -0.07619 0.0748 Inf  -1.019  1.0000
 StepF8 - StepF7    0.02788 0.0748 Inf   0.373  1.0000
 StepF9 - StepF8   -0.05087 0.0748 Inf  -0.680  1.0000
 StepF10 - StepF9   0.04635 0.0748 Inf   0.620  1.0000
 StepF11 - StepF10  0.01319 0.0748 Inf   0.176  1.0000
 StepF12 - StepF11 -0.20239 0.0748 Inf  -2.707  0.1019
 StepF13 - StepF12  0.04827 0.0748 Inf   0.646  1.0000
 StepF14 - StepF13  0.09303 0.0748 Inf   1.244  1.0000
 StepF15 - StepF14 -0.00386 0.0748 Inf  -0.052  1.0000
 StepF16 - StepF15 -0.22591 0.0748 Inf  -3.021  0.0428
 StepF17 - StepF16 -0.00869 0.0748 Inf  -0.116  1.0000
 StepF18 - StepF17 -0.22256 0.0748 Inf  -2.976  0.0467

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 
# Block 5
.report_step_test(sw_b5_6,  "5", "6 steps")


==============================
TEST | Block 5 | 6 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)  
StepF    11.8973  5    0.03622 *
Accuracy  1.2959  1    0.25497  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.645 0.0490 Inf     0.549     0.741
 2      0.605 0.0490 Inf     0.509     0.701
 3      0.638 0.0490 Inf     0.542     0.734
 4      0.617 0.0490 Inf     0.521     0.713
 5      0.573 0.0490 Inf     0.477     0.669
 6      0.562 0.0490 Inf     0.466     0.658

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.610 0.0488 Inf     0.514     0.706
 2      0.571 0.0488 Inf     0.475     0.667
 3      0.603 0.0488 Inf     0.507     0.699
 4      0.583 0.0488 Inf     0.487     0.678
 5      0.538 0.0488 Inf     0.442     0.634
 6      0.527 0.0488 Inf     0.432     0.623

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  0.03933 0.0309 Inf   1.273  0.8001
 StepF1 - StepF3  0.00698 0.0309 Inf   0.226  0.9999
 StepF1 - StepF4  0.02762 0.0309 Inf   0.894  0.9482
 StepF1 - StepF5  0.07217 0.0309 Inf   2.335  0.1799
 StepF1 - StepF6  0.08270 0.0309 Inf   2.676  0.0800
 StepF2 - StepF3 -0.03235 0.0309 Inf  -1.047  0.9021
 StepF2 - StepF4 -0.01171 0.0309 Inf  -0.379  0.9990
 StepF2 - StepF5  0.03284 0.0309 Inf   1.063  0.8961
 StepF2 - StepF6  0.04337 0.0309 Inf   1.403  0.7250
 StepF3 - StepF4  0.02063 0.0309 Inf   0.668  0.9854
 StepF3 - StepF5  0.06519 0.0309 Inf   2.109  0.2823
 StepF3 - StepF6  0.07572 0.0309 Inf   2.450  0.1393
 StepF4 - StepF5  0.04456 0.0309 Inf   1.442  0.7014
 StepF4 - StepF6  0.05509 0.0309 Inf   1.782  0.4772
 StepF5 - StepF6  0.01053 0.0309 Inf   0.341  0.9994

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  0.03933 0.0309 Inf   1.273  0.8001
 StepF1 - StepF3  0.00698 0.0309 Inf   0.226  0.9999
 StepF1 - StepF4  0.02762 0.0309 Inf   0.894  0.9482
 StepF1 - StepF5  0.07217 0.0309 Inf   2.335  0.1799
 StepF1 - StepF6  0.08270 0.0309 Inf   2.676  0.0800
 StepF2 - StepF3 -0.03235 0.0309 Inf  -1.047  0.9021
 StepF2 - StepF4 -0.01171 0.0309 Inf  -0.379  0.9990
 StepF2 - StepF5  0.03284 0.0309 Inf   1.063  0.8961
 StepF2 - StepF6  0.04337 0.0309 Inf   1.403  0.7250
 StepF3 - StepF4  0.02063 0.0309 Inf   0.668  0.9854
 StepF3 - StepF5  0.06519 0.0309 Inf   2.109  0.2823
 StepF3 - StepF6  0.07572 0.0309 Inf   2.450  0.1393
 StepF4 - StepF5  0.04456 0.0309 Inf   1.442  0.7014
 StepF4 - StepF6  0.05509 0.0309 Inf   1.782  0.4772
 StepF5 - StepF6  0.01053 0.0309 Inf   0.341  0.9994

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  -0.0393 0.0309 Inf  -1.273  0.8126
 StepF3 - StepF2   0.0323 0.0309 Inf   1.047  0.8858
 StepF4 - StepF3  -0.0206 0.0309 Inf  -0.668  1.0000
 StepF5 - StepF4  -0.0446 0.0309 Inf  -1.442  0.7469
 StepF6 - StepF5  -0.0105 0.0309 Inf  -0.341  1.0000

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  -0.0393 0.0309 Inf  -1.273  0.8126
 StepF3 - StepF2   0.0323 0.0309 Inf   1.047  0.8858
 StepF4 - StepF3  -0.0206 0.0309 Inf  -0.668  1.0000
 StepF5 - StepF4  -0.0446 0.0309 Inf  -1.442  0.7469
 StepF6 - StepF5  -0.0105 0.0309 Inf  -0.341  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST | Block 5 | 6 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    32.3897  5  4.974e-06 ***
Accuracy  2.7081  1    0.09984 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.641 0.0591 Inf     0.525     0.757
 2      0.758 0.0591 Inf     0.642     0.874
 3      0.672 0.0591 Inf     0.556     0.788
 4      0.687 0.0591 Inf     0.572     0.803
 5      0.611 0.0591 Inf     0.495     0.726
 6      0.591 0.0591 Inf     0.476     0.707

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.589 0.0589 Inf     0.474     0.705
 2      0.706 0.0589 Inf     0.591     0.822
 3      0.621 0.0589 Inf     0.505     0.736
 4      0.636 0.0589 Inf     0.520     0.751
 5      0.559 0.0589 Inf     0.444     0.675
 6      0.540 0.0589 Inf     0.424     0.655

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.1168 0.0333 Inf  -3.507  0.0060
 StepF1 - StepF3  -0.0312 0.0333 Inf  -0.936  0.9371
 StepF1 - StepF4  -0.0463 0.0333 Inf  -1.391  0.7323
 StepF1 - StepF5   0.0303 0.0333 Inf   0.910  0.9442
 StepF1 - StepF6   0.0496 0.0333 Inf   1.490  0.6706
 StepF2 - StepF3   0.0856 0.0333 Inf   2.571  0.1045
 StepF2 - StepF4   0.0705 0.0333 Inf   2.116  0.2790
 StepF2 - StepF5   0.1471 0.0333 Inf   4.417  0.0001
 StepF2 - StepF6   0.1664 0.0333 Inf   4.997  <.0001
 StepF3 - StepF4  -0.0152 0.0333 Inf  -0.455  0.9976
 StepF3 - StepF5   0.0615 0.0333 Inf   1.846  0.4359
 StepF3 - StepF6   0.0808 0.0333 Inf   2.427  0.1470
 StepF4 - StepF5   0.0766 0.0333 Inf   2.301  0.1934
 StepF4 - StepF6   0.0960 0.0333 Inf   2.882  0.0457
 StepF5 - StepF6   0.0193 0.0333 Inf   0.580  0.9923

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.1168 0.0333 Inf  -3.507  0.0060
 StepF1 - StepF3  -0.0312 0.0333 Inf  -0.936  0.9371
 StepF1 - StepF4  -0.0463 0.0333 Inf  -1.391  0.7323
 StepF1 - StepF5   0.0303 0.0333 Inf   0.910  0.9442
 StepF1 - StepF6   0.0496 0.0333 Inf   1.490  0.6706
 StepF2 - StepF3   0.0856 0.0333 Inf   2.571  0.1045
 StepF2 - StepF4   0.0705 0.0333 Inf   2.116  0.2790
 StepF2 - StepF5   0.1471 0.0333 Inf   4.417  0.0001
 StepF2 - StepF6   0.1664 0.0333 Inf   4.997  <.0001
 StepF3 - StepF4  -0.0152 0.0333 Inf  -0.455  0.9976
 StepF3 - StepF5   0.0615 0.0333 Inf   1.846  0.4359
 StepF3 - StepF6   0.0808 0.0333 Inf   2.427  0.1470
 StepF4 - StepF5   0.0766 0.0333 Inf   2.301  0.1934
 StepF4 - StepF6   0.0960 0.0333 Inf   2.882  0.0457
 StepF5 - StepF6   0.0193 0.0333 Inf   0.580  0.9923

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1168 0.0333 Inf   3.507  0.0023
 StepF3 - StepF2  -0.0856 0.0333 Inf  -2.571  0.0406
 StepF4 - StepF3   0.0152 0.0333 Inf   0.455  1.0000
 StepF5 - StepF4  -0.0766 0.0333 Inf  -2.301  0.0641
 StepF6 - StepF5  -0.0193 0.0333 Inf  -0.580  1.0000

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1168 0.0333 Inf   3.507  0.0023
 StepF3 - StepF2  -0.0856 0.0333 Inf  -2.571  0.0406
 StepF4 - StepF3   0.0152 0.0333 Inf   0.455  1.0000
 StepF5 - StepF4  -0.0766 0.0333 Inf  -2.301  0.0641
 StepF6 - StepF5  -0.0193 0.0333 Inf  -0.580  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST | Block 5 | 6 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    24.4407  5  0.0001786 ***
Accuracy  3.0721  1  0.0796481 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.33 0.129 Inf     1.075      1.58
 2       1.51 0.129 Inf     1.258      1.76
 3       1.45 0.129 Inf     1.196      1.70
 4       1.38 0.129 Inf     1.130      1.63
 5       1.29 0.129 Inf     1.034      1.54
 6       1.23 0.129 Inf     0.979      1.48

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.19 0.128 Inf     0.941      1.44
 2       1.37 0.128 Inf     1.123      1.63
 3       1.31 0.128 Inf     1.061      1.56
 4       1.25 0.128 Inf     0.996      1.50
 5       1.15 0.128 Inf     0.900      1.40
 6       1.10 0.128 Inf     0.845      1.35

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.1823 0.0662 Inf  -2.752  0.0655
 StepF1 - StepF3  -0.1202 0.0662 Inf  -1.815  0.4557
 StepF1 - StepF4  -0.0546 0.0662 Inf  -0.825  0.9630
 StepF1 - StepF5   0.0413 0.0662 Inf   0.624  0.9893
 StepF1 - StepF6   0.0963 0.0662 Inf   1.454  0.6938
 StepF2 - StepF3   0.0620 0.0662 Inf   0.936  0.9372
 StepF2 - StepF4   0.1276 0.0662 Inf   1.927  0.3855
 StepF2 - StepF5   0.2236 0.0662 Inf   3.376  0.0096
 StepF2 - StepF6   0.2786 0.0662 Inf   4.205  0.0004
 StepF3 - StepF4   0.0656 0.0662 Inf   0.990  0.9211
 StepF3 - StepF5   0.1616 0.0662 Inf   2.440  0.1427
 StepF3 - StepF6   0.2165 0.0662 Inf   3.269  0.0138
 StepF4 - StepF5   0.0960 0.0662 Inf   1.449  0.6968
 StepF4 - StepF6   0.1509 0.0662 Inf   2.279  0.2027
 StepF5 - StepF6   0.0549 0.0662 Inf   0.830  0.9621

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.1823 0.0662 Inf  -2.752  0.0655
 StepF1 - StepF3  -0.1202 0.0662 Inf  -1.815  0.4557
 StepF1 - StepF4  -0.0546 0.0662 Inf  -0.825  0.9630
 StepF1 - StepF5   0.0413 0.0662 Inf   0.624  0.9893
 StepF1 - StepF6   0.0963 0.0662 Inf   1.454  0.6938
 StepF2 - StepF3   0.0620 0.0662 Inf   0.936  0.9372
 StepF2 - StepF4   0.1276 0.0662 Inf   1.927  0.3855
 StepF2 - StepF5   0.2236 0.0662 Inf   3.376  0.0096
 StepF2 - StepF6   0.2786 0.0662 Inf   4.205  0.0004
 StepF3 - StepF4   0.0656 0.0662 Inf   0.990  0.9211
 StepF3 - StepF5   0.1616 0.0662 Inf   2.440  0.1427
 StepF3 - StepF6   0.2165 0.0662 Inf   3.269  0.0138
 StepF4 - StepF5   0.0960 0.0662 Inf   1.449  0.6968
 StepF4 - StepF6   0.1509 0.0662 Inf   2.279  0.2027
 StepF5 - StepF6   0.0549 0.0662 Inf   0.830  0.9621

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1823 0.0662 Inf   2.752  0.0296
 StepF3 - StepF2  -0.0620 0.0662 Inf  -0.936  0.9658
 StepF4 - StepF3  -0.0656 0.0662 Inf  -0.990  0.9658
 StepF5 - StepF4  -0.0960 0.0662 Inf  -1.449  0.5893
 StepF6 - StepF5  -0.0549 0.0662 Inf  -0.830  0.9658

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1823 0.0662 Inf   2.752  0.0296
 StepF3 - StepF2  -0.0620 0.0662 Inf  -0.936  0.9658
 StepF4 - StepF3  -0.0656 0.0662 Inf  -0.990  0.9658
 StepF5 - StepF4  -0.0960 0.0662 Inf  -1.449  0.5893
 StepF6 - StepF5  -0.0549 0.0662 Inf  -0.830  0.9658

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
.report_step_test(sw_b5_12, "5", "12 steps")


==============================
TEST | Block 5 | 12 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    53.5986 11  1.397e-07 ***
Accuracy  1.1562  1     0.2822    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.655 0.0535 Inf     0.550     0.760
 2      0.642 0.0535 Inf     0.537     0.747
 3      0.694 0.0535 Inf     0.589     0.799
 4      0.601 0.0535 Inf     0.496     0.706
 5      0.582 0.0535 Inf     0.477     0.687
 6      0.612 0.0535 Inf     0.507     0.717
 7      0.601 0.0535 Inf     0.496     0.706
 8      0.586 0.0535 Inf     0.481     0.691
 9      0.518 0.0535 Inf     0.413     0.623
 10     0.576 0.0535 Inf     0.471     0.681
 11     0.620 0.0535 Inf     0.515     0.725
 12     0.536 0.0535 Inf     0.431     0.641

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.628 0.0539 Inf     0.522     0.734
 2      0.615 0.0539 Inf     0.510     0.721
 3      0.667 0.0539 Inf     0.561     0.773
 4      0.574 0.0539 Inf     0.469     0.680
 5      0.556 0.0539 Inf     0.450     0.661
 6      0.585 0.0539 Inf     0.479     0.691
 7      0.575 0.0539 Inf     0.469     0.680
 8      0.559 0.0539 Inf     0.454     0.665
 9      0.491 0.0539 Inf     0.385     0.597
 10     0.550 0.0539 Inf     0.444     0.655
 11     0.593 0.0539 Inf     0.488     0.699
 12     0.509 0.0539 Inf     0.403     0.615

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.012531 0.0312 Inf   0.402  1.0000
 StepF1 - StepF3   -0.039262 0.0312 Inf  -1.258  0.9840
 StepF1 - StepF4    0.053540 0.0312 Inf   1.716  0.8613
 StepF1 - StepF5    0.072397 0.0312 Inf   2.320  0.4617
 StepF1 - StepF6    0.042730 0.0312 Inf   1.370  0.9693
 StepF1 - StepF7    0.053229 0.0312 Inf   1.706  0.8659
 StepF1 - StepF8    0.068538 0.0312 Inf   2.197  0.5519
 StepF1 - StepF9    0.137112 0.0312 Inf   4.395  0.0007
 StepF1 - StepF10   0.078255 0.0312 Inf   2.508  0.3345
 StepF1 - StepF11   0.034455 0.0312 Inf   1.104  0.9946
 StepF1 - StepF12   0.118943 0.0312 Inf   3.812  0.0076
 StepF2 - StepF3   -0.051793 0.0312 Inf  -1.660  0.8862
 StepF2 - StepF4    0.041008 0.0312 Inf   1.314  0.9775
 StepF2 - StepF5    0.059866 0.0312 Inf   1.919  0.7477
 StepF2 - StepF6    0.030199 0.0312 Inf   0.968  0.9983
 StepF2 - StepF7    0.040698 0.0312 Inf   1.304  0.9788
 StepF2 - StepF8    0.056007 0.0312 Inf   1.795  0.8211
 StepF2 - StepF9    0.124581 0.0312 Inf   3.993  0.0038
 StepF2 - StepF10   0.065724 0.0312 Inf   2.107  0.6181
 StepF2 - StepF11   0.021923 0.0312 Inf   0.703  0.9999
 StepF2 - StepF12   0.106411 0.0312 Inf   3.411  0.0318
 StepF3 - StepF4    0.092801 0.0312 Inf   2.974  0.1160
 StepF3 - StepF5    0.111659 0.0312 Inf   3.579  0.0179
 StepF3 - StepF6    0.081992 0.0312 Inf   2.628  0.2638
 StepF3 - StepF7    0.092491 0.0312 Inf   2.965  0.1191
 StepF3 - StepF8    0.107800 0.0312 Inf   3.455  0.0274
 StepF3 - StepF9    0.176374 0.0312 Inf   5.653  <.0001
 StepF3 - StepF10   0.117517 0.0312 Inf   3.767  0.0091
 StepF3 - StepF11   0.073716 0.0312 Inf   2.363  0.4317
 StepF3 - StepF12   0.158204 0.0312 Inf   5.071  <.0001
 StepF4 - StepF5    0.018857 0.0312 Inf   0.604  1.0000
 StepF4 - StepF6   -0.010810 0.0312 Inf  -0.346  1.0000
 StepF4 - StepF7   -0.000311 0.0312 Inf  -0.010  1.0000
 StepF4 - StepF8    0.014999 0.0312 Inf   0.481  1.0000
 StepF4 - StepF9    0.083573 0.0312 Inf   2.679  0.2368
 StepF4 - StepF10   0.024715 0.0312 Inf   0.792  0.9997
 StepF4 - StepF11  -0.019085 0.0312 Inf  -0.612  1.0000
 StepF4 - StepF12   0.065403 0.0312 Inf   2.096  0.6255
 StepF5 - StepF6   -0.029667 0.0312 Inf  -0.951  0.9986
 StepF5 - StepF7   -0.019168 0.0312 Inf  -0.614  1.0000
 StepF5 - StepF8   -0.003859 0.0312 Inf  -0.124  1.0000
 StepF5 - StepF9    0.064715 0.0312 Inf   2.074  0.6414
 StepF5 - StepF10   0.005858 0.0312 Inf   0.188  1.0000
 StepF5 - StepF11  -0.037942 0.0312 Inf  -1.216  0.9878
 StepF5 - StepF12   0.046546 0.0312 Inf   1.492  0.9432
 StepF6 - StepF7    0.010499 0.0312 Inf   0.337  1.0000
 StepF6 - StepF8    0.025808 0.0312 Inf   0.827  0.9996
 StepF6 - StepF9    0.094382 0.0312 Inf   3.025  0.1013
 StepF6 - StepF10   0.035525 0.0312 Inf   1.139  0.9930
 StepF6 - StepF11  -0.008275 0.0312 Inf  -0.265  1.0000
 StepF6 - StepF12   0.076213 0.0312 Inf   2.443  0.3769
 StepF7 - StepF8    0.015309 0.0312 Inf   0.491  1.0000
 StepF7 - StepF9    0.083883 0.0312 Inf   2.689  0.2317
 StepF7 - StepF10   0.025026 0.0312 Inf   0.802  0.9997
 StepF7 - StepF11  -0.018774 0.0312 Inf  -0.602  1.0000
 StepF7 - StepF12   0.065714 0.0312 Inf   2.106  0.6183
 StepF8 - StepF9    0.068574 0.0312 Inf   2.198  0.5511
 StepF8 - StepF10   0.009717 0.0312 Inf   0.311  1.0000
 StepF8 - StepF11  -0.034084 0.0312 Inf  -1.092  0.9951
 StepF8 - StepF12   0.050405 0.0312 Inf   1.616  0.9038
 StepF9 - StepF10  -0.058858 0.0312 Inf  -1.886  0.7680
 StepF9 - StepF11  -0.102658 0.0312 Inf  -3.290  0.0467
 StepF9 - StepF12  -0.018170 0.0312 Inf  -0.582  1.0000
 StepF10 - StepF11 -0.043800 0.0312 Inf  -1.404  0.9631
 StepF10 - StepF12  0.040688 0.0312 Inf   1.304  0.9788
 StepF11 - StepF12  0.084488 0.0312 Inf   2.708  0.2220

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.012531 0.0312 Inf   0.402  1.0000
 StepF1 - StepF3   -0.039262 0.0312 Inf  -1.258  0.9840
 StepF1 - StepF4    0.053540 0.0312 Inf   1.716  0.8613
 StepF1 - StepF5    0.072397 0.0312 Inf   2.320  0.4617
 StepF1 - StepF6    0.042730 0.0312 Inf   1.370  0.9693
 StepF1 - StepF7    0.053229 0.0312 Inf   1.706  0.8659
 StepF1 - StepF8    0.068538 0.0312 Inf   2.197  0.5519
 StepF1 - StepF9    0.137112 0.0312 Inf   4.395  0.0007
 StepF1 - StepF10   0.078255 0.0312 Inf   2.508  0.3345
 StepF1 - StepF11   0.034455 0.0312 Inf   1.104  0.9946
 StepF1 - StepF12   0.118943 0.0312 Inf   3.812  0.0076
 StepF2 - StepF3   -0.051793 0.0312 Inf  -1.660  0.8862
 StepF2 - StepF4    0.041008 0.0312 Inf   1.314  0.9775
 StepF2 - StepF5    0.059866 0.0312 Inf   1.919  0.7477
 StepF2 - StepF6    0.030199 0.0312 Inf   0.968  0.9983
 StepF2 - StepF7    0.040698 0.0312 Inf   1.304  0.9788
 StepF2 - StepF8    0.056007 0.0312 Inf   1.795  0.8211
 StepF2 - StepF9    0.124581 0.0312 Inf   3.993  0.0038
 StepF2 - StepF10   0.065724 0.0312 Inf   2.107  0.6181
 StepF2 - StepF11   0.021923 0.0312 Inf   0.703  0.9999
 StepF2 - StepF12   0.106411 0.0312 Inf   3.411  0.0318
 StepF3 - StepF4    0.092801 0.0312 Inf   2.974  0.1160
 StepF3 - StepF5    0.111659 0.0312 Inf   3.579  0.0179
 StepF3 - StepF6    0.081992 0.0312 Inf   2.628  0.2638
 StepF3 - StepF7    0.092491 0.0312 Inf   2.965  0.1191
 StepF3 - StepF8    0.107800 0.0312 Inf   3.455  0.0274
 StepF3 - StepF9    0.176374 0.0312 Inf   5.653  <.0001
 StepF3 - StepF10   0.117517 0.0312 Inf   3.767  0.0091
 StepF3 - StepF11   0.073716 0.0312 Inf   2.363  0.4317
 StepF3 - StepF12   0.158204 0.0312 Inf   5.071  <.0001
 StepF4 - StepF5    0.018857 0.0312 Inf   0.604  1.0000
 StepF4 - StepF6   -0.010810 0.0312 Inf  -0.346  1.0000
 StepF4 - StepF7   -0.000311 0.0312 Inf  -0.010  1.0000
 StepF4 - StepF8    0.014999 0.0312 Inf   0.481  1.0000
 StepF4 - StepF9    0.083573 0.0312 Inf   2.679  0.2368
 StepF4 - StepF10   0.024715 0.0312 Inf   0.792  0.9997
 StepF4 - StepF11  -0.019085 0.0312 Inf  -0.612  1.0000
 StepF4 - StepF12   0.065403 0.0312 Inf   2.096  0.6255
 StepF5 - StepF6   -0.029667 0.0312 Inf  -0.951  0.9986
 StepF5 - StepF7   -0.019168 0.0312 Inf  -0.614  1.0000
 StepF5 - StepF8   -0.003859 0.0312 Inf  -0.124  1.0000
 StepF5 - StepF9    0.064715 0.0312 Inf   2.074  0.6414
 StepF5 - StepF10   0.005858 0.0312 Inf   0.188  1.0000
 StepF5 - StepF11  -0.037942 0.0312 Inf  -1.216  0.9878
 StepF5 - StepF12   0.046546 0.0312 Inf   1.492  0.9432
 StepF6 - StepF7    0.010499 0.0312 Inf   0.337  1.0000
 StepF6 - StepF8    0.025808 0.0312 Inf   0.827  0.9996
 StepF6 - StepF9    0.094382 0.0312 Inf   3.025  0.1013
 StepF6 - StepF10   0.035525 0.0312 Inf   1.139  0.9930
 StepF6 - StepF11  -0.008275 0.0312 Inf  -0.265  1.0000
 StepF6 - StepF12   0.076213 0.0312 Inf   2.443  0.3769
 StepF7 - StepF8    0.015309 0.0312 Inf   0.491  1.0000
 StepF7 - StepF9    0.083883 0.0312 Inf   2.689  0.2317
 StepF7 - StepF10   0.025026 0.0312 Inf   0.802  0.9997
 StepF7 - StepF11  -0.018774 0.0312 Inf  -0.602  1.0000
 StepF7 - StepF12   0.065714 0.0312 Inf   2.106  0.6183
 StepF8 - StepF9    0.068574 0.0312 Inf   2.198  0.5511
 StepF8 - StepF10   0.009717 0.0312 Inf   0.311  1.0000
 StepF8 - StepF11  -0.034084 0.0312 Inf  -1.092  0.9951
 StepF8 - StepF12   0.050405 0.0312 Inf   1.616  0.9038
 StepF9 - StepF10  -0.058858 0.0312 Inf  -1.886  0.7680
 StepF9 - StepF11  -0.102658 0.0312 Inf  -3.290  0.0467
 StepF9 - StepF12  -0.018170 0.0312 Inf  -0.582  1.0000
 StepF10 - StepF11 -0.043800 0.0312 Inf  -1.404  0.9631
 StepF10 - StepF12  0.040688 0.0312 Inf   1.304  0.9788
 StepF11 - StepF12  0.084488 0.0312 Inf   2.708  0.2220

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    -0.0125 0.0312 Inf  -0.402  1.0000
 StepF3 - StepF2     0.0518 0.0312 Inf   1.660  0.6783
 StepF4 - StepF3    -0.0928 0.0312 Inf  -2.974  0.0323
 StepF5 - StepF4    -0.0189 0.0312 Inf  -0.604  1.0000
 StepF6 - StepF5     0.0297 0.0312 Inf   0.951  1.0000
 StepF7 - StepF6    -0.0105 0.0312 Inf  -0.337  1.0000
 StepF8 - StepF7    -0.0153 0.0312 Inf  -0.491  1.0000
 StepF9 - StepF8    -0.0686 0.0312 Inf  -2.198  0.2516
 StepF10 - StepF9    0.0589 0.0312 Inf   1.886  0.4738
 StepF11 - StepF10   0.0438 0.0312 Inf   1.404  0.9621
 StepF12 - StepF11  -0.0845 0.0312 Inf  -2.708  0.0677

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    -0.0125 0.0312 Inf  -0.402  1.0000
 StepF3 - StepF2     0.0518 0.0312 Inf   1.660  0.6783
 StepF4 - StepF3    -0.0928 0.0312 Inf  -2.974  0.0323
 StepF5 - StepF4    -0.0189 0.0312 Inf  -0.604  1.0000
 StepF6 - StepF5     0.0297 0.0312 Inf   0.951  1.0000
 StepF7 - StepF6    -0.0105 0.0312 Inf  -0.337  1.0000
 StepF8 - StepF7    -0.0153 0.0312 Inf  -0.491  1.0000
 StepF9 - StepF8    -0.0686 0.0312 Inf  -2.198  0.2516
 StepF10 - StepF9    0.0589 0.0312 Inf   1.886  0.4738
 StepF11 - StepF10   0.0438 0.0312 Inf   1.404  0.9621
 StepF12 - StepF11  -0.0845 0.0312 Inf  -2.708  0.0677

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST | Block 5 | 12 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    117.2792 11    < 2e-16 ***
Accuracy   3.6975  1    0.05449 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.624 0.0614 Inf     0.504     0.745
 2      0.813 0.0614 Inf     0.692     0.933
 3      0.692 0.0614 Inf     0.572     0.812
 4      0.692 0.0614 Inf     0.571     0.812
 5      0.624 0.0614 Inf     0.504     0.744
 6      0.542 0.0614 Inf     0.422     0.662
 7      0.605 0.0614 Inf     0.484     0.725
 8      0.635 0.0614 Inf     0.514     0.755
 9      0.554 0.0614 Inf     0.434     0.674
 10     0.660 0.0614 Inf     0.539     0.780
 11     0.616 0.0614 Inf     0.496     0.736
 12     0.549 0.0614 Inf     0.429     0.669

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.579 0.0617 Inf     0.458     0.700
 2      0.767 0.0617 Inf     0.646     0.888
 3      0.647 0.0617 Inf     0.526     0.768
 4      0.646 0.0617 Inf     0.525     0.767
 5      0.579 0.0617 Inf     0.458     0.700
 6      0.497 0.0617 Inf     0.376     0.618
 7      0.559 0.0617 Inf     0.438     0.680
 8      0.589 0.0617 Inf     0.468     0.710
 9      0.509 0.0617 Inf     0.388     0.630
 10     0.614 0.0617 Inf     0.493     0.735
 11     0.570 0.0617 Inf     0.450     0.691
 12     0.504 0.0617 Inf     0.383     0.624

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.188225 0.0327 Inf  -5.756  <.0001
 StepF1 - StepF3   -0.067807 0.0327 Inf  -2.074  0.6419
 StepF1 - StepF4   -0.067441 0.0327 Inf  -2.062  0.6499
 StepF1 - StepF5    0.000246 0.0327 Inf   0.008  1.0000
 StepF1 - StepF6    0.082295 0.0327 Inf   2.517  0.3292
 StepF1 - StepF7    0.019506 0.0327 Inf   0.597  1.0000
 StepF1 - StepF8   -0.010447 0.0327 Inf  -0.319  1.0000
 StepF1 - StepF9    0.070247 0.0327 Inf   2.148  0.5876
 StepF1 - StepF10  -0.035477 0.0327 Inf  -1.085  0.9953
 StepF1 - StepF11   0.008374 0.0327 Inf   0.256  1.0000
 StepF1 - StepF12   0.075329 0.0327 Inf   2.304  0.4739
 StepF2 - StepF3    0.120418 0.0327 Inf   3.682  0.0124
 StepF2 - StepF4    0.120783 0.0327 Inf   3.694  0.0119
 StepF2 - StepF5    0.188471 0.0327 Inf   5.764  <.0001
 StepF2 - StepF6    0.270520 0.0327 Inf   8.273  <.0001
 StepF2 - StepF7    0.207731 0.0327 Inf   6.353  <.0001
 StepF2 - StepF8    0.177778 0.0327 Inf   5.437  <.0001
 StepF2 - StepF9    0.258472 0.0327 Inf   7.904  <.0001
 StepF2 - StepF10   0.152748 0.0327 Inf   4.671  0.0002
 StepF2 - StepF11   0.196598 0.0327 Inf   6.012  <.0001
 StepF2 - StepF12   0.263554 0.0327 Inf   8.060  <.0001
 StepF3 - StepF4    0.000366 0.0327 Inf   0.011  1.0000
 StepF3 - StepF5    0.068053 0.0327 Inf   2.081  0.6365
 StepF3 - StepF6    0.150102 0.0327 Inf   4.590  0.0003
 StepF3 - StepF7    0.087313 0.0327 Inf   2.670  0.2412
 StepF3 - StepF8    0.057361 0.0327 Inf   1.754  0.8427
 StepF3 - StepF9    0.138055 0.0327 Inf   4.222  0.0015
 StepF3 - StepF10   0.032330 0.0327 Inf   0.989  0.9980
 StepF3 - StepF11   0.076181 0.0327 Inf   2.330  0.4552
 StepF3 - StepF12   0.143136 0.0327 Inf   4.377  0.0007
 StepF4 - StepF5    0.067687 0.0327 Inf   2.070  0.6445
 StepF4 - StepF6    0.149737 0.0327 Inf   4.579  0.0003
 StepF4 - StepF7    0.086948 0.0327 Inf   2.659  0.2471
 StepF4 - StepF8    0.056995 0.0327 Inf   1.743  0.8483
 StepF4 - StepF9    0.137689 0.0327 Inf   4.211  0.0015
 StepF4 - StepF10   0.031964 0.0327 Inf   0.977  0.9982
 StepF4 - StepF11   0.075815 0.0327 Inf   2.318  0.4632
 StepF4 - StepF12   0.142770 0.0327 Inf   4.366  0.0008
 StepF5 - StepF6    0.082050 0.0327 Inf   2.509  0.3339
 StepF5 - StepF7    0.019261 0.0327 Inf   0.589  1.0000
 StepF5 - StepF8   -0.010692 0.0327 Inf  -0.327  1.0000
 StepF5 - StepF9    0.070002 0.0327 Inf   2.141  0.5931
 StepF5 - StepF10  -0.035723 0.0327 Inf  -1.092  0.9951
 StepF5 - StepF11   0.008128 0.0327 Inf   0.249  1.0000
 StepF5 - StepF12   0.075083 0.0327 Inf   2.296  0.4793
 StepF6 - StepF7   -0.062789 0.0327 Inf  -1.920  0.7468
 StepF6 - StepF8   -0.092742 0.0327 Inf  -2.836  0.1648
 StepF6 - StepF9   -0.012048 0.0327 Inf  -0.368  1.0000
 StepF6 - StepF10  -0.117772 0.0327 Inf  -3.602  0.0166
 StepF6 - StepF11  -0.073922 0.0327 Inf  -2.261  0.5051
 StepF6 - StepF12  -0.006966 0.0327 Inf  -0.213  1.0000
 StepF7 - StepF8   -0.029953 0.0327 Inf  -0.916  0.9990
 StepF7 - StepF9    0.050741 0.0327 Inf   1.552  0.9259
 StepF7 - StepF10  -0.054983 0.0327 Inf  -1.681  0.8770
 StepF7 - StepF11  -0.011133 0.0327 Inf  -0.340  1.0000
 StepF7 - StepF12   0.055823 0.0327 Inf   1.707  0.8655
 StepF8 - StepF9    0.080694 0.0327 Inf   2.468  0.3605
 StepF8 - StepF10  -0.025030 0.0327 Inf  -0.765  0.9998
 StepF8 - StepF11   0.018820 0.0327 Inf   0.576  1.0000
 StepF8 - StepF12   0.085775 0.0327 Inf   2.623  0.2665
 StepF9 - StepF10  -0.105724 0.0327 Inf  -3.233  0.0556
 StepF9 - StepF11  -0.061874 0.0327 Inf  -1.892  0.7645
 StepF9 - StepF12   0.005081 0.0327 Inf   0.155  1.0000
 StepF10 - StepF11  0.043851 0.0327 Inf   1.341  0.9738
 StepF10 - StepF12  0.110806 0.0327 Inf   3.389  0.0341
 StepF11 - StepF12  0.066955 0.0327 Inf   2.048  0.6604

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.188225 0.0327 Inf  -5.756  <.0001
 StepF1 - StepF3   -0.067807 0.0327 Inf  -2.074  0.6419
 StepF1 - StepF4   -0.067441 0.0327 Inf  -2.062  0.6499
 StepF1 - StepF5    0.000246 0.0327 Inf   0.008  1.0000
 StepF1 - StepF6    0.082295 0.0327 Inf   2.517  0.3292
 StepF1 - StepF7    0.019506 0.0327 Inf   0.597  1.0000
 StepF1 - StepF8   -0.010447 0.0327 Inf  -0.319  1.0000
 StepF1 - StepF9    0.070247 0.0327 Inf   2.148  0.5876
 StepF1 - StepF10  -0.035477 0.0327 Inf  -1.085  0.9953
 StepF1 - StepF11   0.008374 0.0327 Inf   0.256  1.0000
 StepF1 - StepF12   0.075329 0.0327 Inf   2.304  0.4739
 StepF2 - StepF3    0.120418 0.0327 Inf   3.682  0.0124
 StepF2 - StepF4    0.120783 0.0327 Inf   3.694  0.0119
 StepF2 - StepF5    0.188471 0.0327 Inf   5.764  <.0001
 StepF2 - StepF6    0.270520 0.0327 Inf   8.273  <.0001
 StepF2 - StepF7    0.207731 0.0327 Inf   6.353  <.0001
 StepF2 - StepF8    0.177778 0.0327 Inf   5.437  <.0001
 StepF2 - StepF9    0.258472 0.0327 Inf   7.904  <.0001
 StepF2 - StepF10   0.152748 0.0327 Inf   4.671  0.0002
 StepF2 - StepF11   0.196598 0.0327 Inf   6.012  <.0001
 StepF2 - StepF12   0.263554 0.0327 Inf   8.060  <.0001
 StepF3 - StepF4    0.000366 0.0327 Inf   0.011  1.0000
 StepF3 - StepF5    0.068053 0.0327 Inf   2.081  0.6365
 StepF3 - StepF6    0.150102 0.0327 Inf   4.590  0.0003
 StepF3 - StepF7    0.087313 0.0327 Inf   2.670  0.2412
 StepF3 - StepF8    0.057361 0.0327 Inf   1.754  0.8427
 StepF3 - StepF9    0.138055 0.0327 Inf   4.222  0.0015
 StepF3 - StepF10   0.032330 0.0327 Inf   0.989  0.9980
 StepF3 - StepF11   0.076181 0.0327 Inf   2.330  0.4552
 StepF3 - StepF12   0.143136 0.0327 Inf   4.377  0.0007
 StepF4 - StepF5    0.067687 0.0327 Inf   2.070  0.6445
 StepF4 - StepF6    0.149737 0.0327 Inf   4.579  0.0003
 StepF4 - StepF7    0.086948 0.0327 Inf   2.659  0.2471
 StepF4 - StepF8    0.056995 0.0327 Inf   1.743  0.8483
 StepF4 - StepF9    0.137689 0.0327 Inf   4.211  0.0015
 StepF4 - StepF10   0.031964 0.0327 Inf   0.977  0.9982
 StepF4 - StepF11   0.075815 0.0327 Inf   2.318  0.4632
 StepF4 - StepF12   0.142770 0.0327 Inf   4.366  0.0008
 StepF5 - StepF6    0.082050 0.0327 Inf   2.509  0.3339
 StepF5 - StepF7    0.019261 0.0327 Inf   0.589  1.0000
 StepF5 - StepF8   -0.010692 0.0327 Inf  -0.327  1.0000
 StepF5 - StepF9    0.070002 0.0327 Inf   2.141  0.5931
 StepF5 - StepF10  -0.035723 0.0327 Inf  -1.092  0.9951
 StepF5 - StepF11   0.008128 0.0327 Inf   0.249  1.0000
 StepF5 - StepF12   0.075083 0.0327 Inf   2.296  0.4793
 StepF6 - StepF7   -0.062789 0.0327 Inf  -1.920  0.7468
 StepF6 - StepF8   -0.092742 0.0327 Inf  -2.836  0.1648
 StepF6 - StepF9   -0.012048 0.0327 Inf  -0.368  1.0000
 StepF6 - StepF10  -0.117772 0.0327 Inf  -3.602  0.0166
 StepF6 - StepF11  -0.073922 0.0327 Inf  -2.261  0.5051
 StepF6 - StepF12  -0.006966 0.0327 Inf  -0.213  1.0000
 StepF7 - StepF8   -0.029953 0.0327 Inf  -0.916  0.9990
 StepF7 - StepF9    0.050741 0.0327 Inf   1.552  0.9259
 StepF7 - StepF10  -0.054983 0.0327 Inf  -1.681  0.8770
 StepF7 - StepF11  -0.011133 0.0327 Inf  -0.340  1.0000
 StepF7 - StepF12   0.055823 0.0327 Inf   1.707  0.8655
 StepF8 - StepF9    0.080694 0.0327 Inf   2.468  0.3605
 StepF8 - StepF10  -0.025030 0.0327 Inf  -0.765  0.9998
 StepF8 - StepF11   0.018820 0.0327 Inf   0.576  1.0000
 StepF8 - StepF12   0.085775 0.0327 Inf   2.623  0.2665
 StepF9 - StepF10  -0.105724 0.0327 Inf  -3.233  0.0556
 StepF9 - StepF11  -0.061874 0.0327 Inf  -1.892  0.7645
 StepF9 - StepF12   0.005081 0.0327 Inf   0.155  1.0000
 StepF10 - StepF11  0.043851 0.0327 Inf   1.341  0.9738
 StepF10 - StepF12  0.110806 0.0327 Inf   3.389  0.0341
 StepF11 - StepF12  0.066955 0.0327 Inf   2.048  0.6604

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.188225 0.0327 Inf   5.756  <.0001
 StepF3 - StepF2   -0.120418 0.0327 Inf  -3.682  0.0023
 StepF4 - StepF3   -0.000366 0.0327 Inf  -0.011  0.9911
 StepF5 - StepF4   -0.067687 0.0327 Inf  -2.070  0.2308
 StepF6 - StepF5   -0.082050 0.0327 Inf  -2.509  0.0968
 StepF7 - StepF6    0.062789 0.0327 Inf   1.920  0.2308
 StepF8 - StepF7    0.029953 0.0327 Inf   0.916  0.7193
 StepF9 - StepF8   -0.080694 0.0327 Inf  -2.468  0.0968
 StepF10 - StepF9   0.105724 0.0327 Inf   3.233  0.0110
 StepF11 - StepF10 -0.043851 0.0327 Inf  -1.341  0.5398
 StepF12 - StepF11 -0.066955 0.0327 Inf  -2.048  0.2308

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.188225 0.0327 Inf   5.756  <.0001
 StepF3 - StepF2   -0.120418 0.0327 Inf  -3.682  0.0023
 StepF4 - StepF3   -0.000366 0.0327 Inf  -0.011  0.9911
 StepF5 - StepF4   -0.067687 0.0327 Inf  -2.070  0.2308
 StepF6 - StepF5   -0.082050 0.0327 Inf  -2.509  0.0968
 StepF7 - StepF6    0.062789 0.0327 Inf   1.920  0.2308
 StepF8 - StepF7    0.029953 0.0327 Inf   0.916  0.7193
 StepF9 - StepF8   -0.080694 0.0327 Inf  -2.468  0.0968
 StepF10 - StepF9   0.105724 0.0327 Inf   3.233  0.0110
 StepF11 - StepF10 -0.043851 0.0327 Inf  -1.341  0.5398
 StepF12 - StepF11 -0.066955 0.0327 Inf  -2.048  0.2308

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST | Block 5 | 12 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    90.8425 11   1.14e-14 ***
Accuracy  3.0281  1    0.08183 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.36 0.141 Inf     1.081      1.63
 2       1.60 0.141 Inf     1.322      1.87
 3       1.44 0.141 Inf     1.169      1.72
 4       1.31 0.141 Inf     1.032      1.58
 5       1.31 0.141 Inf     1.039      1.59
 6       1.30 0.141 Inf     1.024      1.58
 7       1.31 0.141 Inf     1.038      1.59
 8       1.25 0.141 Inf     0.971      1.52
 9       1.21 0.141 Inf     0.932      1.48
 10      1.28 0.141 Inf     1.002      1.55
 11      1.26 0.141 Inf     0.981      1.53
 12      1.15 0.141 Inf     0.871      1.42

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.24 0.142 Inf     0.964      1.52
 2       1.48 0.142 Inf     1.205      1.76
 3       1.33 0.142 Inf     1.052      1.61
 4       1.19 0.142 Inf     0.915      1.47
 5       1.20 0.142 Inf     0.922      1.48
 6       1.19 0.142 Inf     0.908      1.46
 7       1.20 0.142 Inf     0.921      1.48
 8       1.13 0.142 Inf     0.854      1.41
 9       1.09 0.142 Inf     0.815      1.37
 10      1.16 0.142 Inf     0.886      1.44
 11      1.14 0.142 Inf     0.864      1.42
 12      1.03 0.142 Inf     0.754      1.31

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.24108 0.0571 Inf  -4.225  0.0014
 StepF1 - StepF3   -0.08839 0.0571 Inf  -1.549  0.9267
 StepF1 - StepF4    0.04883 0.0571 Inf   0.856  0.9995
 StepF1 - StepF5    0.04145 0.0571 Inf   0.726  0.9999
 StepF1 - StepF6    0.05614 0.0571 Inf   0.984  0.9980
 StepF1 - StepF7    0.04264 0.0571 Inf   0.747  0.9999
 StepF1 - StepF8    0.10992 0.0571 Inf   1.926  0.7428
 StepF1 - StepF9    0.14863 0.0571 Inf   2.605  0.2766
 StepF1 - StepF10   0.07829 0.0571 Inf   1.372  0.9688
 StepF1 - StepF11   0.09958 0.0571 Inf   1.745  0.8472
 StepF1 - StepF12   0.20968 0.0571 Inf   3.675  0.0127
 StepF2 - StepF3    0.15269 0.0571 Inf   2.676  0.2382
 StepF2 - StepF4    0.28991 0.0571 Inf   5.081  <.0001
 StepF2 - StepF5    0.28253 0.0571 Inf   4.951  <.0001
 StepF2 - StepF6    0.29722 0.0571 Inf   5.209  <.0001
 StepF2 - StepF7    0.28372 0.0571 Inf   4.972  <.0001
 StepF2 - StepF8    0.35100 0.0571 Inf   6.152  <.0001
 StepF2 - StepF9    0.38971 0.0571 Inf   6.830  <.0001
 StepF2 - StepF10   0.31937 0.0571 Inf   5.597  <.0001
 StepF2 - StepF11   0.34066 0.0571 Inf   5.970  <.0001
 StepF2 - StepF12   0.45076 0.0571 Inf   7.900  <.0001
 StepF3 - StepF4    0.13722 0.0571 Inf   2.405  0.4025
 StepF3 - StepF5    0.12984 0.0571 Inf   2.276  0.4942
 StepF3 - StepF6    0.14454 0.0571 Inf   2.533  0.3190
 StepF3 - StepF7    0.13103 0.0571 Inf   2.296  0.4791
 StepF3 - StepF8    0.19832 0.0571 Inf   3.476  0.0256
 StepF3 - StepF9    0.23703 0.0571 Inf   4.154  0.0019
 StepF3 - StepF10   0.16668 0.0571 Inf   2.921  0.1333
 StepF3 - StepF11   0.18797 0.0571 Inf   3.294  0.0461
 StepF3 - StepF12   0.29808 0.0571 Inf   5.224  <.0001
 StepF4 - StepF5   -0.00738 0.0571 Inf  -0.129  1.0000
 StepF4 - StepF6    0.00731 0.0571 Inf   0.128  1.0000
 StepF4 - StepF7   -0.00619 0.0571 Inf  -0.109  1.0000
 StepF4 - StepF8    0.06109 0.0571 Inf   1.071  0.9958
 StepF4 - StepF9    0.09980 0.0571 Inf   1.749  0.8452
 StepF4 - StepF10   0.02946 0.0571 Inf   0.516  1.0000
 StepF4 - StepF11   0.05075 0.0571 Inf   0.889  0.9992
 StepF4 - StepF12   0.16085 0.0571 Inf   2.819  0.1718
 StepF5 - StepF6    0.01470 0.0571 Inf   0.258  1.0000
 StepF5 - StepF7    0.00119 0.0571 Inf   0.021  1.0000
 StepF5 - StepF8    0.06848 0.0571 Inf   1.200  0.9891
 StepF5 - StepF9    0.10719 0.0571 Inf   1.879  0.7729
 StepF5 - StepF10   0.03684 0.0571 Inf   0.646  1.0000
 StepF5 - StepF11   0.05813 0.0571 Inf   1.019  0.9973
 StepF5 - StepF12   0.16824 0.0571 Inf   2.948  0.1242
 StepF6 - StepF7   -0.01350 0.0571 Inf  -0.237  1.0000
 StepF6 - StepF8    0.05378 0.0571 Inf   0.943  0.9987
 StepF6 - StepF9    0.09249 0.0571 Inf   1.621  0.9018
 StepF6 - StepF10   0.02215 0.0571 Inf   0.388  1.0000
 StepF6 - StepF11   0.04344 0.0571 Inf   0.761  0.9998
 StepF6 - StepF12   0.15354 0.0571 Inf   2.691  0.2306
 StepF7 - StepF8    0.06728 0.0571 Inf   1.179  0.9906
 StepF7 - StepF9    0.10600 0.0571 Inf   1.858  0.7855
 StepF7 - StepF10   0.03565 0.0571 Inf   0.625  1.0000
 StepF7 - StepF11   0.05694 0.0571 Inf   0.998  0.9978
 StepF7 - StepF12   0.16704 0.0571 Inf   2.928  0.1311
 StepF8 - StepF9    0.03871 0.0571 Inf   0.678  0.9999
 StepF8 - StepF10  -0.03163 0.0571 Inf  -0.554  1.0000
 StepF8 - StepF11  -0.01034 0.0571 Inf  -0.181  1.0000
 StepF8 - StepF12   0.09976 0.0571 Inf   1.748  0.8456
 StepF9 - StepF10  -0.07035 0.0571 Inf  -1.233  0.9864
 StepF9 - StepF11  -0.04906 0.0571 Inf  -0.860  0.9994
 StepF9 - StepF12   0.06105 0.0571 Inf   1.070  0.9959
 StepF10 - StepF11  0.02129 0.0571 Inf   0.373  1.0000
 StepF10 - StepF12  0.13139 0.0571 Inf   2.303  0.4745
 StepF11 - StepF12  0.11010 0.0571 Inf   1.930  0.7407

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.24108 0.0571 Inf  -4.225  0.0014
 StepF1 - StepF3   -0.08839 0.0571 Inf  -1.549  0.9267
 StepF1 - StepF4    0.04883 0.0571 Inf   0.856  0.9995
 StepF1 - StepF5    0.04145 0.0571 Inf   0.726  0.9999
 StepF1 - StepF6    0.05614 0.0571 Inf   0.984  0.9980
 StepF1 - StepF7    0.04264 0.0571 Inf   0.747  0.9999
 StepF1 - StepF8    0.10992 0.0571 Inf   1.926  0.7428
 StepF1 - StepF9    0.14863 0.0571 Inf   2.605  0.2766
 StepF1 - StepF10   0.07829 0.0571 Inf   1.372  0.9688
 StepF1 - StepF11   0.09958 0.0571 Inf   1.745  0.8472
 StepF1 - StepF12   0.20968 0.0571 Inf   3.675  0.0127
 StepF2 - StepF3    0.15269 0.0571 Inf   2.676  0.2382
 StepF2 - StepF4    0.28991 0.0571 Inf   5.081  <.0001
 StepF2 - StepF5    0.28253 0.0571 Inf   4.951  <.0001
 StepF2 - StepF6    0.29722 0.0571 Inf   5.209  <.0001
 StepF2 - StepF7    0.28372 0.0571 Inf   4.972  <.0001
 StepF2 - StepF8    0.35100 0.0571 Inf   6.152  <.0001
 StepF2 - StepF9    0.38971 0.0571 Inf   6.830  <.0001
 StepF2 - StepF10   0.31937 0.0571 Inf   5.597  <.0001
 StepF2 - StepF11   0.34066 0.0571 Inf   5.970  <.0001
 StepF2 - StepF12   0.45076 0.0571 Inf   7.900  <.0001
 StepF3 - StepF4    0.13722 0.0571 Inf   2.405  0.4025
 StepF3 - StepF5    0.12984 0.0571 Inf   2.276  0.4942
 StepF3 - StepF6    0.14454 0.0571 Inf   2.533  0.3190
 StepF3 - StepF7    0.13103 0.0571 Inf   2.296  0.4791
 StepF3 - StepF8    0.19832 0.0571 Inf   3.476  0.0256
 StepF3 - StepF9    0.23703 0.0571 Inf   4.154  0.0019
 StepF3 - StepF10   0.16668 0.0571 Inf   2.921  0.1333
 StepF3 - StepF11   0.18797 0.0571 Inf   3.294  0.0461
 StepF3 - StepF12   0.29808 0.0571 Inf   5.224  <.0001
 StepF4 - StepF5   -0.00738 0.0571 Inf  -0.129  1.0000
 StepF4 - StepF6    0.00731 0.0571 Inf   0.128  1.0000
 StepF4 - StepF7   -0.00619 0.0571 Inf  -0.109  1.0000
 StepF4 - StepF8    0.06109 0.0571 Inf   1.071  0.9958
 StepF4 - StepF9    0.09980 0.0571 Inf   1.749  0.8452
 StepF4 - StepF10   0.02946 0.0571 Inf   0.516  1.0000
 StepF4 - StepF11   0.05075 0.0571 Inf   0.889  0.9992
 StepF4 - StepF12   0.16085 0.0571 Inf   2.819  0.1718
 StepF5 - StepF6    0.01470 0.0571 Inf   0.258  1.0000
 StepF5 - StepF7    0.00119 0.0571 Inf   0.021  1.0000
 StepF5 - StepF8    0.06848 0.0571 Inf   1.200  0.9891
 StepF5 - StepF9    0.10719 0.0571 Inf   1.879  0.7729
 StepF5 - StepF10   0.03684 0.0571 Inf   0.646  1.0000
 StepF5 - StepF11   0.05813 0.0571 Inf   1.019  0.9973
 StepF5 - StepF12   0.16824 0.0571 Inf   2.948  0.1242
 StepF6 - StepF7   -0.01350 0.0571 Inf  -0.237  1.0000
 StepF6 - StepF8    0.05378 0.0571 Inf   0.943  0.9987
 StepF6 - StepF9    0.09249 0.0571 Inf   1.621  0.9018
 StepF6 - StepF10   0.02215 0.0571 Inf   0.388  1.0000
 StepF6 - StepF11   0.04344 0.0571 Inf   0.761  0.9998
 StepF6 - StepF12   0.15354 0.0571 Inf   2.691  0.2306
 StepF7 - StepF8    0.06728 0.0571 Inf   1.179  0.9906
 StepF7 - StepF9    0.10600 0.0571 Inf   1.858  0.7855
 StepF7 - StepF10   0.03565 0.0571 Inf   0.625  1.0000
 StepF7 - StepF11   0.05694 0.0571 Inf   0.998  0.9978
 StepF7 - StepF12   0.16704 0.0571 Inf   2.928  0.1311
 StepF8 - StepF9    0.03871 0.0571 Inf   0.678  0.9999
 StepF8 - StepF10  -0.03163 0.0571 Inf  -0.554  1.0000
 StepF8 - StepF11  -0.01034 0.0571 Inf  -0.181  1.0000
 StepF8 - StepF12   0.09976 0.0571 Inf   1.748  0.8456
 StepF9 - StepF10  -0.07035 0.0571 Inf  -1.233  0.9864
 StepF9 - StepF11  -0.04906 0.0571 Inf  -0.860  0.9994
 StepF9 - StepF12   0.06105 0.0571 Inf   1.070  0.9959
 StepF10 - StepF11  0.02129 0.0571 Inf   0.373  1.0000
 StepF10 - StepF12  0.13139 0.0571 Inf   2.303  0.4745
 StepF11 - StepF12  0.11010 0.0571 Inf   1.930  0.7407

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.24108 0.0571 Inf   4.225  0.0003
 StepF3 - StepF2   -0.15269 0.0571 Inf  -2.676  0.0745
 StepF4 - StepF3   -0.13722 0.0571 Inf  -2.405  0.1456
 StepF5 - StepF4    0.00738 0.0571 Inf   0.129  1.0000
 StepF6 - StepF5   -0.01470 0.0571 Inf  -0.258  1.0000
 StepF7 - StepF6    0.01350 0.0571 Inf   0.237  1.0000
 StepF8 - StepF7   -0.06728 0.0571 Inf  -1.179  1.0000
 StepF9 - StepF8   -0.03871 0.0571 Inf  -0.678  1.0000
 StepF10 - StepF9   0.07035 0.0571 Inf   1.233  1.0000
 StepF11 - StepF10 -0.02129 0.0571 Inf  -0.373  1.0000
 StepF12 - StepF11 -0.11010 0.0571 Inf  -1.930  0.4292

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.24108 0.0571 Inf   4.225  0.0003
 StepF3 - StepF2   -0.15269 0.0571 Inf  -2.676  0.0745
 StepF4 - StepF3   -0.13722 0.0571 Inf  -2.405  0.1456
 StepF5 - StepF4    0.00738 0.0571 Inf   0.129  1.0000
 StepF6 - StepF5   -0.01470 0.0571 Inf  -0.258  1.0000
 StepF7 - StepF6    0.01350 0.0571 Inf   0.237  1.0000
 StepF8 - StepF7   -0.06728 0.0571 Inf  -1.179  1.0000
 StepF9 - StepF8   -0.03871 0.0571 Inf  -0.678  1.0000
 StepF10 - StepF9   0.07035 0.0571 Inf   1.233  1.0000
 StepF11 - StepF10 -0.02129 0.0571 Inf  -0.373  1.0000
 StepF12 - StepF11 -0.11010 0.0571 Inf  -1.930  0.4292

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
.report_step_test(sw_b5_18, "5", "18 steps")


==============================
TEST | Block 5 | 18 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    71.8346 17   1.04e-08 ***
Accuracy  0.3972  1     0.5285    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.671 0.0555 Inf     0.562     0.780
 2      0.625 0.0555 Inf     0.516     0.734
 3      0.691 0.0555 Inf     0.582     0.799
 4      0.613 0.0555 Inf     0.505     0.722
 5      0.572 0.0555 Inf     0.464     0.681
 6      0.608 0.0555 Inf     0.500     0.717
 7      0.635 0.0555 Inf     0.526     0.743
 8      0.571 0.0555 Inf     0.463     0.680
 9      0.574 0.0555 Inf     0.465     0.683
 10     0.617 0.0555 Inf     0.508     0.725
 11     0.649 0.0555 Inf     0.540     0.757
 12     0.532 0.0555 Inf     0.423     0.641
 13     0.572 0.0555 Inf     0.463     0.681
 14     0.609 0.0555 Inf     0.500     0.717
 15     0.598 0.0555 Inf     0.489     0.707
 16     0.544 0.0555 Inf     0.436     0.653
 17     0.529 0.0555 Inf     0.420     0.638
 18     0.523 0.0555 Inf     0.415     0.632

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.650 0.0563 Inf     0.539     0.760
 2      0.604 0.0563 Inf     0.494     0.714
 3      0.669 0.0563 Inf     0.559     0.780
 4      0.592 0.0563 Inf     0.482     0.703
 5      0.551 0.0563 Inf     0.441     0.661
 6      0.587 0.0563 Inf     0.477     0.698
 7      0.613 0.0563 Inf     0.503     0.724
 8      0.550 0.0563 Inf     0.440     0.660
 9      0.553 0.0563 Inf     0.442     0.663
 10     0.595 0.0563 Inf     0.485     0.706
 11     0.627 0.0563 Inf     0.517     0.738
 12     0.511 0.0563 Inf     0.400     0.621
 13     0.551 0.0563 Inf     0.440     0.661
 14     0.587 0.0563 Inf     0.477     0.698
 15     0.577 0.0563 Inf     0.466     0.687
 16     0.523 0.0563 Inf     0.413     0.633
 17     0.508 0.0563 Inf     0.397     0.618
 18     0.502 0.0563 Inf     0.392     0.612

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.045863 0.0332 Inf   1.381  0.9964
 StepF1 - StepF3   -0.019678 0.0332 Inf  -0.593  1.0000
 StepF1 - StepF4    0.057557 0.0332 Inf   1.733  0.9604
 StepF1 - StepF5    0.098689 0.0332 Inf   2.972  0.2138
 StepF1 - StepF6    0.062569 0.0332 Inf   1.884  0.9181
 StepF1 - StepF7    0.036409 0.0332 Inf   1.096  0.9998
 StepF1 - StepF8    0.099823 0.0332 Inf   3.006  0.1970
 StepF1 - StepF9    0.097142 0.0332 Inf   2.925  0.2383
 StepF1 - StepF10   0.054389 0.0332 Inf   1.638  0.9770
 StepF1 - StepF11   0.022364 0.0332 Inf   0.673  1.0000
 StepF1 - StepF12   0.139236 0.0332 Inf   4.193  0.0036
 StepF1 - StepF13   0.099210 0.0332 Inf   2.987  0.2060
 StepF1 - StepF14   0.062368 0.0332 Inf   1.878  0.9202
 StepF1 - StepF15   0.073131 0.0332 Inf   2.202  0.7526
 StepF1 - StepF16   0.126787 0.0332 Inf   3.818  0.0160
 StepF1 - StepF17   0.142068 0.0332 Inf   4.278  0.0025
 StepF1 - StepF18   0.147845 0.0332 Inf   4.452  0.0012
 StepF2 - StepF3   -0.065541 0.0332 Inf  -1.974  0.8821
 StepF2 - StepF4    0.011694 0.0332 Inf   0.352  1.0000
 StepF2 - StepF5    0.052826 0.0332 Inf   1.591  0.9829
 StepF2 - StepF6    0.016706 0.0332 Inf   0.503  1.0000
 StepF2 - StepF7   -0.009454 0.0332 Inf  -0.285  1.0000
 StepF2 - StepF8    0.053961 0.0332 Inf   1.625  0.9787
 StepF2 - StepF9    0.051279 0.0332 Inf   1.544  0.9874
 StepF2 - StepF10   0.008526 0.0332 Inf   0.257  1.0000
 StepF2 - StepF11  -0.023498 0.0332 Inf  -0.708  1.0000
 StepF2 - StepF12   0.093373 0.0332 Inf   2.812  0.3052
 StepF2 - StepF13   0.053348 0.0332 Inf   1.606  0.9811
 StepF2 - StepF14   0.016506 0.0332 Inf   0.497  1.0000
 StepF2 - StepF15   0.027268 0.0332 Inf   0.821  1.0000
 StepF2 - StepF16   0.080924 0.0332 Inf   2.437  0.5794
 StepF2 - StepF17   0.096205 0.0332 Inf   2.897  0.2540
 StepF2 - StepF18   0.101982 0.0332 Inf   3.071  0.1676
 StepF3 - StepF4    0.077235 0.0332 Inf   2.326  0.6644
 StepF3 - StepF5    0.118368 0.0332 Inf   3.564  0.0390
 StepF3 - StepF6    0.082247 0.0332 Inf   2.477  0.5484
 StepF3 - StepF7    0.056087 0.0332 Inf   1.689  0.9690
 StepF3 - StepF8    0.119502 0.0332 Inf   3.599  0.0348
 StepF3 - StepF9    0.116820 0.0332 Inf   3.518  0.0455
 StepF3 - StepF10   0.074067 0.0332 Inf   2.230  0.7333
 StepF3 - StepF11   0.042043 0.0332 Inf   1.266  0.9987
 StepF3 - StepF12   0.158914 0.0332 Inf   4.785  0.0002
 StepF3 - StepF13   0.118889 0.0332 Inf   3.580  0.0370
 StepF3 - StepF14   0.082047 0.0332 Inf   2.471  0.5531
 StepF3 - StepF15   0.092809 0.0332 Inf   2.795  0.3160
 StepF3 - StepF16   0.146466 0.0332 Inf   4.410  0.0014
 StepF3 - StepF17   0.161746 0.0332 Inf   4.871  0.0002
 StepF3 - StepF18   0.167523 0.0332 Inf   5.045  0.0001
 StepF4 - StepF5    0.041132 0.0332 Inf   1.239  0.9990
 StepF4 - StepF6    0.005012 0.0332 Inf   0.151  1.0000
 StepF4 - StepF7   -0.021148 0.0332 Inf  -0.637  1.0000
 StepF4 - StepF8    0.042266 0.0332 Inf   1.273  0.9986
 StepF4 - StepF9    0.039585 0.0332 Inf   1.192  0.9994
 StepF4 - StepF10  -0.003168 0.0332 Inf  -0.095  1.0000
 StepF4 - StepF11  -0.035192 0.0332 Inf  -1.060  0.9999
 StepF4 - StepF12   0.081679 0.0332 Inf   2.460  0.5617
 StepF4 - StepF13   0.041653 0.0332 Inf   1.254  0.9989
 StepF4 - StepF14   0.004812 0.0332 Inf   0.145  1.0000
 StepF4 - StepF15   0.015574 0.0332 Inf   0.469  1.0000
 StepF4 - StepF16   0.069230 0.0332 Inf   2.085  0.8255
 StepF4 - StepF17   0.084511 0.0332 Inf   2.545  0.4955
 StepF4 - StepF18   0.090288 0.0332 Inf   2.719  0.3670
 StepF5 - StepF6   -0.036121 0.0332 Inf  -1.088  0.9998
 StepF5 - StepF7   -0.062280 0.0332 Inf  -1.875  0.9212
 StepF5 - StepF8    0.001134 0.0332 Inf   0.034  1.0000
 StepF5 - StepF9   -0.001547 0.0332 Inf  -0.047  1.0000
 StepF5 - StepF10  -0.044300 0.0332 Inf  -1.334  0.9976
 StepF5 - StepF11  -0.076325 0.0332 Inf  -2.298  0.6848
 StepF5 - StepF12   0.040547 0.0332 Inf   1.221  0.9992
 StepF5 - StepF13   0.000521 0.0332 Inf   0.016  1.0000
 StepF5 - StepF14  -0.036321 0.0332 Inf  -1.094  0.9998
 StepF5 - StepF15  -0.025558 0.0332 Inf  -0.770  1.0000
 StepF5 - StepF16   0.028098 0.0332 Inf   0.846  1.0000
 StepF5 - StepF17   0.043379 0.0332 Inf   1.306  0.9981
 StepF5 - StepF18   0.049155 0.0332 Inf   1.480  0.9920
 StepF6 - StepF7   -0.026160 0.0332 Inf  -0.788  1.0000
 StepF6 - StepF8    0.037255 0.0332 Inf   1.122  0.9997
 StepF6 - StepF9    0.034573 0.0332 Inf   1.041  0.9999
 StepF6 - StepF10  -0.008180 0.0332 Inf  -0.246  1.0000
 StepF6 - StepF11  -0.040204 0.0332 Inf  -1.211  0.9993
 StepF6 - StepF12   0.076667 0.0332 Inf   2.309  0.6772
 StepF6 - StepF13   0.036642 0.0332 Inf   1.103  0.9998
 StepF6 - StepF14  -0.000200 0.0332 Inf  -0.006  1.0000
 StepF6 - StepF15   0.010562 0.0332 Inf   0.318  1.0000
 StepF6 - StepF16   0.064219 0.0332 Inf   1.934  0.8992
 StepF6 - StepF17   0.079499 0.0332 Inf   2.394  0.6126
 StepF6 - StepF18   0.085276 0.0332 Inf   2.568  0.4778
 StepF7 - StepF8    0.063414 0.0332 Inf   1.910  0.9087
 StepF7 - StepF9    0.060733 0.0332 Inf   1.829  0.9362
 StepF7 - StepF10   0.017980 0.0332 Inf   0.541  1.0000
 StepF7 - StepF11  -0.014044 0.0332 Inf  -0.423  1.0000
 StepF7 - StepF12   0.102827 0.0332 Inf   3.096  0.1570
 StepF7 - StepF13   0.062801 0.0332 Inf   1.891  0.9156
 StepF7 - StepF14   0.025960 0.0332 Inf   0.782  1.0000
 StepF7 - StepF15   0.036722 0.0332 Inf   1.106  0.9998
 StepF7 - StepF16   0.090378 0.0332 Inf   2.722  0.3651
 StepF7 - StepF17   0.105659 0.0332 Inf   3.182  0.1251
 StepF7 - StepF18   0.111436 0.0332 Inf   3.356  0.0758
 StepF8 - StepF9   -0.002681 0.0332 Inf  -0.081  1.0000
 StepF8 - StepF10  -0.045434 0.0332 Inf  -1.368  0.9968
 StepF8 - StepF11  -0.077459 0.0332 Inf  -2.332  0.6594
 StepF8 - StepF12   0.039412 0.0332 Inf   1.187  0.9994
 StepF8 - StepF13  -0.000613 0.0332 Inf  -0.018  1.0000
 StepF8 - StepF14  -0.037455 0.0332 Inf  -1.128  0.9997
 StepF8 - StepF15  -0.026693 0.0332 Inf  -0.804  1.0000
 StepF8 - StepF16   0.026964 0.0332 Inf   0.812  1.0000
 StepF8 - StepF17   0.042245 0.0332 Inf   1.272  0.9987
 StepF8 - StepF18   0.048021 0.0332 Inf   1.446  0.9939
 StepF9 - StepF10  -0.042753 0.0332 Inf  -1.287  0.9984
 StepF9 - StepF11  -0.074778 0.0332 Inf  -2.252  0.7184
 StepF9 - StepF12   0.042094 0.0332 Inf   1.268  0.9987
 StepF9 - StepF13   0.002068 0.0332 Inf   0.062  1.0000
 StepF9 - StepF14  -0.034774 0.0332 Inf  -1.047  0.9999
 StepF9 - StepF15  -0.024011 0.0332 Inf  -0.723  1.0000
 StepF9 - StepF16   0.029645 0.0332 Inf   0.893  1.0000
 StepF9 - StepF17   0.044926 0.0332 Inf   1.353  0.9972
 StepF9 - StepF18   0.050703 0.0332 Inf   1.527  0.9889
 StepF10 - StepF11 -0.032024 0.0332 Inf  -0.964  1.0000
 StepF10 - StepF12  0.084847 0.0332 Inf   2.555  0.4877
 StepF10 - StepF13  0.044821 0.0332 Inf   1.350  0.9972
 StepF10 - StepF14  0.007980 0.0332 Inf   0.240  1.0000
 StepF10 - StepF15  0.018742 0.0332 Inf   0.564  1.0000
 StepF10 - StepF16  0.072398 0.0332 Inf   2.180  0.7672
 StepF10 - StepF17  0.087679 0.0332 Inf   2.640  0.4234
 StepF10 - StepF18  0.093456 0.0332 Inf   2.814  0.3036
 StepF11 - StepF12  0.116871 0.0332 Inf   3.519  0.0453
 StepF11 - StepF13  0.076846 0.0332 Inf   2.314  0.6732
 StepF11 - StepF14  0.040004 0.0332 Inf   1.205  0.9993
 StepF11 - StepF15  0.050766 0.0332 Inf   1.529  0.9887
 StepF11 - StepF16  0.104423 0.0332 Inf   3.144  0.1383
 StepF11 - StepF17  0.119703 0.0332 Inf   3.605  0.0341
 StepF11 - StepF18  0.125480 0.0332 Inf   3.779  0.0184
 StepF12 - StepF13 -0.040025 0.0332 Inf  -1.205  0.9993
 StepF12 - StepF14 -0.076867 0.0332 Inf  -2.315  0.6727
 StepF12 - StepF15 -0.066105 0.0332 Inf  -1.991  0.8743
 StepF12 - StepF16 -0.012449 0.0332 Inf  -0.375  1.0000
 StepF12 - StepF17  0.002832 0.0332 Inf   0.085  1.0000
 StepF12 - StepF18  0.008609 0.0332 Inf   0.259  1.0000
 StepF13 - StepF14 -0.036842 0.0332 Inf  -1.109  0.9998
 StepF13 - StepF15 -0.026079 0.0332 Inf  -0.785  1.0000
 StepF13 - StepF16  0.027577 0.0332 Inf   0.830  1.0000
 StepF13 - StepF17  0.042858 0.0332 Inf   1.291  0.9984
 StepF13 - StepF18  0.048634 0.0332 Inf   1.465  0.9929
 StepF14 - StepF15  0.010762 0.0332 Inf   0.324  1.0000
 StepF14 - StepF16  0.064419 0.0332 Inf   1.940  0.8967
 StepF14 - StepF17  0.079699 0.0332 Inf   2.400  0.6080
 StepF14 - StepF18  0.085476 0.0332 Inf   2.574  0.4732
 StepF15 - StepF16  0.053656 0.0332 Inf   1.616  0.9799
 StepF15 - StepF17  0.068937 0.0332 Inf   2.076  0.8305
 StepF15 - StepF18  0.074714 0.0332 Inf   2.250  0.7197
 StepF16 - StepF17  0.015281 0.0332 Inf   0.460  1.0000
 StepF16 - StepF18  0.021057 0.0332 Inf   0.634  1.0000
 StepF17 - StepF18  0.005777 0.0332 Inf   0.174  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.045863 0.0332 Inf   1.381  0.9964
 StepF1 - StepF3   -0.019678 0.0332 Inf  -0.593  1.0000
 StepF1 - StepF4    0.057557 0.0332 Inf   1.733  0.9604
 StepF1 - StepF5    0.098689 0.0332 Inf   2.972  0.2138
 StepF1 - StepF6    0.062569 0.0332 Inf   1.884  0.9181
 StepF1 - StepF7    0.036409 0.0332 Inf   1.096  0.9998
 StepF1 - StepF8    0.099823 0.0332 Inf   3.006  0.1970
 StepF1 - StepF9    0.097142 0.0332 Inf   2.925  0.2383
 StepF1 - StepF10   0.054389 0.0332 Inf   1.638  0.9770
 StepF1 - StepF11   0.022364 0.0332 Inf   0.673  1.0000
 StepF1 - StepF12   0.139236 0.0332 Inf   4.193  0.0036
 StepF1 - StepF13   0.099210 0.0332 Inf   2.987  0.2060
 StepF1 - StepF14   0.062368 0.0332 Inf   1.878  0.9202
 StepF1 - StepF15   0.073131 0.0332 Inf   2.202  0.7526
 StepF1 - StepF16   0.126787 0.0332 Inf   3.818  0.0160
 StepF1 - StepF17   0.142068 0.0332 Inf   4.278  0.0025
 StepF1 - StepF18   0.147845 0.0332 Inf   4.452  0.0012
 StepF2 - StepF3   -0.065541 0.0332 Inf  -1.974  0.8821
 StepF2 - StepF4    0.011694 0.0332 Inf   0.352  1.0000
 StepF2 - StepF5    0.052826 0.0332 Inf   1.591  0.9829
 StepF2 - StepF6    0.016706 0.0332 Inf   0.503  1.0000
 StepF2 - StepF7   -0.009454 0.0332 Inf  -0.285  1.0000
 StepF2 - StepF8    0.053961 0.0332 Inf   1.625  0.9787
 StepF2 - StepF9    0.051279 0.0332 Inf   1.544  0.9874
 StepF2 - StepF10   0.008526 0.0332 Inf   0.257  1.0000
 StepF2 - StepF11  -0.023498 0.0332 Inf  -0.708  1.0000
 StepF2 - StepF12   0.093373 0.0332 Inf   2.812  0.3052
 StepF2 - StepF13   0.053348 0.0332 Inf   1.606  0.9811
 StepF2 - StepF14   0.016506 0.0332 Inf   0.497  1.0000
 StepF2 - StepF15   0.027268 0.0332 Inf   0.821  1.0000
 StepF2 - StepF16   0.080924 0.0332 Inf   2.437  0.5794
 StepF2 - StepF17   0.096205 0.0332 Inf   2.897  0.2540
 StepF2 - StepF18   0.101982 0.0332 Inf   3.071  0.1676
 StepF3 - StepF4    0.077235 0.0332 Inf   2.326  0.6644
 StepF3 - StepF5    0.118368 0.0332 Inf   3.564  0.0390
 StepF3 - StepF6    0.082247 0.0332 Inf   2.477  0.5484
 StepF3 - StepF7    0.056087 0.0332 Inf   1.689  0.9690
 StepF3 - StepF8    0.119502 0.0332 Inf   3.599  0.0348
 StepF3 - StepF9    0.116820 0.0332 Inf   3.518  0.0455
 StepF3 - StepF10   0.074067 0.0332 Inf   2.230  0.7333
 StepF3 - StepF11   0.042043 0.0332 Inf   1.266  0.9987
 StepF3 - StepF12   0.158914 0.0332 Inf   4.785  0.0002
 StepF3 - StepF13   0.118889 0.0332 Inf   3.580  0.0370
 StepF3 - StepF14   0.082047 0.0332 Inf   2.471  0.5531
 StepF3 - StepF15   0.092809 0.0332 Inf   2.795  0.3160
 StepF3 - StepF16   0.146466 0.0332 Inf   4.410  0.0014
 StepF3 - StepF17   0.161746 0.0332 Inf   4.871  0.0002
 StepF3 - StepF18   0.167523 0.0332 Inf   5.045  0.0001
 StepF4 - StepF5    0.041132 0.0332 Inf   1.239  0.9990
 StepF4 - StepF6    0.005012 0.0332 Inf   0.151  1.0000
 StepF4 - StepF7   -0.021148 0.0332 Inf  -0.637  1.0000
 StepF4 - StepF8    0.042266 0.0332 Inf   1.273  0.9986
 StepF4 - StepF9    0.039585 0.0332 Inf   1.192  0.9994
 StepF4 - StepF10  -0.003168 0.0332 Inf  -0.095  1.0000
 StepF4 - StepF11  -0.035192 0.0332 Inf  -1.060  0.9999
 StepF4 - StepF12   0.081679 0.0332 Inf   2.460  0.5617
 StepF4 - StepF13   0.041653 0.0332 Inf   1.254  0.9989
 StepF4 - StepF14   0.004812 0.0332 Inf   0.145  1.0000
 StepF4 - StepF15   0.015574 0.0332 Inf   0.469  1.0000
 StepF4 - StepF16   0.069230 0.0332 Inf   2.085  0.8255
 StepF4 - StepF17   0.084511 0.0332 Inf   2.545  0.4955
 StepF4 - StepF18   0.090288 0.0332 Inf   2.719  0.3670
 StepF5 - StepF6   -0.036121 0.0332 Inf  -1.088  0.9998
 StepF5 - StepF7   -0.062280 0.0332 Inf  -1.875  0.9212
 StepF5 - StepF8    0.001134 0.0332 Inf   0.034  1.0000
 StepF5 - StepF9   -0.001547 0.0332 Inf  -0.047  1.0000
 StepF5 - StepF10  -0.044300 0.0332 Inf  -1.334  0.9976
 StepF5 - StepF11  -0.076325 0.0332 Inf  -2.298  0.6848
 StepF5 - StepF12   0.040547 0.0332 Inf   1.221  0.9992
 StepF5 - StepF13   0.000521 0.0332 Inf   0.016  1.0000
 StepF5 - StepF14  -0.036321 0.0332 Inf  -1.094  0.9998
 StepF5 - StepF15  -0.025558 0.0332 Inf  -0.770  1.0000
 StepF5 - StepF16   0.028098 0.0332 Inf   0.846  1.0000
 StepF5 - StepF17   0.043379 0.0332 Inf   1.306  0.9981
 StepF5 - StepF18   0.049155 0.0332 Inf   1.480  0.9920
 StepF6 - StepF7   -0.026160 0.0332 Inf  -0.788  1.0000
 StepF6 - StepF8    0.037255 0.0332 Inf   1.122  0.9997
 StepF6 - StepF9    0.034573 0.0332 Inf   1.041  0.9999
 StepF6 - StepF10  -0.008180 0.0332 Inf  -0.246  1.0000
 StepF6 - StepF11  -0.040204 0.0332 Inf  -1.211  0.9993
 StepF6 - StepF12   0.076667 0.0332 Inf   2.309  0.6772
 StepF6 - StepF13   0.036642 0.0332 Inf   1.103  0.9998
 StepF6 - StepF14  -0.000200 0.0332 Inf  -0.006  1.0000
 StepF6 - StepF15   0.010562 0.0332 Inf   0.318  1.0000
 StepF6 - StepF16   0.064219 0.0332 Inf   1.934  0.8992
 StepF6 - StepF17   0.079499 0.0332 Inf   2.394  0.6126
 StepF6 - StepF18   0.085276 0.0332 Inf   2.568  0.4778
 StepF7 - StepF8    0.063414 0.0332 Inf   1.910  0.9087
 StepF7 - StepF9    0.060733 0.0332 Inf   1.829  0.9362
 StepF7 - StepF10   0.017980 0.0332 Inf   0.541  1.0000
 StepF7 - StepF11  -0.014044 0.0332 Inf  -0.423  1.0000
 StepF7 - StepF12   0.102827 0.0332 Inf   3.096  0.1570
 StepF7 - StepF13   0.062801 0.0332 Inf   1.891  0.9156
 StepF7 - StepF14   0.025960 0.0332 Inf   0.782  1.0000
 StepF7 - StepF15   0.036722 0.0332 Inf   1.106  0.9998
 StepF7 - StepF16   0.090378 0.0332 Inf   2.722  0.3651
 StepF7 - StepF17   0.105659 0.0332 Inf   3.182  0.1251
 StepF7 - StepF18   0.111436 0.0332 Inf   3.356  0.0758
 StepF8 - StepF9   -0.002681 0.0332 Inf  -0.081  1.0000
 StepF8 - StepF10  -0.045434 0.0332 Inf  -1.368  0.9968
 StepF8 - StepF11  -0.077459 0.0332 Inf  -2.332  0.6594
 StepF8 - StepF12   0.039412 0.0332 Inf   1.187  0.9994
 StepF8 - StepF13  -0.000613 0.0332 Inf  -0.018  1.0000
 StepF8 - StepF14  -0.037455 0.0332 Inf  -1.128  0.9997
 StepF8 - StepF15  -0.026693 0.0332 Inf  -0.804  1.0000
 StepF8 - StepF16   0.026964 0.0332 Inf   0.812  1.0000
 StepF8 - StepF17   0.042245 0.0332 Inf   1.272  0.9987
 StepF8 - StepF18   0.048021 0.0332 Inf   1.446  0.9939
 StepF9 - StepF10  -0.042753 0.0332 Inf  -1.287  0.9984
 StepF9 - StepF11  -0.074778 0.0332 Inf  -2.252  0.7184
 StepF9 - StepF12   0.042094 0.0332 Inf   1.268  0.9987
 StepF9 - StepF13   0.002068 0.0332 Inf   0.062  1.0000
 StepF9 - StepF14  -0.034774 0.0332 Inf  -1.047  0.9999
 StepF9 - StepF15  -0.024011 0.0332 Inf  -0.723  1.0000
 StepF9 - StepF16   0.029645 0.0332 Inf   0.893  1.0000
 StepF9 - StepF17   0.044926 0.0332 Inf   1.353  0.9972
 StepF9 - StepF18   0.050703 0.0332 Inf   1.527  0.9889
 StepF10 - StepF11 -0.032024 0.0332 Inf  -0.964  1.0000
 StepF10 - StepF12  0.084847 0.0332 Inf   2.555  0.4877
 StepF10 - StepF13  0.044821 0.0332 Inf   1.350  0.9972
 StepF10 - StepF14  0.007980 0.0332 Inf   0.240  1.0000
 StepF10 - StepF15  0.018742 0.0332 Inf   0.564  1.0000
 StepF10 - StepF16  0.072398 0.0332 Inf   2.180  0.7672
 StepF10 - StepF17  0.087679 0.0332 Inf   2.640  0.4234
 StepF10 - StepF18  0.093456 0.0332 Inf   2.814  0.3036
 StepF11 - StepF12  0.116871 0.0332 Inf   3.519  0.0453
 StepF11 - StepF13  0.076846 0.0332 Inf   2.314  0.6732
 StepF11 - StepF14  0.040004 0.0332 Inf   1.205  0.9993
 StepF11 - StepF15  0.050766 0.0332 Inf   1.529  0.9887
 StepF11 - StepF16  0.104423 0.0332 Inf   3.144  0.1383
 StepF11 - StepF17  0.119703 0.0332 Inf   3.605  0.0341
 StepF11 - StepF18  0.125480 0.0332 Inf   3.779  0.0184
 StepF12 - StepF13 -0.040025 0.0332 Inf  -1.205  0.9993
 StepF12 - StepF14 -0.076867 0.0332 Inf  -2.315  0.6727
 StepF12 - StepF15 -0.066105 0.0332 Inf  -1.991  0.8743
 StepF12 - StepF16 -0.012449 0.0332 Inf  -0.375  1.0000
 StepF12 - StepF17  0.002832 0.0332 Inf   0.085  1.0000
 StepF12 - StepF18  0.008609 0.0332 Inf   0.259  1.0000
 StepF13 - StepF14 -0.036842 0.0332 Inf  -1.109  0.9998
 StepF13 - StepF15 -0.026079 0.0332 Inf  -0.785  1.0000
 StepF13 - StepF16  0.027577 0.0332 Inf   0.830  1.0000
 StepF13 - StepF17  0.042858 0.0332 Inf   1.291  0.9984
 StepF13 - StepF18  0.048634 0.0332 Inf   1.465  0.9929
 StepF14 - StepF15  0.010762 0.0332 Inf   0.324  1.0000
 StepF14 - StepF16  0.064419 0.0332 Inf   1.940  0.8967
 StepF14 - StepF17  0.079699 0.0332 Inf   2.400  0.6080
 StepF14 - StepF18  0.085476 0.0332 Inf   2.574  0.4732
 StepF15 - StepF16  0.053656 0.0332 Inf   1.616  0.9799
 StepF15 - StepF17  0.068937 0.0332 Inf   2.076  0.8305
 StepF15 - StepF18  0.074714 0.0332 Inf   2.250  0.7197
 StepF16 - StepF17  0.015281 0.0332 Inf   0.460  1.0000
 StepF16 - StepF18  0.021057 0.0332 Inf   0.634  1.0000
 StepF17 - StepF18  0.005777 0.0332 Inf   0.174  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.04586 0.0332 Inf  -1.381  1.0000
 StepF3 - StepF2    0.06554 0.0332 Inf   1.974  0.7264
 StepF4 - StepF3   -0.07724 0.0332 Inf  -2.326  0.3205
 StepF5 - StepF4   -0.04113 0.0332 Inf  -1.239  1.0000
 StepF6 - StepF5    0.03612 0.0332 Inf   1.088  1.0000
 StepF7 - StepF6    0.02616 0.0332 Inf   0.788  1.0000
 StepF8 - StepF7   -0.06341 0.0332 Inf  -1.910  0.7866
 StepF9 - StepF8    0.00268 0.0332 Inf   0.081  1.0000
 StepF10 - StepF9   0.04275 0.0332 Inf   1.287  1.0000
 StepF11 - StepF10  0.03202 0.0332 Inf   0.964  1.0000
 StepF12 - StepF11 -0.11687 0.0332 Inf  -3.519  0.0074
 StepF13 - StepF12  0.04003 0.0332 Inf   1.205  1.0000
 StepF14 - StepF13  0.03684 0.0332 Inf   1.109  1.0000
 StepF15 - StepF14 -0.01076 0.0332 Inf  -0.324  1.0000
 StepF16 - StepF15 -0.05366 0.0332 Inf  -1.616  1.0000
 StepF17 - StepF16 -0.01528 0.0332 Inf  -0.460  1.0000
 StepF18 - StepF17 -0.00578 0.0332 Inf  -0.174  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.04586 0.0332 Inf  -1.381  1.0000
 StepF3 - StepF2    0.06554 0.0332 Inf   1.974  0.7264
 StepF4 - StepF3   -0.07724 0.0332 Inf  -2.326  0.3205
 StepF5 - StepF4   -0.04113 0.0332 Inf  -1.239  1.0000
 StepF6 - StepF5    0.03612 0.0332 Inf   1.088  1.0000
 StepF7 - StepF6    0.02616 0.0332 Inf   0.788  1.0000
 StepF8 - StepF7   -0.06341 0.0332 Inf  -1.910  0.7866
 StepF9 - StepF8    0.00268 0.0332 Inf   0.081  1.0000
 StepF10 - StepF9   0.04275 0.0332 Inf   1.287  1.0000
 StepF11 - StepF10  0.03202 0.0332 Inf   0.964  1.0000
 StepF12 - StepF11 -0.11687 0.0332 Inf  -3.519  0.0074
 StepF13 - StepF12  0.04003 0.0332 Inf   1.205  1.0000
 StepF14 - StepF13  0.03684 0.0332 Inf   1.109  1.0000
 StepF15 - StepF14 -0.01076 0.0332 Inf  -0.324  1.0000
 StepF16 - StepF15 -0.05366 0.0332 Inf  -1.616  1.0000
 StepF17 - StepF16 -0.01528 0.0332 Inf  -0.460  1.0000
 StepF18 - StepF17 -0.00578 0.0332 Inf  -0.174  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST | Block 5 | 18 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    57.4981 17  2.703e-06 ***
Accuracy  0.6287  1     0.4278    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.656 0.0827 Inf     0.494     0.818
 2      0.836 0.0827 Inf     0.674     0.998
 3      0.780 0.0827 Inf     0.618     0.942
 4      0.669 0.0827 Inf     0.507     0.831
 5      0.579 0.0827 Inf     0.417     0.741
 6      0.650 0.0827 Inf     0.488     0.812
 7      0.646 0.0827 Inf     0.484     0.808
 8      0.686 0.0827 Inf     0.524     0.849
 9      0.744 0.0827 Inf     0.582     0.906
 10     0.762 0.0827 Inf     0.600     0.924
 11     0.712 0.0827 Inf     0.550     0.874
 12     0.602 0.0827 Inf     0.439     0.764
 13     0.563 0.0827 Inf     0.401     0.725
 14     0.652 0.0827 Inf     0.489     0.814
 15     0.656 0.0827 Inf     0.494     0.818
 16     0.602 0.0827 Inf     0.439     0.764
 17     0.551 0.0827 Inf     0.389     0.713
 18     0.544 0.0827 Inf     0.382     0.706

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.597 0.0855 Inf     0.430     0.765
 2      0.777 0.0855 Inf     0.609     0.945
 3      0.721 0.0855 Inf     0.553     0.888
 4      0.610 0.0855 Inf     0.443     0.778
 5      0.520 0.0855 Inf     0.353     0.688
 6      0.591 0.0855 Inf     0.424     0.759
 7      0.587 0.0855 Inf     0.420     0.755
 8      0.628 0.0855 Inf     0.460     0.795
 9      0.685 0.0855 Inf     0.518     0.853
 10     0.703 0.0855 Inf     0.536     0.871
 11     0.653 0.0855 Inf     0.485     0.820
 12     0.543 0.0855 Inf     0.375     0.710
 13     0.504 0.0855 Inf     0.336     0.671
 14     0.593 0.0855 Inf     0.425     0.760
 15     0.597 0.0855 Inf     0.429     0.765
 16     0.543 0.0855 Inf     0.375     0.710
 17     0.492 0.0855 Inf     0.325     0.660
 18     0.485 0.0855 Inf     0.317     0.652

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -1.80e-01 0.0632 Inf  -2.841  0.2871
 StepF1 - StepF3   -1.23e-01 0.0632 Inf  -1.951  0.8919
 StepF1 - StepF4   -1.28e-02 0.0632 Inf  -0.203  1.0000
 StepF1 - StepF5    7.72e-02 0.0632 Inf   1.221  0.9992
 StepF1 - StepF6    6.26e-03 0.0632 Inf   0.099  1.0000
 StepF1 - StepF7    1.01e-02 0.0632 Inf   0.159  1.0000
 StepF1 - StepF8   -3.01e-02 0.0632 Inf  -0.476  1.0000
 StepF1 - StepF9   -8.78e-02 0.0632 Inf  -1.389  0.9961
 StepF1 - StepF10  -1.06e-01 0.0632 Inf  -1.674  0.9715
 StepF1 - StepF11  -5.54e-02 0.0632 Inf  -0.876  1.0000
 StepF1 - StepF12   5.49e-02 0.0632 Inf   0.868  1.0000
 StepF1 - StepF13   9.37e-02 0.0632 Inf   1.483  0.9919
 StepF1 - StepF14   4.86e-03 0.0632 Inf   0.077  1.0000
 StepF1 - StepF15   4.70e-04 0.0632 Inf   0.007  1.0000
 StepF1 - StepF16   5.49e-02 0.0632 Inf   0.868  1.0000
 StepF1 - StepF17   1.05e-01 0.0632 Inf   1.664  0.9730
 StepF1 - StepF18   1.13e-01 0.0632 Inf   1.782  0.9491
 StepF2 - StepF3    5.62e-02 0.0632 Inf   0.890  1.0000
 StepF2 - StepF4    1.67e-01 0.0632 Inf   2.638  0.4253
 StepF2 - StepF5    2.57e-01 0.0632 Inf   4.062  0.0062
 StepF2 - StepF6    1.86e-01 0.0632 Inf   2.940  0.2304
 StepF2 - StepF7    1.90e-01 0.0632 Inf   3.000  0.1999
 StepF2 - StepF8    1.50e-01 0.0632 Inf   2.365  0.6349
 StepF2 - StepF9    9.18e-02 0.0632 Inf   1.452  0.9936
 StepF2 - StepF10   7.38e-02 0.0632 Inf   1.167  0.9996
 StepF2 - StepF11   1.24e-01 0.0632 Inf   1.965  0.8859
 StepF2 - StepF12   2.34e-01 0.0632 Inf   3.709  0.0237
 StepF2 - StepF13   2.73e-01 0.0632 Inf   4.323  0.0021
 StepF2 - StepF14   1.84e-01 0.0632 Inf   2.918  0.2424
 StepF2 - StepF15   1.80e-01 0.0632 Inf   2.848  0.2825
 StepF2 - StepF16   2.34e-01 0.0632 Inf   3.709  0.0237
 StepF2 - StepF17   2.85e-01 0.0632 Inf   4.505  0.0009
 StepF2 - StepF18   2.92e-01 0.0632 Inf   4.623  0.0005
 StepF3 - StepF4    1.11e-01 0.0632 Inf   1.748  0.9572
 StepF3 - StepF5    2.01e-01 0.0632 Inf   3.172  0.1283
 StepF3 - StepF6    1.30e-01 0.0632 Inf   2.050  0.8444
 StepF3 - StepF7    1.33e-01 0.0632 Inf   2.110  0.8106
 StepF3 - StepF8    9.33e-02 0.0632 Inf   1.475  0.9923
 StepF3 - StepF9    3.56e-02 0.0632 Inf   0.562  1.0000
 StepF3 - StepF10   1.75e-02 0.0632 Inf   0.277  1.0000
 StepF3 - StepF11   6.80e-02 0.0632 Inf   1.076  0.9998
 StepF3 - StepF12   1.78e-01 0.0632 Inf   2.819  0.3005
 StepF3 - StepF13   2.17e-01 0.0632 Inf   3.434  0.0595
 StepF3 - StepF14   1.28e-01 0.0632 Inf   2.028  0.8559
 StepF3 - StepF15   1.24e-01 0.0632 Inf   1.959  0.8887
 StepF3 - StepF16   1.78e-01 0.0632 Inf   2.819  0.3004
 StepF3 - StepF17   2.29e-01 0.0632 Inf   3.616  0.0328
 StepF3 - StepF18   2.36e-01 0.0632 Inf   3.733  0.0217
 StepF4 - StepF5    9.01e-02 0.0632 Inf   1.424  0.9948
 StepF4 - StepF6    1.91e-02 0.0632 Inf   0.302  1.0000
 StepF4 - StepF7    2.29e-02 0.0632 Inf   0.362  1.0000
 StepF4 - StepF8   -1.72e-02 0.0632 Inf  -0.273  1.0000
 StepF4 - StepF9   -7.50e-02 0.0632 Inf  -1.186  0.9994
 StepF4 - StepF10  -9.30e-02 0.0632 Inf  -1.471  0.9926
 StepF4 - StepF11  -4.25e-02 0.0632 Inf  -0.672  1.0000
 StepF4 - StepF12   6.77e-02 0.0632 Inf   1.071  0.9999
 StepF4 - StepF13   1.07e-01 0.0632 Inf   1.686  0.9695
 StepF4 - StepF14   1.77e-02 0.0632 Inf   0.280  1.0000
 StepF4 - StepF15   1.33e-02 0.0632 Inf   0.211  1.0000
 StepF4 - StepF16   6.77e-02 0.0632 Inf   1.071  0.9999
 StepF4 - StepF17   1.18e-01 0.0632 Inf   1.868  0.9238
 StepF4 - StepF18   1.26e-01 0.0632 Inf   1.985  0.8769
 StepF5 - StepF6   -7.09e-02 0.0632 Inf  -1.122  0.9997
 StepF5 - StepF7   -6.71e-02 0.0632 Inf  -1.062  0.9999
 StepF5 - StepF8   -1.07e-01 0.0632 Inf  -1.697  0.9675
 StepF5 - StepF9   -1.65e-01 0.0632 Inf  -2.610  0.4459
 StepF5 - StepF10  -1.83e-01 0.0632 Inf  -2.895  0.2550
 StepF5 - StepF11  -1.33e-01 0.0632 Inf  -2.097  0.8186
 StepF5 - StepF12  -2.23e-02 0.0632 Inf  -0.353  1.0000
 StepF5 - StepF13   1.65e-02 0.0632 Inf   0.261  1.0000
 StepF5 - StepF14  -7.23e-02 0.0632 Inf  -1.144  0.9997
 StepF5 - StepF15  -7.67e-02 0.0632 Inf  -1.214  0.9993
 StepF5 - StepF16  -2.23e-02 0.0632 Inf  -0.353  1.0000
 StepF5 - StepF17   2.80e-02 0.0632 Inf   0.443  1.0000
 StepF5 - StepF18   3.55e-02 0.0632 Inf   0.561  1.0000
 StepF6 - StepF7    3.80e-03 0.0632 Inf   0.060  1.0000
 StepF6 - StepF8   -3.64e-02 0.0632 Inf  -0.575  1.0000
 StepF6 - StepF9   -9.41e-02 0.0632 Inf  -1.488  0.9916
 StepF6 - StepF10  -1.12e-01 0.0632 Inf  -1.773  0.9513
 StepF6 - StepF11  -6.16e-02 0.0632 Inf  -0.975  1.0000
 StepF6 - StepF12   4.86e-02 0.0632 Inf   0.769  1.0000
 StepF6 - StepF13   8.75e-02 0.0632 Inf   1.384  0.9963
 StepF6 - StepF14  -1.40e-03 0.0632 Inf  -0.022  1.0000
 StepF6 - StepF15  -5.79e-03 0.0632 Inf  -0.092  1.0000
 StepF6 - StepF16   4.86e-02 0.0632 Inf   0.769  1.0000
 StepF6 - StepF17   9.90e-02 0.0632 Inf   1.565  0.9855
 StepF6 - StepF18   1.06e-01 0.0632 Inf   1.683  0.9700
 StepF7 - StepF8   -4.02e-02 0.0632 Inf  -0.635  1.0000
 StepF7 - StepF9   -9.79e-02 0.0632 Inf  -1.548  0.9871
 StepF7 - StepF10  -1.16e-01 0.0632 Inf  -1.833  0.9348
 StepF7 - StepF11  -6.54e-02 0.0632 Inf  -1.035  0.9999
 StepF7 - StepF12   4.48e-02 0.0632 Inf   0.709  1.0000
 StepF7 - StepF13   8.37e-02 0.0632 Inf   1.323  0.9978
 StepF7 - StepF14  -5.20e-03 0.0632 Inf  -0.082  1.0000
 StepF7 - StepF15  -9.59e-03 0.0632 Inf  -0.152  1.0000
 StepF7 - StepF16   4.48e-02 0.0632 Inf   0.709  1.0000
 StepF7 - StepF17   9.52e-02 0.0632 Inf   1.505  0.9904
 StepF7 - StepF18   1.03e-01 0.0632 Inf   1.623  0.9790
 StepF8 - StepF9   -5.77e-02 0.0632 Inf  -0.913  1.0000
 StepF8 - StepF10  -7.58e-02 0.0632 Inf  -1.198  0.9994
 StepF8 - StepF11  -2.53e-02 0.0632 Inf  -0.400  1.0000
 StepF8 - StepF12   8.50e-02 0.0632 Inf   1.344  0.9974
 StepF8 - StepF13   1.24e-01 0.0632 Inf   1.959  0.8888
 StepF8 - StepF14   3.50e-02 0.0632 Inf   0.553  1.0000
 StepF8 - StepF15   3.06e-02 0.0632 Inf   0.483  1.0000
 StepF8 - StepF16   8.50e-02 0.0632 Inf   1.344  0.9974
 StepF8 - StepF17   1.35e-01 0.0632 Inf   2.140  0.7924
 StepF8 - StepF18   1.43e-01 0.0632 Inf   2.258  0.7141
 StepF9 - StepF10  -1.80e-02 0.0632 Inf  -0.285  1.0000
 StepF9 - StepF11   3.25e-02 0.0632 Inf   0.513  1.0000
 StepF9 - StepF12   1.43e-01 0.0632 Inf   2.257  0.7148
 StepF9 - StepF13   1.82e-01 0.0632 Inf   2.871  0.2687
 StepF9 - StepF14   9.27e-02 0.0632 Inf   1.466  0.9929
 StepF9 - StepF15   8.83e-02 0.0632 Inf   1.396  0.9959
 StepF9 - StepF16   1.43e-01 0.0632 Inf   2.257  0.7147
 StepF9 - StepF17   1.93e-01 0.0632 Inf   3.053  0.1752
 StepF9 - StepF18   2.00e-01 0.0632 Inf   3.171  0.1288
 StepF10 - StepF11  5.05e-02 0.0632 Inf   0.798  1.0000
 StepF10 - StepF12  1.61e-01 0.0632 Inf   2.542  0.4977
 StepF10 - StepF13  2.00e-01 0.0632 Inf   3.157  0.1338
 StepF10 - StepF14  1.11e-01 0.0632 Inf   1.751  0.9565
 StepF10 - StepF15  1.06e-01 0.0632 Inf   1.682  0.9703
 StepF10 - StepF16  1.61e-01 0.0632 Inf   2.542  0.4976
 StepF10 - StepF17  2.11e-01 0.0632 Inf   3.339  0.0798
 StepF10 - StepF18  2.19e-01 0.0632 Inf   3.456  0.0555
 StepF11 - StepF12  1.10e-01 0.0632 Inf   1.744  0.9582
 StepF11 - StepF13  1.49e-01 0.0632 Inf   2.358  0.6399
 StepF11 - StepF14  6.02e-02 0.0632 Inf   0.953  1.0000
 StepF11 - StepF15  5.58e-02 0.0632 Inf   0.883  1.0000
 StepF11 - StepF16  1.10e-01 0.0632 Inf   1.744  0.9582
 StepF11 - StepF17  1.61e-01 0.0632 Inf   2.540  0.4991
 StepF11 - StepF18  1.68e-01 0.0632 Inf   2.658  0.4107
 StepF12 - StepF13  3.89e-02 0.0632 Inf   0.615  1.0000
 StepF12 - StepF14 -5.00e-02 0.0632 Inf  -0.791  1.0000
 StepF12 - StepF15 -5.44e-02 0.0632 Inf  -0.860  1.0000
 StepF12 - StepF16  4.13e-06 0.0632 Inf   0.000  1.0000
 StepF12 - StepF17  5.04e-02 0.0632 Inf   0.797  1.0000
 StepF12 - StepF18  5.78e-02 0.0632 Inf   0.914  1.0000
 StepF13 - StepF14 -8.89e-02 0.0632 Inf  -1.406  0.9956
 StepF13 - StepF15 -9.33e-02 0.0632 Inf  -1.475  0.9923
 StepF13 - StepF16 -3.89e-02 0.0632 Inf  -0.615  1.0000
 StepF13 - StepF17  1.15e-02 0.0632 Inf   0.182  1.0000
 StepF13 - StepF18  1.89e-02 0.0632 Inf   0.299  1.0000
 StepF14 - StepF15 -4.39e-03 0.0632 Inf  -0.069  1.0000
 StepF14 - StepF16  5.00e-02 0.0632 Inf   0.791  1.0000
 StepF14 - StepF17  1.00e-01 0.0632 Inf   1.588  0.9832
 StepF14 - StepF18  1.08e-01 0.0632 Inf   1.705  0.9661
 StepF15 - StepF16  5.44e-02 0.0632 Inf   0.861  1.0000
 StepF15 - StepF17  1.05e-01 0.0632 Inf   1.657  0.9742
 StepF15 - StepF18  1.12e-01 0.0632 Inf   1.774  0.9510
 StepF16 - StepF17  5.04e-02 0.0632 Inf   0.797  1.0000
 StepF16 - StepF18  5.78e-02 0.0632 Inf   0.914  1.0000
 StepF17 - StepF18  7.42e-03 0.0632 Inf   0.117  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -1.80e-01 0.0632 Inf  -2.841  0.2871
 StepF1 - StepF3   -1.23e-01 0.0632 Inf  -1.951  0.8919
 StepF1 - StepF4   -1.28e-02 0.0632 Inf  -0.203  1.0000
 StepF1 - StepF5    7.72e-02 0.0632 Inf   1.221  0.9992
 StepF1 - StepF6    6.26e-03 0.0632 Inf   0.099  1.0000
 StepF1 - StepF7    1.01e-02 0.0632 Inf   0.159  1.0000
 StepF1 - StepF8   -3.01e-02 0.0632 Inf  -0.476  1.0000
 StepF1 - StepF9   -8.78e-02 0.0632 Inf  -1.389  0.9961
 StepF1 - StepF10  -1.06e-01 0.0632 Inf  -1.674  0.9715
 StepF1 - StepF11  -5.54e-02 0.0632 Inf  -0.876  1.0000
 StepF1 - StepF12   5.49e-02 0.0632 Inf   0.868  1.0000
 StepF1 - StepF13   9.37e-02 0.0632 Inf   1.483  0.9919
 StepF1 - StepF14   4.86e-03 0.0632 Inf   0.077  1.0000
 StepF1 - StepF15   4.70e-04 0.0632 Inf   0.007  1.0000
 StepF1 - StepF16   5.49e-02 0.0632 Inf   0.868  1.0000
 StepF1 - StepF17   1.05e-01 0.0632 Inf   1.664  0.9730
 StepF1 - StepF18   1.13e-01 0.0632 Inf   1.782  0.9491
 StepF2 - StepF3    5.62e-02 0.0632 Inf   0.890  1.0000
 StepF2 - StepF4    1.67e-01 0.0632 Inf   2.638  0.4253
 StepF2 - StepF5    2.57e-01 0.0632 Inf   4.062  0.0062
 StepF2 - StepF6    1.86e-01 0.0632 Inf   2.940  0.2304
 StepF2 - StepF7    1.90e-01 0.0632 Inf   3.000  0.1999
 StepF2 - StepF8    1.50e-01 0.0632 Inf   2.365  0.6349
 StepF2 - StepF9    9.18e-02 0.0632 Inf   1.452  0.9936
 StepF2 - StepF10   7.38e-02 0.0632 Inf   1.167  0.9996
 StepF2 - StepF11   1.24e-01 0.0632 Inf   1.965  0.8859
 StepF2 - StepF12   2.34e-01 0.0632 Inf   3.709  0.0237
 StepF2 - StepF13   2.73e-01 0.0632 Inf   4.323  0.0021
 StepF2 - StepF14   1.84e-01 0.0632 Inf   2.918  0.2424
 StepF2 - StepF15   1.80e-01 0.0632 Inf   2.848  0.2825
 StepF2 - StepF16   2.34e-01 0.0632 Inf   3.709  0.0237
 StepF2 - StepF17   2.85e-01 0.0632 Inf   4.505  0.0009
 StepF2 - StepF18   2.92e-01 0.0632 Inf   4.623  0.0005
 StepF3 - StepF4    1.11e-01 0.0632 Inf   1.748  0.9572
 StepF3 - StepF5    2.01e-01 0.0632 Inf   3.172  0.1283
 StepF3 - StepF6    1.30e-01 0.0632 Inf   2.050  0.8444
 StepF3 - StepF7    1.33e-01 0.0632 Inf   2.110  0.8106
 StepF3 - StepF8    9.33e-02 0.0632 Inf   1.475  0.9923
 StepF3 - StepF9    3.56e-02 0.0632 Inf   0.562  1.0000
 StepF3 - StepF10   1.75e-02 0.0632 Inf   0.277  1.0000
 StepF3 - StepF11   6.80e-02 0.0632 Inf   1.076  0.9998
 StepF3 - StepF12   1.78e-01 0.0632 Inf   2.819  0.3005
 StepF3 - StepF13   2.17e-01 0.0632 Inf   3.434  0.0595
 StepF3 - StepF14   1.28e-01 0.0632 Inf   2.028  0.8559
 StepF3 - StepF15   1.24e-01 0.0632 Inf   1.959  0.8887
 StepF3 - StepF16   1.78e-01 0.0632 Inf   2.819  0.3004
 StepF3 - StepF17   2.29e-01 0.0632 Inf   3.616  0.0328
 StepF3 - StepF18   2.36e-01 0.0632 Inf   3.733  0.0217
 StepF4 - StepF5    9.01e-02 0.0632 Inf   1.424  0.9948
 StepF4 - StepF6    1.91e-02 0.0632 Inf   0.302  1.0000
 StepF4 - StepF7    2.29e-02 0.0632 Inf   0.362  1.0000
 StepF4 - StepF8   -1.72e-02 0.0632 Inf  -0.273  1.0000
 StepF4 - StepF9   -7.50e-02 0.0632 Inf  -1.186  0.9994
 StepF4 - StepF10  -9.30e-02 0.0632 Inf  -1.471  0.9926
 StepF4 - StepF11  -4.25e-02 0.0632 Inf  -0.672  1.0000
 StepF4 - StepF12   6.77e-02 0.0632 Inf   1.071  0.9999
 StepF4 - StepF13   1.07e-01 0.0632 Inf   1.686  0.9695
 StepF4 - StepF14   1.77e-02 0.0632 Inf   0.280  1.0000
 StepF4 - StepF15   1.33e-02 0.0632 Inf   0.211  1.0000
 StepF4 - StepF16   6.77e-02 0.0632 Inf   1.071  0.9999
 StepF4 - StepF17   1.18e-01 0.0632 Inf   1.868  0.9238
 StepF4 - StepF18   1.26e-01 0.0632 Inf   1.985  0.8769
 StepF5 - StepF6   -7.09e-02 0.0632 Inf  -1.122  0.9997
 StepF5 - StepF7   -6.71e-02 0.0632 Inf  -1.062  0.9999
 StepF5 - StepF8   -1.07e-01 0.0632 Inf  -1.697  0.9675
 StepF5 - StepF9   -1.65e-01 0.0632 Inf  -2.610  0.4459
 StepF5 - StepF10  -1.83e-01 0.0632 Inf  -2.895  0.2550
 StepF5 - StepF11  -1.33e-01 0.0632 Inf  -2.097  0.8186
 StepF5 - StepF12  -2.23e-02 0.0632 Inf  -0.353  1.0000
 StepF5 - StepF13   1.65e-02 0.0632 Inf   0.261  1.0000
 StepF5 - StepF14  -7.23e-02 0.0632 Inf  -1.144  0.9997
 StepF5 - StepF15  -7.67e-02 0.0632 Inf  -1.214  0.9993
 StepF5 - StepF16  -2.23e-02 0.0632 Inf  -0.353  1.0000
 StepF5 - StepF17   2.80e-02 0.0632 Inf   0.443  1.0000
 StepF5 - StepF18   3.55e-02 0.0632 Inf   0.561  1.0000
 StepF6 - StepF7    3.80e-03 0.0632 Inf   0.060  1.0000
 StepF6 - StepF8   -3.64e-02 0.0632 Inf  -0.575  1.0000
 StepF6 - StepF9   -9.41e-02 0.0632 Inf  -1.488  0.9916
 StepF6 - StepF10  -1.12e-01 0.0632 Inf  -1.773  0.9513
 StepF6 - StepF11  -6.16e-02 0.0632 Inf  -0.975  1.0000
 StepF6 - StepF12   4.86e-02 0.0632 Inf   0.769  1.0000
 StepF6 - StepF13   8.75e-02 0.0632 Inf   1.384  0.9963
 StepF6 - StepF14  -1.40e-03 0.0632 Inf  -0.022  1.0000
 StepF6 - StepF15  -5.79e-03 0.0632 Inf  -0.092  1.0000
 StepF6 - StepF16   4.86e-02 0.0632 Inf   0.769  1.0000
 StepF6 - StepF17   9.90e-02 0.0632 Inf   1.565  0.9855
 StepF6 - StepF18   1.06e-01 0.0632 Inf   1.683  0.9700
 StepF7 - StepF8   -4.02e-02 0.0632 Inf  -0.635  1.0000
 StepF7 - StepF9   -9.79e-02 0.0632 Inf  -1.548  0.9871
 StepF7 - StepF10  -1.16e-01 0.0632 Inf  -1.833  0.9348
 StepF7 - StepF11  -6.54e-02 0.0632 Inf  -1.035  0.9999
 StepF7 - StepF12   4.48e-02 0.0632 Inf   0.709  1.0000
 StepF7 - StepF13   8.37e-02 0.0632 Inf   1.323  0.9978
 StepF7 - StepF14  -5.20e-03 0.0632 Inf  -0.082  1.0000
 StepF7 - StepF15  -9.59e-03 0.0632 Inf  -0.152  1.0000
 StepF7 - StepF16   4.48e-02 0.0632 Inf   0.709  1.0000
 StepF7 - StepF17   9.52e-02 0.0632 Inf   1.505  0.9904
 StepF7 - StepF18   1.03e-01 0.0632 Inf   1.623  0.9790
 StepF8 - StepF9   -5.77e-02 0.0632 Inf  -0.913  1.0000
 StepF8 - StepF10  -7.58e-02 0.0632 Inf  -1.198  0.9994
 StepF8 - StepF11  -2.53e-02 0.0632 Inf  -0.400  1.0000
 StepF8 - StepF12   8.50e-02 0.0632 Inf   1.344  0.9974
 StepF8 - StepF13   1.24e-01 0.0632 Inf   1.959  0.8888
 StepF8 - StepF14   3.50e-02 0.0632 Inf   0.553  1.0000
 StepF8 - StepF15   3.06e-02 0.0632 Inf   0.483  1.0000
 StepF8 - StepF16   8.50e-02 0.0632 Inf   1.344  0.9974
 StepF8 - StepF17   1.35e-01 0.0632 Inf   2.140  0.7924
 StepF8 - StepF18   1.43e-01 0.0632 Inf   2.258  0.7141
 StepF9 - StepF10  -1.80e-02 0.0632 Inf  -0.285  1.0000
 StepF9 - StepF11   3.25e-02 0.0632 Inf   0.513  1.0000
 StepF9 - StepF12   1.43e-01 0.0632 Inf   2.257  0.7148
 StepF9 - StepF13   1.82e-01 0.0632 Inf   2.871  0.2687
 StepF9 - StepF14   9.27e-02 0.0632 Inf   1.466  0.9929
 StepF9 - StepF15   8.83e-02 0.0632 Inf   1.396  0.9959
 StepF9 - StepF16   1.43e-01 0.0632 Inf   2.257  0.7147
 StepF9 - StepF17   1.93e-01 0.0632 Inf   3.053  0.1752
 StepF9 - StepF18   2.00e-01 0.0632 Inf   3.171  0.1288
 StepF10 - StepF11  5.05e-02 0.0632 Inf   0.798  1.0000
 StepF10 - StepF12  1.61e-01 0.0632 Inf   2.542  0.4977
 StepF10 - StepF13  2.00e-01 0.0632 Inf   3.157  0.1338
 StepF10 - StepF14  1.11e-01 0.0632 Inf   1.751  0.9565
 StepF10 - StepF15  1.06e-01 0.0632 Inf   1.682  0.9703
 StepF10 - StepF16  1.61e-01 0.0632 Inf   2.542  0.4976
 StepF10 - StepF17  2.11e-01 0.0632 Inf   3.339  0.0798
 StepF10 - StepF18  2.19e-01 0.0632 Inf   3.456  0.0555
 StepF11 - StepF12  1.10e-01 0.0632 Inf   1.744  0.9582
 StepF11 - StepF13  1.49e-01 0.0632 Inf   2.358  0.6399
 StepF11 - StepF14  6.02e-02 0.0632 Inf   0.953  1.0000
 StepF11 - StepF15  5.58e-02 0.0632 Inf   0.883  1.0000
 StepF11 - StepF16  1.10e-01 0.0632 Inf   1.744  0.9582
 StepF11 - StepF17  1.61e-01 0.0632 Inf   2.540  0.4991
 StepF11 - StepF18  1.68e-01 0.0632 Inf   2.658  0.4107
 StepF12 - StepF13  3.89e-02 0.0632 Inf   0.615  1.0000
 StepF12 - StepF14 -5.00e-02 0.0632 Inf  -0.791  1.0000
 StepF12 - StepF15 -5.44e-02 0.0632 Inf  -0.860  1.0000
 StepF12 - StepF16  4.13e-06 0.0632 Inf   0.000  1.0000
 StepF12 - StepF17  5.04e-02 0.0632 Inf   0.797  1.0000
 StepF12 - StepF18  5.78e-02 0.0632 Inf   0.914  1.0000
 StepF13 - StepF14 -8.89e-02 0.0632 Inf  -1.406  0.9956
 StepF13 - StepF15 -9.33e-02 0.0632 Inf  -1.475  0.9923
 StepF13 - StepF16 -3.89e-02 0.0632 Inf  -0.615  1.0000
 StepF13 - StepF17  1.15e-02 0.0632 Inf   0.182  1.0000
 StepF13 - StepF18  1.89e-02 0.0632 Inf   0.299  1.0000
 StepF14 - StepF15 -4.39e-03 0.0632 Inf  -0.069  1.0000
 StepF14 - StepF16  5.00e-02 0.0632 Inf   0.791  1.0000
 StepF14 - StepF17  1.00e-01 0.0632 Inf   1.588  0.9832
 StepF14 - StepF18  1.08e-01 0.0632 Inf   1.705  0.9661
 StepF15 - StepF16  5.44e-02 0.0632 Inf   0.861  1.0000
 StepF15 - StepF17  1.05e-01 0.0632 Inf   1.657  0.9742
 StepF15 - StepF18  1.12e-01 0.0632 Inf   1.774  0.9510
 StepF16 - StepF17  5.04e-02 0.0632 Inf   0.797  1.0000
 StepF16 - StepF18  5.78e-02 0.0632 Inf   0.914  1.0000
 StepF17 - StepF18  7.42e-03 0.0632 Inf   0.117  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.17962 0.0632 Inf   2.841  0.0765
 StepF3 - StepF2   -0.05624 0.0632 Inf  -0.890  1.0000
 StepF4 - StepF3   -0.11053 0.0632 Inf  -1.748  1.0000
 StepF5 - StepF4   -0.09006 0.0632 Inf  -1.424  1.0000
 StepF6 - StepF5    0.07095 0.0632 Inf   1.122  1.0000
 StepF7 - StepF6   -0.00380 0.0632 Inf  -0.060  1.0000
 StepF8 - StepF7    0.04016 0.0632 Inf   0.635  1.0000
 StepF9 - StepF8    0.05772 0.0632 Inf   0.913  1.0000
 StepF10 - StepF9   0.01803 0.0632 Inf   0.285  1.0000
 StepF11 - StepF10 -0.05048 0.0632 Inf  -0.798  1.0000
 StepF12 - StepF11 -0.11024 0.0632 Inf  -1.744  1.0000
 StepF13 - StepF12 -0.03886 0.0632 Inf  -0.615  1.0000
 StepF14 - StepF13  0.08888 0.0632 Inf   1.406  1.0000
 StepF15 - StepF14  0.00439 0.0632 Inf   0.069  1.0000
 StepF16 - StepF15 -0.05441 0.0632 Inf  -0.861  1.0000
 StepF17 - StepF16 -0.05036 0.0632 Inf  -0.797  1.0000
 StepF18 - StepF17 -0.00742 0.0632 Inf  -0.117  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.17962 0.0632 Inf   2.841  0.0765
 StepF3 - StepF2   -0.05624 0.0632 Inf  -0.890  1.0000
 StepF4 - StepF3   -0.11053 0.0632 Inf  -1.748  1.0000
 StepF5 - StepF4   -0.09006 0.0632 Inf  -1.424  1.0000
 StepF6 - StepF5    0.07095 0.0632 Inf   1.122  1.0000
 StepF7 - StepF6   -0.00380 0.0632 Inf  -0.060  1.0000
 StepF8 - StepF7    0.04016 0.0632 Inf   0.635  1.0000
 StepF9 - StepF8    0.05772 0.0632 Inf   0.913  1.0000
 StepF10 - StepF9   0.01803 0.0632 Inf   0.285  1.0000
 StepF11 - StepF10 -0.05048 0.0632 Inf  -0.798  1.0000
 StepF12 - StepF11 -0.11024 0.0632 Inf  -1.744  1.0000
 StepF13 - StepF12 -0.03886 0.0632 Inf  -0.615  1.0000
 StepF14 - StepF13  0.08888 0.0632 Inf   1.406  1.0000
 StepF15 - StepF14  0.00439 0.0632 Inf   0.069  1.0000
 StepF16 - StepF15 -0.05441 0.0632 Inf  -0.861  1.0000
 StepF17 - StepF16 -0.05036 0.0632 Inf  -0.797  1.0000
 StepF18 - StepF17 -0.00742 0.0632 Inf  -0.117  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST | Block 5 | 18 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    89.8575 17   6.48e-12 ***
Accuracy  0.7698  1     0.3803    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.46 0.177 Inf     1.111      1.80
 2       1.67 0.177 Inf     1.322      2.02
 3       1.53 0.177 Inf     1.180      1.87
 4       1.44 0.177 Inf     1.089      1.78
 5       1.38 0.177 Inf     1.037      1.73
 6       1.37 0.177 Inf     1.027      1.72
 7       1.48 0.177 Inf     1.136      1.83
 8       1.44 0.177 Inf     1.089      1.78
 9       1.40 0.177 Inf     1.054      1.75
 10      1.46 0.177 Inf     1.109      1.80
 11      1.33 0.177 Inf     0.987      1.68
 12      1.23 0.177 Inf     0.886      1.58
 13      1.27 0.177 Inf     0.920      1.61
 14      1.40 0.177 Inf     1.050      1.74
 15      1.32 0.177 Inf     0.972      1.67
 16      1.22 0.177 Inf     0.877      1.57
 17      1.17 0.177 Inf     0.821      1.51
 18      1.18 0.177 Inf     0.831      1.52

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.37 0.179 Inf     1.023      1.73
 2       1.59 0.179 Inf     1.234      1.94
 3       1.44 0.179 Inf     1.092      1.79
 4       1.35 0.179 Inf     1.001      1.70
 5       1.30 0.179 Inf     0.949      1.65
 6       1.29 0.179 Inf     0.939      1.64
 7       1.40 0.179 Inf     1.048      1.75
 8       1.35 0.179 Inf     1.001      1.70
 9       1.32 0.179 Inf     0.966      1.67
 10      1.37 0.179 Inf     1.021      1.72
 11      1.25 0.179 Inf     0.899      1.60
 12      1.15 0.179 Inf     0.798      1.50
 13      1.18 0.179 Inf     0.832      1.53
 14      1.31 0.179 Inf     0.962      1.66
 15      1.24 0.179 Inf     0.884      1.59
 16      1.14 0.179 Inf     0.789      1.49
 17      1.08 0.179 Inf     0.733      1.43
 18      1.09 0.179 Inf     0.742      1.44

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -2.11e-01 0.0797 Inf  -2.653  0.4138
 StepF1 - StepF3   -6.87e-02 0.0797 Inf  -0.862  1.0000
 StepF1 - StepF4    2.19e-02 0.0797 Inf   0.276  1.0000
 StepF1 - StepF5    7.43e-02 0.0797 Inf   0.933  1.0000
 StepF1 - StepF6    8.44e-02 0.0797 Inf   1.060  0.9999
 StepF1 - StepF7   -2.51e-02 0.0797 Inf  -0.315  1.0000
 StepF1 - StepF8    2.19e-02 0.0797 Inf   0.275  1.0000
 StepF1 - StepF9    5.74e-02 0.0797 Inf   0.721  1.0000
 StepF1 - StepF10   2.01e-03 0.0797 Inf   0.025  1.0000
 StepF1 - StepF11   1.24e-01 0.0797 Inf   1.553  0.9866
 StepF1 - StepF12   2.25e-01 0.0797 Inf   2.829  0.2942
 StepF1 - StepF13   1.91e-01 0.0797 Inf   2.398  0.6093
 StepF1 - StepF14   6.10e-02 0.0797 Inf   0.766  1.0000
 StepF1 - StepF15   1.39e-01 0.0797 Inf   1.742  0.9586
 StepF1 - StepF16   2.34e-01 0.0797 Inf   2.939  0.2311
 StepF1 - StepF17   2.91e-01 0.0797 Inf   3.647  0.0294
 StepF1 - StepF18   2.81e-01 0.0797 Inf   3.522  0.0449
 StepF2 - StepF3    1.43e-01 0.0797 Inf   1.791  0.9468
 StepF2 - StepF4    2.33e-01 0.0797 Inf   2.929  0.2364
 StepF2 - StepF5    2.86e-01 0.0797 Inf   3.586  0.0363
 StepF2 - StepF6    2.96e-01 0.0797 Inf   3.713  0.0234
 StepF2 - StepF7    1.86e-01 0.0797 Inf   2.338  0.6553
 StepF2 - StepF8    2.33e-01 0.0797 Inf   2.928  0.2367
 StepF2 - StepF9    2.69e-01 0.0797 Inf   3.374  0.0717
 StepF2 - StepF10   2.13e-01 0.0797 Inf   2.678  0.3955
 StepF2 - StepF11   3.35e-01 0.0797 Inf   4.207  0.0034
 StepF2 - StepF12   4.37e-01 0.0797 Inf   5.482  <.0001
 StepF2 - StepF13   4.02e-01 0.0797 Inf   5.051  0.0001
 StepF2 - StepF14   2.72e-01 0.0797 Inf   3.419  0.0623
 StepF2 - StepF15   3.50e-01 0.0797 Inf   4.395  0.0015
 StepF2 - StepF16   4.45e-01 0.0797 Inf   5.592  <.0001
 StepF2 - StepF17   5.02e-01 0.0797 Inf   6.301  <.0001
 StepF2 - StepF18   4.92e-01 0.0797 Inf   6.175  <.0001
 StepF3 - StepF4    9.06e-02 0.0797 Inf   1.138  0.9997
 StepF3 - StepF5    1.43e-01 0.0797 Inf   1.795  0.9457
 StepF3 - StepF6    1.53e-01 0.0797 Inf   1.922  0.9038
 StepF3 - StepF7    4.36e-02 0.0797 Inf   0.547  1.0000
 StepF3 - StepF8    9.06e-02 0.0797 Inf   1.137  0.9997
 StepF3 - StepF9    1.26e-01 0.0797 Inf   1.583  0.9837
 StepF3 - StepF10   7.07e-02 0.0797 Inf   0.888  1.0000
 StepF3 - StepF11   1.92e-01 0.0797 Inf   2.416  0.5957
 StepF3 - StepF12   2.94e-01 0.0797 Inf   3.692  0.0252
 StepF3 - StepF13   2.60e-01 0.0797 Inf   3.261  0.1002
 StepF3 - StepF14   1.30e-01 0.0797 Inf   1.629  0.9783
 StepF3 - StepF15   2.07e-01 0.0797 Inf   2.604  0.4504
 StepF3 - StepF16   3.03e-01 0.0797 Inf   3.801  0.0170
 StepF3 - StepF17   3.59e-01 0.0797 Inf   4.510  0.0009
 StepF3 - StepF18   3.49e-01 0.0797 Inf   4.384  0.0016
 StepF4 - StepF5    5.24e-02 0.0797 Inf   0.657  1.0000
 StepF4 - StepF6    6.25e-02 0.0797 Inf   0.784  1.0000
 StepF4 - StepF7   -4.71e-02 0.0797 Inf  -0.591  1.0000
 StepF4 - StepF8   -3.94e-05 0.0797 Inf   0.000  1.0000
 StepF4 - StepF9    3.55e-02 0.0797 Inf   0.445  1.0000
 StepF4 - StepF10  -1.99e-02 0.0797 Inf  -0.250  1.0000
 StepF4 - StepF11   1.02e-01 0.0797 Inf   1.278  0.9986
 StepF4 - StepF12   2.03e-01 0.0797 Inf   2.554  0.4887
 StepF4 - StepF13   1.69e-01 0.0797 Inf   2.123  0.8033
 StepF4 - StepF14   3.91e-02 0.0797 Inf   0.491  1.0000
 StepF4 - StepF15   1.17e-01 0.0797 Inf   1.466  0.9928
 StepF4 - StepF16   2.12e-01 0.0797 Inf   2.663  0.4066
 StepF4 - StepF17   2.69e-01 0.0797 Inf   3.372  0.0722
 StepF4 - StepF18   2.59e-01 0.0797 Inf   3.246  0.1044
 StepF5 - StepF6    1.01e-02 0.0797 Inf   0.127  1.0000
 StepF5 - StepF7   -9.94e-02 0.0797 Inf  -1.248  0.9989
 StepF5 - StepF8   -5.24e-02 0.0797 Inf  -0.658  1.0000
 StepF5 - StepF9   -1.69e-02 0.0797 Inf  -0.212  1.0000
 StepF5 - StepF10  -7.23e-02 0.0797 Inf  -0.908  1.0000
 StepF5 - StepF11   4.94e-02 0.0797 Inf   0.621  1.0000
 StepF5 - StepF12   1.51e-01 0.0797 Inf   1.896  0.9137
 StepF5 - StepF13   1.17e-01 0.0797 Inf   1.465  0.9929
 StepF5 - StepF14  -1.33e-02 0.0797 Inf  -0.167  1.0000
 StepF5 - StepF15   6.44e-02 0.0797 Inf   0.809  1.0000
 StepF5 - StepF16   1.60e-01 0.0797 Inf   2.006  0.8671
 StepF5 - StepF17   2.16e-01 0.0797 Inf   2.714  0.3700
 StepF5 - StepF18   2.06e-01 0.0797 Inf   2.589  0.4617
 StepF6 - StepF7   -1.10e-01 0.0797 Inf  -1.375  0.9966
 StepF6 - StepF8   -6.25e-02 0.0797 Inf  -0.785  1.0000
 StepF6 - StepF9   -2.70e-02 0.0797 Inf  -0.339  1.0000
 StepF6 - StepF10  -8.24e-02 0.0797 Inf  -1.035  0.9999
 StepF6 - StepF11   3.93e-02 0.0797 Inf   0.494  1.0000
 StepF6 - StepF12   1.41e-01 0.0797 Inf   1.769  0.9522
 StepF6 - StepF13   1.07e-01 0.0797 Inf   1.338  0.9975
 StepF6 - StepF14  -2.34e-02 0.0797 Inf  -0.294  1.0000
 StepF6 - StepF15   5.43e-02 0.0797 Inf   0.682  1.0000
 StepF6 - StepF16   1.50e-01 0.0797 Inf   1.879  0.9200
 StepF6 - StepF17   2.06e-01 0.0797 Inf   2.587  0.4629
 StepF6 - StepF18   1.96e-01 0.0797 Inf   2.462  0.5598
 StepF7 - StepF8    4.70e-02 0.0797 Inf   0.590  1.0000
 StepF7 - StepF9    8.25e-02 0.0797 Inf   1.036  0.9999
 StepF7 - StepF10   2.71e-02 0.0797 Inf   0.341  1.0000
 StepF7 - StepF11   1.49e-01 0.0797 Inf   1.869  0.9234
 StepF7 - StepF12   2.50e-01 0.0797 Inf   3.145  0.1383
 StepF7 - StepF13   2.16e-01 0.0797 Inf   2.714  0.3707
 StepF7 - StepF14   8.61e-02 0.0797 Inf   1.081  0.9998
 StepF7 - StepF15   1.64e-01 0.0797 Inf   2.057  0.8409
 StepF7 - StepF16   2.59e-01 0.0797 Inf   3.254  0.1022
 StepF7 - StepF17   3.16e-01 0.0797 Inf   3.963  0.0092
 StepF7 - StepF18   3.06e-01 0.0797 Inf   3.837  0.0149
 StepF8 - StepF9    3.55e-02 0.0797 Inf   0.446  1.0000
 StepF8 - StepF10  -1.99e-02 0.0797 Inf  -0.250  1.0000
 StepF8 - StepF11   1.02e-01 0.0797 Inf   1.278  0.9986
 StepF8 - StepF12   2.03e-01 0.0797 Inf   2.554  0.4883
 StepF8 - StepF13   1.69e-01 0.0797 Inf   2.123  0.8030
 StepF8 - StepF14   3.91e-02 0.0797 Inf   0.491  1.0000
 StepF8 - StepF15   1.17e-01 0.0797 Inf   1.467  0.9928
 StepF8 - StepF16   2.12e-01 0.0797 Inf   2.664  0.4063
 StepF8 - StepF17   2.69e-01 0.0797 Inf   3.372  0.0720
 StepF8 - StepF18   2.59e-01 0.0797 Inf   3.247  0.1043
 StepF9 - StepF10  -5.54e-02 0.0797 Inf  -0.696  1.0000
 StepF9 - StepF11   6.63e-02 0.0797 Inf   0.833  1.0000
 StepF9 - StepF12   1.68e-01 0.0797 Inf   2.108  0.8118
 StepF9 - StepF13   1.34e-01 0.0797 Inf   1.677  0.9709
 StepF9 - StepF14   3.61e-03 0.0797 Inf   0.045  1.0000
 StepF9 - StepF15   8.13e-02 0.0797 Inf   1.021  0.9999
 StepF9 - StepF16   1.77e-01 0.0797 Inf   2.218  0.7420
 StepF9 - StepF17   2.33e-01 0.0797 Inf   2.926  0.2376
 StepF9 - StepF18   2.23e-01 0.0797 Inf   2.801  0.3120
 StepF10 - StepF11  1.22e-01 0.0797 Inf   1.528  0.9887
 StepF10 - StepF12  2.23e-01 0.0797 Inf   2.804  0.3101
 StepF10 - StepF13  1.89e-01 0.0797 Inf   2.373  0.6287
 StepF10 - StepF14  5.90e-02 0.0797 Inf   0.741  1.0000
 StepF10 - StepF15  1.37e-01 0.0797 Inf   1.716  0.9639
 StepF10 - StepF16  2.32e-01 0.0797 Inf   2.913  0.2448
 StepF10 - StepF17  2.89e-01 0.0797 Inf   3.622  0.0321
 StepF10 - StepF18  2.79e-01 0.0797 Inf   3.497  0.0487
 StepF11 - StepF12  1.02e-01 0.0797 Inf   1.276  0.9986
 StepF11 - StepF13  6.73e-02 0.0797 Inf   0.845  1.0000
 StepF11 - StepF14 -6.27e-02 0.0797 Inf  -0.787  1.0000
 StepF11 - StepF15  1.50e-02 0.0797 Inf   0.188  1.0000
 StepF11 - StepF16  1.10e-01 0.0797 Inf   1.385  0.9963
 StepF11 - StepF17  1.67e-01 0.0797 Inf   2.094  0.8203
 StepF11 - StepF18  1.57e-01 0.0797 Inf   1.968  0.8844
 StepF12 - StepF13 -3.43e-02 0.0797 Inf  -0.431  1.0000
 StepF12 - StepF14 -1.64e-01 0.0797 Inf  -2.063  0.8375
 StepF12 - StepF15 -8.66e-02 0.0797 Inf  -1.088  0.9998
 StepF12 - StepF16  8.71e-03 0.0797 Inf   0.109  1.0000
 StepF12 - StepF17  6.52e-02 0.0797 Inf   0.818  1.0000
 StepF12 - StepF18  5.52e-02 0.0797 Inf   0.693  1.0000
 StepF13 - StepF14 -1.30e-01 0.0797 Inf  -1.632  0.9778
 StepF13 - StepF15 -5.23e-02 0.0797 Inf  -0.657  1.0000
 StepF13 - StepF16  4.30e-02 0.0797 Inf   0.540  1.0000
 StepF13 - StepF17  9.95e-02 0.0797 Inf   1.249  0.9989
 StepF13 - StepF18  8.95e-02 0.0797 Inf   1.124  0.9997
 StepF14 - StepF15  7.77e-02 0.0797 Inf   0.975  1.0000
 StepF14 - StepF16  1.73e-01 0.0797 Inf   2.172  0.7722
 StepF14 - StepF17  2.30e-01 0.0797 Inf   2.881  0.2630
 StepF14 - StepF18  2.20e-01 0.0797 Inf   2.756  0.3417
 StepF15 - StepF16  9.54e-02 0.0797 Inf   1.197  0.9994
 StepF15 - StepF17  1.52e-01 0.0797 Inf   1.906  0.9102
 StepF15 - StepF18  1.42e-01 0.0797 Inf   1.780  0.9495
 StepF16 - StepF17  5.65e-02 0.0797 Inf   0.709  1.0000
 StepF16 - StepF18  4.65e-02 0.0797 Inf   0.583  1.0000
 StepF17 - StepF18 -1.00e-02 0.0797 Inf  -0.125  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -2.11e-01 0.0797 Inf  -2.653  0.4138
 StepF1 - StepF3   -6.87e-02 0.0797 Inf  -0.862  1.0000
 StepF1 - StepF4    2.19e-02 0.0797 Inf   0.276  1.0000
 StepF1 - StepF5    7.43e-02 0.0797 Inf   0.933  1.0000
 StepF1 - StepF6    8.44e-02 0.0797 Inf   1.060  0.9999
 StepF1 - StepF7   -2.51e-02 0.0797 Inf  -0.315  1.0000
 StepF1 - StepF8    2.19e-02 0.0797 Inf   0.275  1.0000
 StepF1 - StepF9    5.74e-02 0.0797 Inf   0.721  1.0000
 StepF1 - StepF10   2.01e-03 0.0797 Inf   0.025  1.0000
 StepF1 - StepF11   1.24e-01 0.0797 Inf   1.553  0.9866
 StepF1 - StepF12   2.25e-01 0.0797 Inf   2.829  0.2942
 StepF1 - StepF13   1.91e-01 0.0797 Inf   2.398  0.6093
 StepF1 - StepF14   6.10e-02 0.0797 Inf   0.766  1.0000
 StepF1 - StepF15   1.39e-01 0.0797 Inf   1.742  0.9586
 StepF1 - StepF16   2.34e-01 0.0797 Inf   2.939  0.2311
 StepF1 - StepF17   2.91e-01 0.0797 Inf   3.647  0.0294
 StepF1 - StepF18   2.81e-01 0.0797 Inf   3.522  0.0449
 StepF2 - StepF3    1.43e-01 0.0797 Inf   1.791  0.9468
 StepF2 - StepF4    2.33e-01 0.0797 Inf   2.929  0.2364
 StepF2 - StepF5    2.86e-01 0.0797 Inf   3.586  0.0363
 StepF2 - StepF6    2.96e-01 0.0797 Inf   3.713  0.0234
 StepF2 - StepF7    1.86e-01 0.0797 Inf   2.338  0.6553
 StepF2 - StepF8    2.33e-01 0.0797 Inf   2.928  0.2367
 StepF2 - StepF9    2.69e-01 0.0797 Inf   3.374  0.0717
 StepF2 - StepF10   2.13e-01 0.0797 Inf   2.678  0.3955
 StepF2 - StepF11   3.35e-01 0.0797 Inf   4.207  0.0034
 StepF2 - StepF12   4.37e-01 0.0797 Inf   5.482  <.0001
 StepF2 - StepF13   4.02e-01 0.0797 Inf   5.051  0.0001
 StepF2 - StepF14   2.72e-01 0.0797 Inf   3.419  0.0623
 StepF2 - StepF15   3.50e-01 0.0797 Inf   4.395  0.0015
 StepF2 - StepF16   4.45e-01 0.0797 Inf   5.592  <.0001
 StepF2 - StepF17   5.02e-01 0.0797 Inf   6.301  <.0001
 StepF2 - StepF18   4.92e-01 0.0797 Inf   6.175  <.0001
 StepF3 - StepF4    9.06e-02 0.0797 Inf   1.138  0.9997
 StepF3 - StepF5    1.43e-01 0.0797 Inf   1.795  0.9457
 StepF3 - StepF6    1.53e-01 0.0797 Inf   1.922  0.9038
 StepF3 - StepF7    4.36e-02 0.0797 Inf   0.547  1.0000
 StepF3 - StepF8    9.06e-02 0.0797 Inf   1.137  0.9997
 StepF3 - StepF9    1.26e-01 0.0797 Inf   1.583  0.9837
 StepF3 - StepF10   7.07e-02 0.0797 Inf   0.888  1.0000
 StepF3 - StepF11   1.92e-01 0.0797 Inf   2.416  0.5957
 StepF3 - StepF12   2.94e-01 0.0797 Inf   3.692  0.0252
 StepF3 - StepF13   2.60e-01 0.0797 Inf   3.261  0.1002
 StepF3 - StepF14   1.30e-01 0.0797 Inf   1.629  0.9783
 StepF3 - StepF15   2.07e-01 0.0797 Inf   2.604  0.4504
 StepF3 - StepF16   3.03e-01 0.0797 Inf   3.801  0.0170
 StepF3 - StepF17   3.59e-01 0.0797 Inf   4.510  0.0009
 StepF3 - StepF18   3.49e-01 0.0797 Inf   4.384  0.0016
 StepF4 - StepF5    5.24e-02 0.0797 Inf   0.657  1.0000
 StepF4 - StepF6    6.25e-02 0.0797 Inf   0.784  1.0000
 StepF4 - StepF7   -4.71e-02 0.0797 Inf  -0.591  1.0000
 StepF4 - StepF8   -3.94e-05 0.0797 Inf   0.000  1.0000
 StepF4 - StepF9    3.55e-02 0.0797 Inf   0.445  1.0000
 StepF4 - StepF10  -1.99e-02 0.0797 Inf  -0.250  1.0000
 StepF4 - StepF11   1.02e-01 0.0797 Inf   1.278  0.9986
 StepF4 - StepF12   2.03e-01 0.0797 Inf   2.554  0.4887
 StepF4 - StepF13   1.69e-01 0.0797 Inf   2.123  0.8033
 StepF4 - StepF14   3.91e-02 0.0797 Inf   0.491  1.0000
 StepF4 - StepF15   1.17e-01 0.0797 Inf   1.466  0.9928
 StepF4 - StepF16   2.12e-01 0.0797 Inf   2.663  0.4066
 StepF4 - StepF17   2.69e-01 0.0797 Inf   3.372  0.0722
 StepF4 - StepF18   2.59e-01 0.0797 Inf   3.246  0.1044
 StepF5 - StepF6    1.01e-02 0.0797 Inf   0.127  1.0000
 StepF5 - StepF7   -9.94e-02 0.0797 Inf  -1.248  0.9989
 StepF5 - StepF8   -5.24e-02 0.0797 Inf  -0.658  1.0000
 StepF5 - StepF9   -1.69e-02 0.0797 Inf  -0.212  1.0000
 StepF5 - StepF10  -7.23e-02 0.0797 Inf  -0.908  1.0000
 StepF5 - StepF11   4.94e-02 0.0797 Inf   0.621  1.0000
 StepF5 - StepF12   1.51e-01 0.0797 Inf   1.896  0.9137
 StepF5 - StepF13   1.17e-01 0.0797 Inf   1.465  0.9929
 StepF5 - StepF14  -1.33e-02 0.0797 Inf  -0.167  1.0000
 StepF5 - StepF15   6.44e-02 0.0797 Inf   0.809  1.0000
 StepF5 - StepF16   1.60e-01 0.0797 Inf   2.006  0.8671
 StepF5 - StepF17   2.16e-01 0.0797 Inf   2.714  0.3700
 StepF5 - StepF18   2.06e-01 0.0797 Inf   2.589  0.4617
 StepF6 - StepF7   -1.10e-01 0.0797 Inf  -1.375  0.9966
 StepF6 - StepF8   -6.25e-02 0.0797 Inf  -0.785  1.0000
 StepF6 - StepF9   -2.70e-02 0.0797 Inf  -0.339  1.0000
 StepF6 - StepF10  -8.24e-02 0.0797 Inf  -1.035  0.9999
 StepF6 - StepF11   3.93e-02 0.0797 Inf   0.494  1.0000
 StepF6 - StepF12   1.41e-01 0.0797 Inf   1.769  0.9522
 StepF6 - StepF13   1.07e-01 0.0797 Inf   1.338  0.9975
 StepF6 - StepF14  -2.34e-02 0.0797 Inf  -0.294  1.0000
 StepF6 - StepF15   5.43e-02 0.0797 Inf   0.682  1.0000
 StepF6 - StepF16   1.50e-01 0.0797 Inf   1.879  0.9200
 StepF6 - StepF17   2.06e-01 0.0797 Inf   2.587  0.4629
 StepF6 - StepF18   1.96e-01 0.0797 Inf   2.462  0.5598
 StepF7 - StepF8    4.70e-02 0.0797 Inf   0.590  1.0000
 StepF7 - StepF9    8.25e-02 0.0797 Inf   1.036  0.9999
 StepF7 - StepF10   2.71e-02 0.0797 Inf   0.341  1.0000
 StepF7 - StepF11   1.49e-01 0.0797 Inf   1.869  0.9234
 StepF7 - StepF12   2.50e-01 0.0797 Inf   3.145  0.1383
 StepF7 - StepF13   2.16e-01 0.0797 Inf   2.714  0.3707
 StepF7 - StepF14   8.61e-02 0.0797 Inf   1.081  0.9998
 StepF7 - StepF15   1.64e-01 0.0797 Inf   2.057  0.8409
 StepF7 - StepF16   2.59e-01 0.0797 Inf   3.254  0.1022
 StepF7 - StepF17   3.16e-01 0.0797 Inf   3.963  0.0092
 StepF7 - StepF18   3.06e-01 0.0797 Inf   3.837  0.0149
 StepF8 - StepF9    3.55e-02 0.0797 Inf   0.446  1.0000
 StepF8 - StepF10  -1.99e-02 0.0797 Inf  -0.250  1.0000
 StepF8 - StepF11   1.02e-01 0.0797 Inf   1.278  0.9986
 StepF8 - StepF12   2.03e-01 0.0797 Inf   2.554  0.4883
 StepF8 - StepF13   1.69e-01 0.0797 Inf   2.123  0.8030
 StepF8 - StepF14   3.91e-02 0.0797 Inf   0.491  1.0000
 StepF8 - StepF15   1.17e-01 0.0797 Inf   1.467  0.9928
 StepF8 - StepF16   2.12e-01 0.0797 Inf   2.664  0.4063
 StepF8 - StepF17   2.69e-01 0.0797 Inf   3.372  0.0720
 StepF8 - StepF18   2.59e-01 0.0797 Inf   3.247  0.1043
 StepF9 - StepF10  -5.54e-02 0.0797 Inf  -0.696  1.0000
 StepF9 - StepF11   6.63e-02 0.0797 Inf   0.833  1.0000
 StepF9 - StepF12   1.68e-01 0.0797 Inf   2.108  0.8118
 StepF9 - StepF13   1.34e-01 0.0797 Inf   1.677  0.9709
 StepF9 - StepF14   3.61e-03 0.0797 Inf   0.045  1.0000
 StepF9 - StepF15   8.13e-02 0.0797 Inf   1.021  0.9999
 StepF9 - StepF16   1.77e-01 0.0797 Inf   2.218  0.7420
 StepF9 - StepF17   2.33e-01 0.0797 Inf   2.926  0.2376
 StepF9 - StepF18   2.23e-01 0.0797 Inf   2.801  0.3120
 StepF10 - StepF11  1.22e-01 0.0797 Inf   1.528  0.9887
 StepF10 - StepF12  2.23e-01 0.0797 Inf   2.804  0.3101
 StepF10 - StepF13  1.89e-01 0.0797 Inf   2.373  0.6287
 StepF10 - StepF14  5.90e-02 0.0797 Inf   0.741  1.0000
 StepF10 - StepF15  1.37e-01 0.0797 Inf   1.716  0.9639
 StepF10 - StepF16  2.32e-01 0.0797 Inf   2.913  0.2448
 StepF10 - StepF17  2.89e-01 0.0797 Inf   3.622  0.0321
 StepF10 - StepF18  2.79e-01 0.0797 Inf   3.497  0.0487
 StepF11 - StepF12  1.02e-01 0.0797 Inf   1.276  0.9986
 StepF11 - StepF13  6.73e-02 0.0797 Inf   0.845  1.0000
 StepF11 - StepF14 -6.27e-02 0.0797 Inf  -0.787  1.0000
 StepF11 - StepF15  1.50e-02 0.0797 Inf   0.188  1.0000
 StepF11 - StepF16  1.10e-01 0.0797 Inf   1.385  0.9963
 StepF11 - StepF17  1.67e-01 0.0797 Inf   2.094  0.8203
 StepF11 - StepF18  1.57e-01 0.0797 Inf   1.968  0.8844
 StepF12 - StepF13 -3.43e-02 0.0797 Inf  -0.431  1.0000
 StepF12 - StepF14 -1.64e-01 0.0797 Inf  -2.063  0.8375
 StepF12 - StepF15 -8.66e-02 0.0797 Inf  -1.088  0.9998
 StepF12 - StepF16  8.71e-03 0.0797 Inf   0.109  1.0000
 StepF12 - StepF17  6.52e-02 0.0797 Inf   0.818  1.0000
 StepF12 - StepF18  5.52e-02 0.0797 Inf   0.693  1.0000
 StepF13 - StepF14 -1.30e-01 0.0797 Inf  -1.632  0.9778
 StepF13 - StepF15 -5.23e-02 0.0797 Inf  -0.657  1.0000
 StepF13 - StepF16  4.30e-02 0.0797 Inf   0.540  1.0000
 StepF13 - StepF17  9.95e-02 0.0797 Inf   1.249  0.9989
 StepF13 - StepF18  8.95e-02 0.0797 Inf   1.124  0.9997
 StepF14 - StepF15  7.77e-02 0.0797 Inf   0.975  1.0000
 StepF14 - StepF16  1.73e-01 0.0797 Inf   2.172  0.7722
 StepF14 - StepF17  2.30e-01 0.0797 Inf   2.881  0.2630
 StepF14 - StepF18  2.20e-01 0.0797 Inf   2.756  0.3417
 StepF15 - StepF16  9.54e-02 0.0797 Inf   1.197  0.9994
 StepF15 - StepF17  1.52e-01 0.0797 Inf   1.906  0.9102
 StepF15 - StepF18  1.42e-01 0.0797 Inf   1.780  0.9495
 StepF16 - StepF17  5.65e-02 0.0797 Inf   0.709  1.0000
 StepF16 - StepF18  4.65e-02 0.0797 Inf   0.583  1.0000
 StepF17 - StepF18 -1.00e-02 0.0797 Inf  -0.125  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.2114 0.0797 Inf   2.653  0.1355
 StepF3 - StepF2    -0.1427 0.0797 Inf  -1.791  1.0000
 StepF4 - StepF3    -0.0906 0.0797 Inf  -1.138  1.0000
 StepF5 - StepF4    -0.0524 0.0797 Inf  -0.657  1.0000
 StepF6 - StepF5    -0.0101 0.0797 Inf  -0.127  1.0000
 StepF7 - StepF6     0.1095 0.0797 Inf   1.375  1.0000
 StepF8 - StepF7    -0.0470 0.0797 Inf  -0.590  1.0000
 StepF9 - StepF8    -0.0355 0.0797 Inf  -0.446  1.0000
 StepF10 - StepF9    0.0554 0.0797 Inf   0.696  1.0000
 StepF11 - StepF10  -0.1217 0.0797 Inf  -1.528  1.0000
 StepF12 - StepF11  -0.1016 0.0797 Inf  -1.276  1.0000
 StepF13 - StepF12   0.0343 0.0797 Inf   0.431  1.0000
 StepF14 - StepF13   0.1300 0.0797 Inf   1.632  1.0000
 StepF15 - StepF14  -0.0777 0.0797 Inf  -0.975  1.0000
 StepF16 - StepF15  -0.0954 0.0797 Inf  -1.197  1.0000
 StepF17 - StepF16  -0.0565 0.0797 Inf  -0.709  1.0000
 StepF18 - StepF17   0.0100 0.0797 Inf   0.125  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.2114 0.0797 Inf   2.653  0.1355
 StepF3 - StepF2    -0.1427 0.0797 Inf  -1.791  1.0000
 StepF4 - StepF3    -0.0906 0.0797 Inf  -1.138  1.0000
 StepF5 - StepF4    -0.0524 0.0797 Inf  -0.657  1.0000
 StepF6 - StepF5    -0.0101 0.0797 Inf  -0.127  1.0000
 StepF7 - StepF6     0.1095 0.0797 Inf   1.375  1.0000
 StepF8 - StepF7    -0.0470 0.0797 Inf  -0.590  1.0000
 StepF9 - StepF8    -0.0355 0.0797 Inf  -0.446  1.0000
 StepF10 - StepF9    0.0554 0.0797 Inf   0.696  1.0000
 StepF11 - StepF10  -0.1217 0.0797 Inf  -1.528  1.0000
 StepF12 - StepF11  -0.1016 0.0797 Inf  -1.276  1.0000
 StepF13 - StepF12   0.0343 0.0797 Inf   0.431  1.0000
 StepF14 - StepF13   0.1300 0.0797 Inf   1.632  1.0000
 StepF15 - StepF14  -0.0777 0.0797 Inf  -0.975  1.0000
 StepF16 - StepF15  -0.0954 0.0797 Inf  -1.197  1.0000
 StepF17 - StepF16  -0.0565 0.0797 Inf  -0.709  1.0000
 StepF18 - StepF17   0.0100 0.0797 Inf   0.125  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 

#B3.2 Concatenation plots

# ==== TRAINING (Blocks 1–3): Step-wise EMM ± SD (Correct-only) + All-axes overlay ====
suppressPackageStartupMessages({
  library(dplyr); library(ggplot2); library(lme4); library(emmeans); library(patchwork)
})
emm_options(lmer.df = "asymptotic")

.get_emm_sd_correct <- function(df_axis) {
  if (nrow(df_axis) == 0) return(NULL)
  dd <- df_axis %>%
    filter(as.character(Accuracy) == "1") %>%
    mutate(
      StepF    = factor(Step, levels = sort(unique(Step))),
      subject  = factor(subject),
      trial_id = factor(trial_id)
    )
  if (nrow(dd) == 0) return(NULL)

  m <- suppressWarnings(lmer(RMS ~ StepF + (1|subject) + (1|trial_id), data = dd, REML = TRUE))

  em_df <- as.data.frame(emmeans(m, ~ StepF)) %>%
    transmute(Step = as.numeric(as.character(StepF)),
              emmean = emmean)

  sd_df <- dd %>%
    group_by(StepF) %>%
    summarise(sd = sd(RMS, na.rm = TRUE), .groups = "drop") %>%
    transmute(Step = as.numeric(as.character(StepF)), sd = sd)

  em_df %>%
    left_join(sd_df, by = "Step") %>%
    mutate(ymin = pmax(0, emmean - sd),
           ymax = emmean + sd)
}

.plot_block_stepwise_sd_correct <- function(df_block, block_title) {
  axes_map <- c("x"="X","y"="Y","z"="Z")
  out <- lapply(names(axes_map), function(ax) {
    tbl <- .get_emm_sd_correct(df_block %>% filter(Axis == ax))
    if (is.null(tbl)) return(NULL)
    tbl %>% mutate(Axis = axes_map[[ax]])
  })
  emms_tbl <- bind_rows(out)
  if (nrow(emms_tbl) == 0) return(invisible(NULL))

  # (1) Faceted by Axis (as before)
  p_facets <- ggplot(emms_tbl, aes(x = Step, y = emmean)) +
    geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.18) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    facet_wrap(~ Axis, nrow = 1, scales = "free_y") +
    labs(title = paste0(block_title, " — Step-wise EMMs (±SD) — Correct trials"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "none")

  # (2) All axes in one panel
  p_overlay <- ggplot(emms_tbl, aes(x = Step, y = emmean, color = Axis, fill = Axis, group = Axis)) +
    geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.15, color = NA) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    labs(title = paste0(block_title, " — Step-wise EMMs (±SD) — Correct trials (X/Y/Z overlaid)"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "bottom")

  list(facets = p_facets, overlay = p_overlay)
}

# Render for each training block
res_b1 <- .plot_block_stepwise_sd_correct(stepwise_6,  "Block 1 (6 steps)")
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
res_b2 <- .plot_block_stepwise_sd_correct(stepwise_12, "Block 2 (12 steps)")
res_b3 <- .plot_block_stepwise_sd_correct(stepwise_18, "Block 3 (18 steps)")

if (!is.null(res_b1)) { print(res_b1$facets); print(res_b1$overlay) }

if (!is.null(res_b2)) { print(res_b2$facets); print(res_b2$overlay) }

if (!is.null(res_b3)) { print(res_b3$facets); print(res_b3$overlay) }

# ==== TEST (Blocks 4–5): Step-wise EMM ± SD (Correct-only) + All-axes overlay per seq length ====
suppressPackageStartupMessages({
  library(dplyr); library(ggplot2); library(lme4); library(emmeans); library(patchwork)
})
emm_options(lmer.df = "asymptotic")

.get_emm_sd_correct <- function(df_axis) {
  if (nrow(df_axis) == 0) return(NULL)
  dd <- df_axis %>%
    filter(as.character(Accuracy) == "1") %>%
    mutate(
      StepF    = factor(Step, levels = sort(unique(Step))),
      subject  = factor(subject),
      trial_id = factor(trial_id)
    )
  if (nrow(dd) == 0) return(NULL)

  m <- suppressWarnings(lmer(RMS ~ StepF + (1|subject) + (1|trial_id), data = dd, REML = TRUE))

  em_df <- as.data.frame(emmeans(m, ~ StepF)) %>%
    transmute(Step = as.numeric(as.character(StepF)),
              emmean = emmean)

  sd_df <- dd %>%
    group_by(StepF) %>%
    summarise(sd = sd(RMS, na.rm = TRUE), .groups = "drop") %>%
    transmute(Step = as.numeric(as.character(StepF)), sd = sd)

  em_df %>%
    left_join(sd_df, by = "Step") %>%
    mutate(ymin = pmax(0, emmean - sd),
           ymax = emmean + sd)
}

.plot_block_len_sd_correct <- function(df_block, title_prefix) {
  axes_map <- c("x"="X","y"="Y","z"="Z")
  out <- lapply(names(axes_map), function(ax) {
    tbl <- .get_emm_sd_correct(df_block %>% filter(Axis == ax))
    if (is.null(tbl)) return(NULL)
    tbl %>% mutate(Axis = axes_map[[ax]])
  })
  emms_tbl <- bind_rows(out)
  if (nrow(emms_tbl) == 0) return(invisible(NULL))

  # (1) Faceted by Axis (as before)
  p_facets <- ggplot(emms_tbl, aes(x = Step, y = emmean)) +
    geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.18) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    facet_wrap(~ Axis, nrow = 1, scales = "free_y") +
    labs(title = paste0(title_prefix, " — Step-wise EMMs (±SD) — Correct trials"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "none")

  # (2) All axes in one panel
  p_overlay <- ggplot(emms_tbl, aes(x = Step, y = emmean, color = Axis, fill = Axis, group = Axis)) +
    geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.15, color = NA) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    labs(title = paste0(title_prefix, " — Step-wise EMMs (±SD) — Correct trials (X/Y/Z overlaid)"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "bottom")

  list(facets = p_facets, overlay = p_overlay)
}

# Block 4
res_b4_6  <- .plot_block_len_sd_correct(sw_b4_6,  "Block 4 — 6 steps")
res_b4_12 <- .plot_block_len_sd_correct(sw_b4_12, "Block 4 — 12 steps")
res_b4_18 <- .plot_block_len_sd_correct(sw_b4_18, "Block 4 — 18 steps")

if (!is.null(res_b4_6))  { print(res_b4_6$facets);  print(res_b4_6$overlay) }

if (!is.null(res_b4_12)) { print(res_b4_12$facets); print(res_b4_12$overlay) }

if (!is.null(res_b4_18)) { print(res_b4_18$facets); print(res_b4_18$overlay) }

# Block 5
res_b5_6  <- .plot_block_len_sd_correct(sw_b5_6,  "Block 5 — 6 steps")
res_b5_12 <- .plot_block_len_sd_correct(sw_b5_12, "Block 5 — 12 steps")
res_b5_18 <- .plot_block_len_sd_correct(sw_b5_18, "Block 5 — 18 steps")

if (!is.null(res_b5_6))  { print(res_b5_6$facets);  print(res_b5_6$overlay) }

if (!is.null(res_b5_12)) { print(res_b5_12$facets); print(res_b5_12$overlay) }

if (!is.null(res_b5_18)) { print(res_b5_18$facets); print(res_b5_18$overlay) }

#additional analysis comparing which axis shows the highest variability

# ==== #1.3bis: RMS differences among axes (X/Y/Z) across blocks ====

#   RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial)

# and EMMs + Tukey pairwise comparisons for Axis (overall and per block).
suppressPackageStartupMessages({
  library(dplyr); library(tidyr)
  library(lme4); library(lmerTest)
  library(emmeans); library(car)
})
emm_options(lmer.df = "asymptotic")

# Prepare long format once
axes_long <- rms_combined %>%
  dplyr::select(subject, Trial, Block, phase, Accuracy, rms_x, rms_y, rms_z) %>%
  tidyr::pivot_longer(
    cols = c(rms_x, rms_y, rms_z),
    names_to = "Axis",
    values_to = "RMS"
  ) %>%
  mutate(
    Axis  = dplyr::recode(Axis, rms_x = "X", rms_y = "Y", rms_z = "Z"),
    Axis  = factor(Axis, levels = c("X","Y","Z")),
    Block = factor(Block),  # already factor upstream
    phase = factor(phase, levels = c("Preparation","Execution"))
  ) %>%
  tidyr::drop_na(RMS) %>%
  droplevels()

analyze_axes_vs_blocks <- function(df, label = "OVERALL (collapsed across phase)") {
  cat("\n\n==============================\n",
      "AXES × BLOCKS — ", label,
      "\n==============================\n", sep = "")

  m <- lmer(RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial), data = df, REML = TRUE)

  cat("\n--- Model Summary (lmerTest; Satterthwaite t-tests) ---\n")
  print(summary(m))

  cat("\n--- lmerTest ANOVA (F-tests; Satterthwaite) ---\n")
  print(anova(m))

  cat("\n--- Type II Wald χ² (car::Anova) ---\n")
  print(car::Anova(m, type = 2, test.statistic = "Chisq"))

  cat("\n--- Type III Wald χ² (car::Anova; sum contrasts) ---\n")
  print(car::Anova(m, type = 3, test.statistic = "Chisq"))

  # EMMs for Axis (averaged over Blocks & Accuracy levels present)
  em_axis <- emmeans(m, ~ Axis)
  cat("\n--- EMMs by Axis (averaged over Blocks) ---\n")
  print(summary(em_axis))

  cat("\n--- Pairwise (Tukey) Axis comparisons (overall) ---\n")
  print(pairs(em_axis, adjust = "tukey"))

  # Simple effects: Axis differences within each Block
  em_axis_by_block <- emmeans(m, ~ Axis | Block)
  cat("\n--- EMMs by Axis within each Block ---\n")
  print(summary(em_axis_by_block))

  cat("\n--- Pairwise (Tukey) Axis comparisons within each Block ---\n")
  print(pairs(em_axis_by_block, adjust = "tukey"))

  invisible(TRUE)
}

# 1) Collapsed across phase (overall)
analyze_axes_vs_blocks(axes_long, label = "OVERALL")


==============================
AXES × BLOCKS — OVERALL
==============================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: df

REML criterion at convergence: 54387.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.2450 -0.7332 -0.0719  0.5559 13.7440 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.001358 0.03684 
 subject  (Intercept) 0.029239 0.17099 
 Residual             0.278967 0.52817 
Number of obs: 34656, groups:  Trial, 48; subject, 18

Fixed effects:
               Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)   4.891e-01  4.076e-02  1.761e+01  12.000 6.59e-10 ***
Axis1        -9.296e-02  4.029e-03  3.457e+04 -23.073  < 2e-16 ***
Axis2        -7.535e-02  4.029e-03  3.457e+04 -18.701  < 2e-16 ***
Block1        1.759e-02  6.125e-03  3.462e+04   2.871  0.00409 ** 
Block2        2.802e-02  5.699e-03  3.462e+04   4.916 8.88e-07 ***
Block3       -1.481e-02  5.738e-03  3.442e+04  -2.580  0.00987 ** 
Block4        2.674e-02  5.740e-03  3.461e+04   4.659 3.19e-06 ***
Accuracy1    -2.407e-02  3.040e-03  3.329e+04  -7.915 2.54e-15 ***
Axis1:Block1  1.025e-03  8.502e-03  3.457e+04   0.121  0.90405    
Axis2:Block1  6.267e-03  8.502e-03  3.457e+04   0.737  0.46102    
Axis1:Block2 -1.060e-02  8.044e-03  3.457e+04  -1.317  0.18772    
Axis2:Block2 -2.157e-03  8.044e-03  3.457e+04  -0.268  0.78857    
Axis1:Block3 -2.407e-04  8.013e-03  3.457e+04  -0.030  0.97604    
Axis2:Block3  5.460e-04  8.013e-03  3.457e+04   0.068  0.94568    
Axis1:Block4 -4.620e-03  8.072e-03  3.457e+04  -0.572  0.56712    
Axis2:Block4 -1.201e-02  8.072e-03  3.457e+04  -1.487  0.13692    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 16 > 12.
Use print(summary(m), correlation=TRUE)  or
    vcov(summary(m))        if you need it

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
           Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)    
Axis       488.58 244.289     2 34569 875.6926 < 2.2e-16 ***
Block       38.11   9.527     4 34619  34.1505 < 2.2e-16 ***
Accuracy    17.48  17.479     1 33291  62.6548 2.539e-15 ***
Axis:Block   3.79   0.473     8 34569   1.6972   0.09349 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
Axis       1755.332  2  < 2.2e-16 ***
Block       136.602  4  < 2.2e-16 ***
Accuracy     62.655  1  2.463e-15 ***
Axis:Block   13.578  8    0.09345 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
               Chisq Df Pr(>Chisq)    
(Intercept)  144.003  1  < 2.2e-16 ***
Axis        1751.385  2  < 2.2e-16 ***
Block        136.602  4  < 2.2e-16 ***
Accuracy      62.655  1  2.463e-15 ***
Axis:Block    13.578  8    0.09345 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NOTE: Results may be misleading due to involvement in interactions

--- EMMs by Axis (averaged over Blocks) ---
 Axis emmean    SE  df asymp.LCL asymp.UCL
 X     0.396 0.041 Inf     0.316     0.476
 Y     0.414 0.041 Inf     0.334     0.494
 Z     0.657 0.041 Inf     0.577     0.738

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons (overall) ---
 contrast estimate      SE  df z.ratio p.value
 X - Y     -0.0176 0.00698 Inf  -2.524  0.0312
 X - Z     -0.2613 0.00698 Inf -37.439  <.0001
 Y - Z     -0.2436 0.00698 Inf -34.915  <.0001

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

--- EMMs by Axis within each Block ---
Block = 1:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.415 0.0424 Inf     0.332     0.498
 Y     0.438 0.0424 Inf     0.355     0.521
 Z     0.668 0.0424 Inf     0.585     0.751

Block = 2:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.414 0.0421 Inf     0.331     0.496
 Y     0.440 0.0421 Inf     0.357     0.522
 Z     0.698 0.0421 Inf     0.616     0.781

Block = 3:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.381 0.0421 Inf     0.299     0.464
 Y     0.400 0.0421 Inf     0.317     0.482
 Z     0.642 0.0421 Inf     0.560     0.725

Block = 4:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.418 0.0421 Inf     0.336     0.501
 Y     0.429 0.0421 Inf     0.346     0.511
 Z     0.701 0.0421 Inf     0.618     0.783

Block = 5:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.353 0.0419 Inf     0.271     0.435
 Y     0.364 0.0419 Inf     0.281     0.446
 Z     0.578 0.0419 Inf     0.496     0.660

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons within each Block ---
Block = 1:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0229 0.0167 Inf  -1.365  0.3592
 X - Z     -0.2529 0.0167 Inf -15.110  <.0001
 Y - Z     -0.2301 0.0167 Inf -13.745  <.0001

Block = 2:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0261 0.0156 Inf  -1.673  0.2154
 X - Z     -0.2846 0.0156 Inf -18.282  <.0001
 Y - Z     -0.2586 0.0156 Inf -16.608  <.0001

Block = 3:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0184 0.0155 Inf  -1.188  0.4603
 X - Z     -0.2612 0.0155 Inf -16.865  <.0001
 Y - Z     -0.2428 0.0155 Inf -15.677  <.0001

Block = 4:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0102 0.0156 Inf  -0.654  0.7901
 X - Z     -0.2825 0.0156 Inf -18.063  <.0001
 Y - Z     -0.2723 0.0156 Inf -17.410  <.0001

Block = 5:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0105 0.0145 Inf  -0.726  0.7480
 X - Z     -0.2250 0.0145 Inf -15.516  <.0001
 Y - Z     -0.2145 0.0145 Inf -14.790  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 
# 2) Within each phase (to match your within-phase reporting elsewhere)
for (ph in c("Preparation","Execution")) {
  df_ph <- axes_long %>% filter(phase == ph) %>% droplevels()
  if (nrow(df_ph) > 0) analyze_axes_vs_blocks(df_ph, label = paste("PHASE:", ph))
}


==============================
AXES × BLOCKS — PHASE: Preparation
==============================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: df

REML criterion at convergence: 2758.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.0492 -0.3806 -0.1162  0.1486 21.5763 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.011441 0.10696 
 subject  (Intercept) 0.001264 0.03556 
 Residual             0.067024 0.25889 
Number of obs: 17613, groups:  Trial, 48; subject, 18

Fixed effects:
               Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)   1.372e-01  1.769e-02  6.214e+01   7.755 1.04e-10 ***
Axis1        -1.253e-02  2.768e-03  1.753e+04  -4.526 6.05e-06 ***
Axis2        -1.094e-02  2.768e-03  1.753e+04  -3.952 7.78e-05 ***
Block1       -7.772e-02  4.180e-03  1.754e+04 -18.595  < 2e-16 ***
Block2        4.705e-03  3.926e-03  1.755e+04   1.198 0.230754    
Block3        7.096e-02  3.956e-03  1.755e+04  17.934  < 2e-16 ***
Block4        2.978e-03  3.957e-03  1.754e+04   0.753 0.451728    
Accuracy1    -7.036e-03  2.096e-03  1.751e+04  -3.356 0.000792 ***
Axis1:Block1  1.349e-02  5.798e-03  1.753e+04   2.326 0.020021 *  
Axis2:Block1  1.144e-02  5.798e-03  1.753e+04   1.973 0.048547 *  
Axis1:Block2 -6.818e-03  5.535e-03  1.753e+04  -1.232 0.218004    
Axis2:Block2 -5.683e-04  5.535e-03  1.753e+04  -0.103 0.918224    
Axis1:Block3 -1.523e-02  5.516e-03  1.753e+04  -2.762 0.005755 ** 
Axis2:Block3 -4.979e-03  5.516e-03  1.753e+04  -0.903 0.366649    
Axis1:Block4  2.938e-03  5.560e-03  1.753e+04   0.528 0.597286    
Axis2:Block4 -3.952e-03  5.560e-03  1.753e+04  -0.711 0.477288    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 16 > 12.
Use print(summary(m), correlation=TRUE)  or
    vcov(summary(m))        if you need it

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
           Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)    
Axis        4.825  2.4123     2 17533  35.9918 2.517e-16 ***
Block      34.989  8.7473     4 17545 130.5101 < 2.2e-16 ***
Accuracy    0.755  0.7550     1 17506  11.2649 0.0007915 ***
Axis:Block  1.959  0.2449     8 17533   3.6544 0.0002906 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
             Chisq Df Pr(>Chisq)    
Axis        75.547  2  < 2.2e-16 ***
Block      522.040  4  < 2.2e-16 ***
Accuracy    11.265  1  0.0007899 ***
Axis:Block  29.235  8  0.0002883 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept)  60.136  1  8.853e-15 ***
Axis         71.984  2  2.339e-16 ***
Block       522.040  4  < 2.2e-16 ***
Accuracy     11.265  1  0.0007899 ***
Axis:Block   29.235  8  0.0002883 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NOTE: Results may be misleading due to involvement in interactions

--- EMMs by Axis (averaged over Blocks) ---
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.125 0.0179 Inf    0.0896     0.160
 Y     0.126 0.0179 Inf    0.0912     0.161
 Z     0.161 0.0179 Inf    0.1256     0.196

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons (overall) ---
 contrast estimate      SE  df z.ratio p.value
 X - Y    -0.00159 0.00479 Inf  -0.331  0.9413
 X - Z    -0.03600 0.00479 Inf  -7.508  <.0001
 Y - Z    -0.03441 0.00479 Inf  -7.176  <.0001

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

--- EMMs by Axis within each Block ---
Block = 1:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.0604 0.0194 Inf    0.0225    0.0984
 Y    0.0600 0.0194 Inf    0.0220    0.0979
 Z    0.0580 0.0194 Inf    0.0201    0.0960

Block = 2:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.1226 0.0191 Inf    0.0850    0.1601
 Y    0.1304 0.0191 Inf    0.0929    0.1679
 Z    0.1728 0.0191 Inf    0.1352    0.2103

Block = 3:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.1804 0.0191 Inf    0.1429    0.2179
 Y    0.1922 0.0191 Inf    0.1547    0.2298
 Z    0.2518 0.0191 Inf    0.2143    0.2894

Block = 4:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.1306 0.0192 Inf    0.0930    0.1682
 Y    0.1253 0.0192 Inf    0.0877    0.1629
 Z    0.1647 0.0192 Inf    0.1271    0.2022

Block = 5:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.1294 0.0190 Inf    0.0922    0.1665
 Y    0.1234 0.0190 Inf    0.0862    0.1606
 Z    0.1561 0.0190 Inf    0.1189    0.1932

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons within each Block ---
Block = 1:
 contrast  estimate     SE  df z.ratio p.value
 X - Y     0.000461 0.0114 Inf   0.040  0.9991
 X - Z     0.002415 0.0114 Inf   0.212  0.9755
 Y - Z     0.001954 0.0114 Inf   0.172  0.9839

Block = 2:
 contrast  estimate     SE  df z.ratio p.value
 X - Y    -0.007839 0.0107 Inf  -0.731  0.7448
 X - Z    -0.050202 0.0107 Inf  -4.684  <.0001
 Y - Z    -0.042363 0.0107 Inf  -3.953  0.0002

Block = 3:
 contrast  estimate     SE  df z.ratio p.value
 X - Y    -0.011842 0.0107 Inf  -1.110  0.5078
 X - Z    -0.071442 0.0107 Inf  -6.697  <.0001
 Y - Z    -0.059600 0.0107 Inf  -5.587  <.0001

Block = 4:
 contrast  estimate     SE  df z.ratio p.value
 X - Y     0.005300 0.0108 Inf   0.492  0.8753
 X - Z    -0.034073 0.0108 Inf  -3.160  0.0045
 Y - Z    -0.039374 0.0108 Inf  -3.652  0.0008

Block = 5:
 contrast  estimate     SE  df z.ratio p.value
 X - Y     0.005976 0.0100 Inf   0.598  0.8214
 X - Z    -0.026682 0.0100 Inf  -2.668  0.0209
 Y - Z    -0.032658 0.0100 Inf  -3.265  0.0031

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


==============================
AXES × BLOCKS — PHASE: Execution
==============================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: df

REML criterion at convergence: 14946.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.3930 -0.4971 -0.0242  0.4173 18.2710 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.008388 0.09159 
 subject  (Intercept) 0.104887 0.32386 
 Residual             0.137640 0.37100 
Number of obs: 17043, groups:  Trial, 48; subject, 18

Fixed effects:
               Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)   8.538e-01  7.753e-02  1.803e+01  11.012 1.94e-09 ***
Axis1        -1.764e-01  4.039e-03  1.695e+04 -43.663  < 2e-16 ***
Axis2        -1.421e-01  4.039e-03  1.695e+04 -35.176  < 2e-16 ***
Block1        1.373e-01  6.195e-03  1.697e+04  22.171  < 2e-16 ***
Block2        4.779e-02  5.708e-03  1.697e+04   8.372  < 2e-16 ***
Block3       -1.081e-01  5.755e-03  1.699e+04 -18.783  < 2e-16 ***
Block4        4.479e-02  5.739e-03  1.697e+04   7.803 6.38e-15 ***
Accuracy1    -3.904e-02  3.055e-03  1.701e+04 -12.778  < 2e-16 ***
Axis1:Block1 -1.574e-02  8.590e-03  1.695e+04  -1.833   0.0669 .  
Axis2:Block1 -2.024e-03  8.590e-03  1.695e+04  -0.236   0.8137    
Axis1:Block2 -1.378e-02  8.051e-03  1.695e+04  -1.712   0.0869 .  
Axis2:Block2 -3.281e-03  8.051e-03  1.695e+04  -0.408   0.6836    
Axis1:Block3  1.601e-02  8.017e-03  1.695e+04   1.997   0.0459 *  
Axis2:Block3  6.858e-03  8.017e-03  1.695e+04   0.855   0.3923    
Axis1:Block4 -1.116e-02  8.070e-03  1.695e+04  -1.383   0.1667    
Axis2:Block4 -1.934e-02  8.070e-03  1.695e+04  -2.397   0.0166 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 16 > 12.
Use print(summary(m), correlation=TRUE)  or
    vcov(summary(m))        if you need it

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
           Sum Sq Mean Sq NumDF DenDF   F value    Pr(>F)    
Axis       858.81  429.40     2 16955 3119.7640 < 2.2e-16 ***
Block      155.50   38.87     4 16972  282.4317 < 2.2e-16 ***
Accuracy    22.47   22.47     1 17005  163.2750 < 2.2e-16 ***
Axis:Block   7.21    0.90     8 16955    6.5458 1.476e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
Axis       6223.795  2  < 2.2e-16 ***
Block      1129.727  4  < 2.2e-16 ***
Accuracy    163.275  1  < 2.2e-16 ***
Axis:Block   52.367  8   1.43e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
               Chisq Df Pr(>Chisq)    
(Intercept)  121.272  1  < 2.2e-16 ***
Axis        6239.528  2  < 2.2e-16 ***
Block       1129.727  4  < 2.2e-16 ***
Accuracy     163.275  1  < 2.2e-16 ***
Axis:Block    52.367  8   1.43e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NOTE: Results may be misleading due to involvement in interactions

--- EMMs by Axis (averaged over Blocks) ---
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.677 0.0776 Inf     0.525     0.830
 Y     0.712 0.0776 Inf     0.560     0.864
 Z     1.172 0.0776 Inf     1.020     1.324

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons (overall) ---
 contrast estimate    SE  df z.ratio p.value
 X - Y     -0.0343 0.007 Inf  -4.900  <.0001
 X - Z     -0.4948 0.007 Inf -70.726  <.0001
 Y - Z     -0.4605 0.007 Inf -65.826  <.0001

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

--- EMMs by Axis within each Block ---
Block = 1:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.799 0.0784 Inf     0.645     0.953
 Y     0.847 0.0784 Inf     0.693     1.001
 Z     1.327 0.0784 Inf     1.174     1.481

Block = 2:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.711 0.0783 Inf     0.558     0.865
 Y     0.756 0.0783 Inf     0.603     0.910
 Z     1.237 0.0783 Inf     1.084     1.390

Block = 3:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.585 0.0783 Inf     0.432     0.739
 Y     0.610 0.0783 Inf     0.457     0.764
 Z     1.041 0.0783 Inf     0.888     1.195

Block = 4:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.711 0.0783 Inf     0.558     0.864
 Y     0.737 0.0783 Inf     0.584     0.891
 Z     1.248 0.0783 Inf     1.094     1.401

Block = 5:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.580 0.0782 Inf     0.427     0.733
 Y     0.608 0.0782 Inf     0.455     0.761
 Z     1.008 0.0782 Inf     0.855     1.161

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons within each Block ---
Block = 1:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0480 0.0170 Inf  -2.832  0.0129
 X - Z     -0.5283 0.0170 Inf -31.165  <.0001
 Y - Z     -0.4803 0.0170 Inf -28.334  <.0001

Block = 2:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0448 0.0156 Inf  -2.875  0.0113
 X - Z     -0.5256 0.0156 Inf -33.752  <.0001
 Y - Z     -0.4809 0.0156 Inf -30.876  <.0001

Block = 3:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0251 0.0155 Inf  -1.623  0.2360
 X - Z     -0.4559 0.0155 Inf -29.442  <.0001
 Y - Z     -0.4308 0.0155 Inf -27.819  <.0001

Block = 4:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0261 0.0156 Inf  -1.671  0.2165
 X - Z     -0.5364 0.0156 Inf -34.339  <.0001
 Y - Z     -0.5103 0.0156 Inf -32.669  <.0001

Block = 5:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0274 0.0145 Inf  -1.891  0.1413
 X - Z     -0.4276 0.0145 Inf -29.523  <.0001
 Y - Z     -0.4003 0.0145 Inf -27.632  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

#B3.2.2 concatenation analysis with RT as fixed effect

# ---- 3.1b SETUP (robust, with key-type harmonization): ensure stepwise_all exists, import step-wise RT, join, and prepare subsets ----

suppressPackageStartupMessages({
  library(dplyr); library(tidyr); library(lme4); library(lmerTest)
  library(emmeans); library(car); library(rlang); library(ggplot2); library(patchwork)
})

emm_options(lmer.df = "asymptotic")

# Helper: pick first existing object name
.pick_first_existing <- function(cands) {
  for (nm in cands) if (exists(nm, inherits = TRUE)) return(get(nm, inherits = TRUE))
  NULL
}

# ---- A) Ensure stepwise_all is available (build if missing) ----
.ensure_stepwise_all <- function() {
  if (exists("stepwise_all", inherits = TRUE)) {
    return(get("stepwise_all", inherits = TRUE))
  }
  comp_fun <- if (exists("compute_stepwise_rms", inherits = TRUE)) get("compute_stepwise_rms", inherits = TRUE) else NULL
  if (is.null(comp_fun)) stop("compute_stepwise_rms() is not available. Please run the earlier parts of the script.")

  tagged_src <- .pick_first_existing(c("tagged_data","tagged_exec_df","tagged_exec","tagged_df"))
  if (is.null(tagged_src)) stop("No tagged step data found (e.g., 'tagged_data'). Please run the earlier tagging steps.")

  swa <- comp_fun(tagged_src, max_steps_keep = 18)

  # Add Accuracy via your helper if present; else compute from all_data_mixed
  if (exists("add_accuracy_to", inherits = TRUE)) {
    add_acc <- get("add_accuracy_to", inherits = TRUE)
    swa <- add_acc(swa, .pick_first_existing(c("all_data_mixed","all_data","adm")))
  } else {
    adm <- .pick_first_existing(c("all_data_mixed","all_data","adm"))
    if (!is.null(adm) && all(c("subject","Block","trial") %in% names(adm)) && "feedback.ACC" %in% names(adm)) {
      acc_df <- adm %>%
        group_by(subject, Block, trial) %>%
        summarise(Accuracy = as.factor(as.integer(all(feedback.ACC == 1, na.rm = TRUE))), .groups = "drop")
      swa <- swa %>%
        left_join(acc_df, by = c("subject","Block","trial"))
    } else {
      warning("Could not find add_accuracy_to() or a suitable all_data_mixed table; proceeding without Accuracy.")
      if (!("Accuracy" %in% names(swa))) swa$Accuracy <- factor(NA)
    }
  }

  # Standardise columns
  swa <- swa %>%
    mutate(
      Block    = if ("Block" %in% names(.)) as.integer(Block) else as.integer(session),
      Step     = as.integer(Step),
      Axis     = factor(as.character(Axis), levels = c("x","y","z")),
      # ensure trial exists if possible
      trial    = if ("trial" %in% names(.)) trial else NA_integer_,
      trial_id = if ("trial_id" %in% names(.)) trial_id else interaction(subject, Block, trial, drop = TRUE)
    )

  # Ensure step_count exists (actual length per trial)
  if (!("step_count" %in% names(swa))) {
    swa <- swa %>%
      group_by(subject, Block, trial) %>%
      mutate(step_count = suppressWarnings(max(Step, na.rm = TRUE))) %>%
      ungroup()
  }

  assign("stepwise_all", swa, envir = .GlobalEnv)
  swa
}

stepwise_all_local <- .ensure_stepwise_all()

# ---- B) Import step-wise RTs from Behaviour env (robust) ----
.standardize_rt_table <- function(tbl) {
  nm <- names(tbl)
  # subject
  if ("Subject" %in% nm && !("subject" %in% nm)) tbl <- tbl %>% rename(subject = Subject)
  stopifnot("subject" %in% names(tbl))

  # Block / session
  if (!("Block" %in% names(tbl))) {
    if ("session" %in% names(tbl)) tbl <- tbl %>% mutate(Block = as.integer(session))
    else if ("Session" %in% names(tbl)) tbl <- tbl %>% mutate(Block = as.integer(Session))
    else stop("RT table lacks Block/session info.")
  } else {
    tbl <- tbl %>% mutate(Block = as.integer(Block))
  }

  # Step
  if (!("Step" %in% names(tbl))) {
    if ("step" %in% names(tbl)) tbl <- tbl %>% mutate(Step = as.integer(step))
    else if ("sub.trial.number" %in% names(tbl)) tbl <- tbl %>% mutate(Step = as.integer(as.character(sub.trial.number)))
    else stop("RT table lacks Step info (Step/step/sub.trial.number).")
  } else {
    tbl <- tbl %>% mutate(Step = as.integer(Step))
  }

  # Trial & trial_id
  if (!("trial" %in% names(tbl))) tbl <- tbl %>% mutate(trial = NA_integer_)
  if (!("trial_id" %in% names(tbl))) {
    tbl <- tbl %>% mutate(trial_id = interaction(subject, Block, trial, drop = TRUE))
  }

  # RT column
  if ("rt_ms" %in% names(tbl)) {
    # ok
  } else if ("rt" %in% names(tbl)) {
    tbl <- tbl %>% rename(rt_ms = rt)
  } else if ("RT" %in% names(tbl)) {
    tbl <- tbl %>% rename(rt_ms = RT)
  } else if ("feedback.RT" %in% names(tbl)) {
    tbl <- tbl %>% rename(rt_ms = feedback.RT)
  } else stop("RT column not found (rt_ms/rt/RT/feedback.RT).")

  tbl %>% select(subject, Block, trial, trial_id, Step, rt_ms)
}

# Try ready-made step-wise RT object first
rt_ready <- .pick_first_existing(c(
  "rt_step_all","rt_stepwise","stepwise_rt","rt_by_step","beh_rt_step",
  "rt_steps","step_rt","RT_step"
))

if (!is.null(rt_ready)) {
  rt_step_all <- .standardize_rt_table(rt_ready)
} else {
  # Build from Behaviour base (df_acc_base / RTR common)
  beh_src <- .pick_first_existing(c("df_acc_base","RTR","behaviour_df","beh_df","behaviour_base","behaviour_all"))
  if (is.null(beh_src)) {
    # Fall back to all_data_mixed if available
    adm <- .pick_first_existing(c("all_data_mixed","all_data","adm"))
    if (is.null(adm) || !all(c("subject","Block","trial","sub.trial.number","feedback.RT") %in% names(adm))) {
      stop("Could not locate step-wise RTs. Please knit/run the Behaviour script first.")
    }
    rt_step_all <- adm %>%
      group_by(subject, Block, trial, Step = as.integer(as.character(sub.trial.number))) %>%
      summarise(rt_ms = mean(feedback.RT, na.rm = TRUE), .groups = "drop") %>%
      mutate(trial_id = interaction(subject, Block, trial, drop = TRUE)) %>%
      select(subject, Block, trial, trial_id, Step, rt_ms)
  } else {
    nm <- names(beh_src)
    sess_col <- if ("session" %in% nm) "session" else if ("Session" %in% nm) "Session" else if ("Block" %in% nm) "Block" else NULL
    if (is.null(sess_col) || !("sub.trial.number" %in% nm) || !("feedback.RT" %in% nm)) {
      stop("Behaviour base is missing session/sub.trial.number/feedback.RT columns.")
    }
    if (!("trial" %in% nm)) {
      beh_src <- beh_src %>%
        group_by(.data[["subject"]], .data[[sess_col]]) %>%
        mutate(trial = cumsum(as.integer(as.character(sub.trial.number)) == 1L)) %>%
        ungroup()
    }
    rt_step_all <- beh_src %>%
      group_by(
        subject,
        session = .data[[sess_col]],
        trial,
        Step = as.integer(as.character(sub.trial.number))
      ) %>%
      summarise(rt_ms = mean(feedback.RT, na.rm = TRUE), .groups = "drop") %>%
      mutate(
        Block    = as.integer(session),
        trial_id = interaction(subject, Block, trial, drop = TRUE)
      ) %>%
      select(subject, Block, trial, trial_id, Step, rt_ms)
  }
}

# ---- C) Harmonize join key types on BOTH tables, then join ----
# Cast keys to common types: subject/ trial_id as character; Block/Step as integer
stepwise_all_local <- stepwise_all_local %>%
  mutate(
    subject  = as.character(subject),
    Block    = as.integer(Block),
    Step     = as.integer(Step),
    # rebuild a consistent string trial_id if trial exists
    trial    = if ("trial" %in% names(.)) as.integer(trial) else NA_integer_,
    trial_id = if ("trial" %in% names(.)) paste(subject, Block, trial, sep = ".") else as.character(trial_id)
  )

rt_step_all <- rt_step_all %>%
  mutate(
    subject  = as.character(subject),
    Block    = as.integer(Block),
    Step     = as.integer(Step),
    trial    = if ("trial" %in% names(.)) as.integer(trial) else NA_integer_,
    trial_id = if ("trial" %in% names(.)) paste(subject, Block, trial, sep = ".") else as.character(trial_id)
  )

# Now the types align; perform the join
stepwise_all_rt <- stepwise_all_local %>%
  inner_join(rt_step_all, by = c("subject","Block","trial_id","Step"))

message(sprintf("Matched %d/%d RMS step rows with RT.", nrow(stepwise_all_rt), nrow(stepwise_all_local)))
Matched 136944/136944 RMS step rows with RT.
# ---- D) Center RT within trial and split subsets ----
stepwise_all_rt <- stepwise_all_rt %>%
  group_by(subject, Block, trial_id) %>%
  mutate(
    rt_bt    = mean(rt_ms, na.rm = TRUE),
    rt_wi    = rt_ms - rt_bt,
    rt_wi_sc = as.numeric(scale(rt_wi)),
    rt_bt_sc = as.numeric(scale(rt_bt))
  ) %>%
  ungroup()

# TRAINING subsets
stepwise_6_rt   <- stepwise_all_rt %>% filter(Block == 1)
stepwise_12_rt  <- stepwise_all_rt %>% filter(Block == 2)
stepwise_18_rt  <- stepwise_all_rt %>% filter(Block == 3)

# TEST subsets by actual step_count
sw_b4_6_rt   <- stepwise_all_rt %>% filter(Block == 4, step_count == 6)
sw_b4_12_rt  <- stepwise_all_rt %>% filter(Block == 4, step_count == 12)
sw_b4_18_rt  <- stepwise_all_rt %>% filter(Block == 4, step_count == 18)

sw_b5_6_rt   <- stepwise_all_rt %>% filter(Block == 5, step_count == 6)
sw_b5_12_rt  <- stepwise_all_rt %>% filter(Block == 5, step_count == 12)
sw_b5_18_rt  <- stepwise_all_rt %>% filter(Block == 5, step_count == 18)
# ---- 3.1b ANALYSIS (rt_ms): Training & Test LMMs using actual per-step RT ----
suppressPackageStartupMessages({
  library(dplyr); library(lme4); library(lmerTest); library(emmeans); library(car)
})
emm_options(lmer.df = "asymptotic")

# TRAINING (Blocks 1–3): per-axis models
.report_step_block_rtms <- function(df_block, block_label) {
  for (ax in c("x","y","z")) {
    dd <- df_block %>% filter(Axis == ax)
    if (nrow(dd) == 0) next

    dd <- dd %>%
      mutate(
        StepF    = factor(Step, levels = sort(unique(Step))),
        subject  = factor(subject),
        trial_id = factor(trial_id),
        Accuracy = droplevels(Accuracy)
      )

    cat("\n\n==============================\n",
        "TRAINING (rt_ms) | Block ", block_label, " | Axis ", toupper(ax),
        "\n==============================\n", sep = "")

    # Primary model: actual per-step RT as covariate
    m <- suppressWarnings(lmer(
      RMS ~ StepF + Accuracy + rt_ms + (1|subject) + (1|trial_id),
      data = dd, REML = TRUE
    ))

    cat("\nType II Wald χ² (StepF, Accuracy, rt_ms):\n")
    print(car::Anova(m, type = 2, test.statistic = "Chisq"))

    if (nlevels(dd$Accuracy) >= 2) {
      em <- emmeans(m, ~ StepF | Accuracy)  # EMMs at mean(rt_ms)
      cat("\nEMMs per step | Accuracy (adjusted at mean rt_ms):\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps | Accuracy:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm) | Accuracy:\n")
      print(contrast(em, method = "consec", by = "Accuracy", adjust = "holm"))
    } else {
      em <- emmeans(m, ~ StepF)             # EMMs at mean(rt_ms)
      cat("\nEMMs per step (adjusted at mean rt_ms):\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm):\n")
      print(contrast(em, method = "consec", adjust = "holm"))
    }

    # Optional: allow subject-specific sensitivity to rt_ms (best-effort)
    try({
      m_rs <- lmer(
        RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1|trial_id),
        data = dd, REML = TRUE
      )
      cat("\n[Optional] Random-slope model for rt_ms | subject (summary):\n")
      print(summary(m_rs))
      rm(m_rs)
    }, silent = TRUE)

    rm(m, em); invisible(gc())
  }
}

# TEST (Blocks 4–5): per-length × axis
.report_step_test_rtms <- function(df_block, block_label, seq_label) {
  for (ax in c("x","y","z")) {
    dd <- df_block %>% filter(Axis == ax)
    if (nrow(dd) == 0) next

    dd <- dd %>%
      mutate(
        StepF    = factor(Step, levels = sort(unique(Step))),
        subject  = factor(subject),
        trial_id = factor(trial_id),
        Accuracy = droplevels(Accuracy)
      )

    cat("\n\n==============================\n",
        "TEST (rt_ms) | Block ", block_label, " | ", seq_label, " | Axis ", toupper(ax),
        "\n==============================\n", sep = "")

    m <- suppressWarnings(lmer(
      RMS ~ StepF + Accuracy + rt_ms + (1|subject) + (1|trial_id),
      data = dd, REML = TRUE
    ))

    cat("\nType II Wald χ² (StepF, Accuracy, rt_ms):\n")
    print(car::Anova(m, type = 2, test.statistic = "Chisq"))

    if (nlevels(dd$Accuracy) >= 2) {
      em <- emmeans(m, ~ StepF | Accuracy)  # EMMs at mean(rt_ms)
      cat("\nEMMs per step | Accuracy (adjusted at mean rt_ms):\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps | Accuracy:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm) | Accuracy:\n")
      print(contrast(em, method = "consec", by = "Accuracy", adjust = "holm"))
    } else {
      em <- emmeans(m, ~ StepF)
      cat("\nEMMs per step (adjusted at mean rt_ms):\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm):\n")
      print(contrast(em, method = "consec", adjust = "holm"))
    }

    rm(m, em); invisible(gc())
  }
}

# ---- RUN: TRAINING (Blocks 1–3) ----
.report_step_block_rtms(stepwise_6_rt,  "1 (6 steps)")


==============================
TRAINING (rt_ms) | Block 1 (6 steps) | Axis X
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    155.8383  5  < 2.2e-16 ***
Accuracy   6.0775  1    0.01369 *  
rt_ms     21.7397  1  3.123e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.682 0.114 Inf     0.459     0.905
 2      0.853 0.114 Inf     0.631     1.076
 3      0.965 0.114 Inf     0.742     1.188
 4      0.868 0.114 Inf     0.645     1.090
 5      0.870 0.114 Inf     0.647     1.092
 6      0.731 0.114 Inf     0.508     0.953

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.737 0.112 Inf     0.517     0.957
 2      0.908 0.112 Inf     0.688     1.128
 3      1.020 0.112 Inf     0.800     1.240
 4      0.922 0.112 Inf     0.702     1.142
 5      0.924 0.112 Inf     0.704     1.144
 6      0.785 0.112 Inf     0.565     1.005

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.17130 0.0260 Inf  -6.586  <.0001
 StepF1 - StepF3 -0.28311 0.0260 Inf -10.874  <.0001
 StepF1 - StepF4 -0.18577 0.0260 Inf  -7.140  <.0001
 StepF1 - StepF5 -0.18770 0.0260 Inf  -7.213  <.0001
 StepF1 - StepF6 -0.04865 0.0260 Inf  -1.874  0.4186
 StepF2 - StepF3 -0.11181 0.0258 Inf  -4.329  0.0002
 StepF2 - StepF4 -0.01447 0.0258 Inf  -0.560  0.9935
 StepF2 - StepF5 -0.01640 0.0259 Inf  -0.634  0.9885
 StepF2 - StepF6  0.12264 0.0261 Inf   4.708  <.0001
 StepF3 - StepF4  0.09734 0.0258 Inf   3.769  0.0023
 StepF3 - StepF5  0.09541 0.0259 Inf   3.689  0.0031
 StepF3 - StepF6  0.23446 0.0261 Inf   8.993  <.0001
 StepF4 - StepF5 -0.00193 0.0259 Inf  -0.075  1.0000
 StepF4 - StepF6  0.13711 0.0261 Inf   5.262  <.0001
 StepF5 - StepF6  0.13905 0.0261 Inf   5.334  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.17130 0.0260 Inf  -6.586  <.0001
 StepF1 - StepF3 -0.28311 0.0260 Inf -10.874  <.0001
 StepF1 - StepF4 -0.18577 0.0260 Inf  -7.140  <.0001
 StepF1 - StepF5 -0.18770 0.0260 Inf  -7.213  <.0001
 StepF1 - StepF6 -0.04865 0.0260 Inf  -1.874  0.4186
 StepF2 - StepF3 -0.11181 0.0258 Inf  -4.329  0.0002
 StepF2 - StepF4 -0.01447 0.0258 Inf  -0.560  0.9935
 StepF2 - StepF5 -0.01640 0.0259 Inf  -0.634  0.9885
 StepF2 - StepF6  0.12264 0.0261 Inf   4.708  <.0001
 StepF3 - StepF4  0.09734 0.0258 Inf   3.769  0.0023
 StepF3 - StepF5  0.09541 0.0259 Inf   3.689  0.0031
 StepF3 - StepF6  0.23446 0.0261 Inf   8.993  <.0001
 StepF4 - StepF5 -0.00193 0.0259 Inf  -0.075  1.0000
 StepF4 - StepF6  0.13711 0.0261 Inf   5.262  <.0001
 StepF5 - StepF6  0.13905 0.0261 Inf   5.334  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.17130 0.0260 Inf   6.586  <.0001
 StepF3 - StepF2  0.11181 0.0258 Inf   4.329  <.0001
 StepF4 - StepF3 -0.09734 0.0258 Inf  -3.769  0.0003
 StepF5 - StepF4  0.00193 0.0259 Inf   0.075  0.9404
 StepF6 - StepF5 -0.13905 0.0261 Inf  -5.334  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.17130 0.0260 Inf   6.586  <.0001
 StepF3 - StepF2  0.11181 0.0258 Inf   4.329  <.0001
 StepF4 - StepF3 -0.09734 0.0258 Inf  -3.769  0.0003
 StepF5 - StepF4  0.00193 0.0259 Inf   0.075  0.9404
 StepF6 - StepF5 -0.13905 0.0261 Inf  -5.334  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning: Model failed to converge with 1 negative eigenvalue: -1.4e+03

[Optional] Random-slope model for rt_ms | subject (summary):
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1 |  
    trial_id)
   Data: dd

REML criterion at convergence: 6633.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.0900 -0.5072 -0.1016  0.3598  7.8198 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr 
 trial_id (Intercept) 2.293e-05 0.0047886      
 subject  (Intercept) 1.886e-01 0.4342422      
          rt_ms       1.176e-07 0.0003429 -0.50
 Residual             2.483e-01 0.4982509      
Number of obs: 4452, groups:  trial_id, 745; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  8.772e-01  1.035e-01  3.029e+01   8.478 1.71e-09 ***
StepF1      -1.338e-01  1.733e-02  2.592e+03  -7.721 1.64e-14 ***
StepF2       2.062e-02  1.677e-02  4.411e+03   1.229  0.21901    
StepF3       1.318e-01  1.680e-02  4.399e+03   7.845 5.40e-15 ***
StepF4       3.370e-02  1.685e-02  4.306e+03   2.000  0.04552 *  
StepF5       4.500e-02  1.680e-02  4.414e+03   2.678  0.00743 ** 
Accuracy1   -2.706e-02  1.017e-02  4.383e+03  -2.660  0.00785 ** 
rt_ms       -7.196e-05  8.414e-05  4.710e-01  -0.855  0.64749    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) StepF1 StepF2 StepF3 StepF4 StepF5 Accrc1
StepF1     0.026                                          
StepF2    -0.009 -0.211                                   
StepF3    -0.010 -0.214 -0.193                            
StepF4    -0.010 -0.214 -0.189 -0.183                     
StepF5    -0.006 -0.207 -0.191 -0.193 -0.198              
Accuracy1  0.080  0.040 -0.018 -0.022 -0.023 -0.011       
rt_ms     -0.501 -0.068  0.024  0.017  0.021  0.018 -0.043
fit warnings:
Some predictor variables are on very different scales: consider rescaling
optimizer (nloptwrap) convergence code: 0 (OK)
unable to evaluate scaled gradient
Model failed to converge: degenerate  Hessian with 1 negative eigenvalues



==============================
TRAINING (rt_ms) | Block 1 (6 steps) | Axis Y
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    64.6238  5  1.341e-12 ***
Accuracy  4.9036  1     0.0268 *  
rt_ms    21.7801  1  3.057e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.797 0.137 Inf     0.530      1.06
 2      0.862 0.136 Inf     0.595      1.13
 3      0.996 0.136 Inf     0.728      1.26
 4      0.893 0.136 Inf     0.626      1.16
 5      0.814 0.136 Inf     0.547      1.08
 6      0.861 0.137 Inf     0.593      1.13

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.854 0.135 Inf     0.589      1.12
 2      0.918 0.135 Inf     0.654      1.18
 3      1.052 0.135 Inf     0.788      1.32
 4      0.950 0.135 Inf     0.685      1.21
 5      0.871 0.135 Inf     0.606      1.14
 6      0.917 0.135 Inf     0.653      1.18

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.06480 0.0278 Inf  -2.329  0.1823
 StepF1 - StepF3 -0.19854 0.0278 Inf  -7.130  <.0001
 StepF1 - StepF4 -0.09612 0.0278 Inf  -3.454  0.0073
 StepF1 - StepF5 -0.01702 0.0278 Inf  -0.612  0.9902
 StepF1 - StepF6 -0.06356 0.0278 Inf  -2.289  0.1986
 StepF2 - StepF3 -0.13374 0.0276 Inf  -4.842  <.0001
 StepF2 - StepF4 -0.03132 0.0276 Inf  -1.134  0.8673
 StepF2 - StepF5  0.04778 0.0277 Inf   1.727  0.5135
 StepF2 - StepF6  0.00124 0.0279 Inf   0.044  1.0000
 StepF3 - StepF4  0.10242 0.0276 Inf   3.708  0.0029
 StepF3 - StepF5  0.18152 0.0277 Inf   6.562  <.0001
 StepF3 - StepF6  0.13498 0.0279 Inf   4.840  <.0001
 StepF4 - StepF5  0.07910 0.0277 Inf   2.860  0.0486
 StepF4 - StepF6  0.03256 0.0279 Inf   1.168  0.8521
 StepF5 - StepF6 -0.04654 0.0279 Inf  -1.669  0.5523

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.06480 0.0278 Inf  -2.329  0.1823
 StepF1 - StepF3 -0.19854 0.0278 Inf  -7.130  <.0001
 StepF1 - StepF4 -0.09612 0.0278 Inf  -3.454  0.0073
 StepF1 - StepF5 -0.01702 0.0278 Inf  -0.612  0.9902
 StepF1 - StepF6 -0.06356 0.0278 Inf  -2.289  0.1986
 StepF2 - StepF3 -0.13374 0.0276 Inf  -4.842  <.0001
 StepF2 - StepF4 -0.03132 0.0276 Inf  -1.134  0.8673
 StepF2 - StepF5  0.04778 0.0277 Inf   1.727  0.5135
 StepF2 - StepF6  0.00124 0.0279 Inf   0.044  1.0000
 StepF3 - StepF4  0.10242 0.0276 Inf   3.708  0.0029
 StepF3 - StepF5  0.18152 0.0277 Inf   6.562  <.0001
 StepF3 - StepF6  0.13498 0.0279 Inf   4.840  <.0001
 StepF4 - StepF5  0.07910 0.0277 Inf   2.860  0.0486
 StepF4 - StepF6  0.03256 0.0279 Inf   1.168  0.8521
 StepF5 - StepF6 -0.04654 0.0279 Inf  -1.669  0.5523

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.0648 0.0278 Inf   2.329  0.0397
 StepF3 - StepF2   0.1337 0.0276 Inf   4.842  <.0001
 StepF4 - StepF3  -0.1024 0.0276 Inf  -3.708  0.0008
 StepF5 - StepF4  -0.0791 0.0277 Inf  -2.860  0.0127
 StepF6 - StepF5   0.0465 0.0279 Inf   1.669  0.0951

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.0648 0.0278 Inf   2.329  0.0397
 StepF3 - StepF2   0.1337 0.0276 Inf   4.842  <.0001
 StepF4 - StepF3  -0.1024 0.0276 Inf  -3.708  0.0008
 StepF5 - StepF4  -0.0791 0.0277 Inf  -2.860  0.0127
 StepF6 - StepF5   0.0465 0.0279 Inf   1.669  0.0951

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 4.90647 (tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
 - Rescale variables?
Warning: Some predictor variables are on very different scales: consider
rescaling

[Optional] Random-slope model for rt_ms | subject (summary):
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1 |  
    trial_id)
   Data: dd

REML criterion at convergence: 7388.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.3021 -0.4451 -0.1015  0.3093  7.6119 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr 
 trial_id (Intercept) 9.901e-03 0.0995014      
 subject  (Intercept) 3.467e-01 0.5888375      
          rt_ms       7.588e-08 0.0002755 -0.57
 Residual             2.855e-01 0.5343589      
Number of obs: 4452, groups:  trial_id, 745; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  9.292e-01  1.398e-01  1.977e+01   6.646 1.91e-06 ***
StepF1      -6.583e-02  1.855e-02  3.327e+03  -3.549 0.000391 ***
StepF2      -1.212e-02  1.798e-02  3.331e+03  -0.674 0.500314    
StepF3       1.260e-01  1.802e-02  3.339e+03   6.994 3.21e-12 ***
StepF4       2.139e-02  1.805e-02  3.353e+03   1.185 0.236089    
StepF5      -5.468e-02  1.801e-02  3.338e+03  -3.036 0.002417 ** 
Accuracy1   -3.114e-02  1.193e-02  6.583e+02  -2.609 0.009276 ** 
rt_ms       -9.905e-05  6.925e-05  7.440e+00  -1.430 0.193231    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) StepF1 StepF2 StepF3 StepF4 StepF5 Accrc1
StepF1     0.020                                          
StepF2    -0.007 -0.210                                   
StepF3    -0.008 -0.214 -0.192                            
StepF4    -0.008 -0.214 -0.189 -0.184                     
StepF5    -0.005 -0.207 -0.192 -0.193 -0.197              
Accuracy1  0.067  0.039 -0.017 -0.021 -0.022 -0.010       
rt_ms     -0.554 -0.083  0.029  0.023  0.028  0.021 -0.053
fit warnings:
Some predictor variables are on very different scales: consider rescaling
optimizer (nloptwrap) convergence code: 0 (OK)
Model failed to converge with max|grad| = 4.90647 (tol = 0.002, component 1)
Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?
Model is nearly unidentifiable: large eigenvalue ratio
 - Rescale variables?



==============================
TRAINING (rt_ms) | Block 1 (6 steps) | Axis Z
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    95.1847  5  < 2.2e-16 ***
Accuracy  4.5466  1    0.03298 *  
rt_ms    19.1941  1  1.181e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.47 0.212 Inf      1.06      1.89
 2       1.72 0.212 Inf      1.31      2.14
 3       1.85 0.212 Inf      1.43      2.26
 4       1.73 0.212 Inf      1.32      2.15
 5       1.80 0.212 Inf      1.39      2.22
 6       1.53 0.212 Inf      1.12      1.95

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.58 0.208 Inf      1.17      1.99
 2       1.83 0.208 Inf      1.42      2.23
 3       1.95 0.208 Inf      1.55      2.36
 4       1.84 0.208 Inf      1.43      2.25
 5       1.91 0.208 Inf      1.50      2.32
 6       1.64 0.208 Inf      1.23      2.04

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2484 0.0483 Inf  -5.144  <.0001
 StepF1 - StepF3  -0.3755 0.0483 Inf  -7.767  <.0001
 StepF1 - StepF4  -0.2602 0.0483 Inf  -5.387  <.0001
 StepF1 - StepF5  -0.3299 0.0483 Inf  -6.828  <.0001
 StepF1 - StepF6  -0.0578 0.0482 Inf  -1.198  0.8380
 StepF2 - StepF3  -0.1271 0.0479 Inf  -2.651  0.0854
 StepF2 - StepF4  -0.0118 0.0479 Inf  -0.247  0.9999
 StepF2 - StepF5  -0.0815 0.0480 Inf  -1.698  0.5330
 StepF2 - StepF6   0.1906 0.0484 Inf   3.941  0.0011
 StepF3 - StepF4   0.1152 0.0479 Inf   2.404  0.1546
 StepF3 - StepF5   0.0456 0.0480 Inf   0.949  0.9336
 StepF3 - StepF6   0.3177 0.0484 Inf   6.563  <.0001
 StepF4 - StepF5  -0.0697 0.0480 Inf  -1.452  0.6952
 StepF4 - StepF6   0.2025 0.0484 Inf   4.185  0.0004
 StepF5 - StepF6   0.2722 0.0484 Inf   5.623  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2484 0.0483 Inf  -5.144  <.0001
 StepF1 - StepF3  -0.3755 0.0483 Inf  -7.767  <.0001
 StepF1 - StepF4  -0.2602 0.0483 Inf  -5.387  <.0001
 StepF1 - StepF5  -0.3299 0.0483 Inf  -6.828  <.0001
 StepF1 - StepF6  -0.0578 0.0482 Inf  -1.198  0.8380
 StepF2 - StepF3  -0.1271 0.0479 Inf  -2.651  0.0854
 StepF2 - StepF4  -0.0118 0.0479 Inf  -0.247  0.9999
 StepF2 - StepF5  -0.0815 0.0480 Inf  -1.698  0.5330
 StepF2 - StepF6   0.1906 0.0484 Inf   3.941  0.0011
 StepF3 - StepF4   0.1152 0.0479 Inf   2.404  0.1546
 StepF3 - StepF5   0.0456 0.0480 Inf   0.949  0.9336
 StepF3 - StepF6   0.3177 0.0484 Inf   6.563  <.0001
 StepF4 - StepF5  -0.0697 0.0480 Inf  -1.452  0.6952
 StepF4 - StepF6   0.2025 0.0484 Inf   4.185  0.0004
 StepF5 - StepF6   0.2722 0.0484 Inf   5.623  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2484 0.0483 Inf   5.144  <.0001
 StepF3 - StepF2   0.1271 0.0479 Inf   2.651  0.0241
 StepF4 - StepF3  -0.1152 0.0479 Inf  -2.404  0.0324
 StepF5 - StepF4   0.0697 0.0480 Inf   1.452  0.1466
 StepF6 - StepF5  -0.2722 0.0484 Inf  -5.623  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2484 0.0483 Inf   5.144  <.0001
 StepF3 - StepF2   0.1271 0.0479 Inf   2.651  0.0241
 StepF4 - StepF3  -0.1152 0.0479 Inf  -2.404  0.0324
 StepF5 - StepF4   0.0697 0.0480 Inf   1.452  0.1466
 StepF6 - StepF5  -0.2722 0.0484 Inf  -5.623  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 7.92992 (tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
 - Rescale variables?
Warning: Some predictor variables are on very different scales: consider
rescaling

[Optional] Random-slope model for rt_ms | subject (summary):
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1 |  
    trial_id)
   Data: dd

REML criterion at convergence: 12430

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6749 -0.4953 -0.1005  0.3735 10.3115 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr 
 trial_id (Intercept) 1.331e-01 0.3647932      
 subject  (Intercept) 1.404e+00 1.1849316      
          rt_ms       1.297e-07 0.0003601 -0.79
 Residual             8.217e-01 0.9064855      
Number of obs: 4452, groups:  trial_id, 745; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.774e+00  2.812e-01  7.912e+00   6.311 0.000241 ***
StepF1      -2.137e-01  3.133e-02  3.698e+03  -6.820 1.06e-11 ***
StepF2       3.163e-02  3.049e-02  3.769e+03   1.037 0.299589    
StepF3       1.659e-01  3.056e-02  3.774e+03   5.428 6.07e-08 ***
StepF4       4.766e-02  3.057e-02  3.773e+03   1.559 0.119047    
StepF5       1.223e-01  3.052e-02  3.769e+03   4.007 6.26e-05 ***
Accuracy1   -5.398e-02  2.561e-02  6.980e+02  -2.108 0.035395 *  
rt_ms       -1.012e-04  9.272e-05  8.863e+00  -1.091 0.304004    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) StepF1 StepF2 StepF3 StepF4 StepF5 Accrc1
StepF1     0.016                                          
StepF2    -0.006 -0.209                                   
StepF3    -0.007 -0.215 -0.191                            
StepF4    -0.006 -0.213 -0.189 -0.185                     
StepF5    -0.004 -0.208 -0.193 -0.192 -0.195              
Accuracy1  0.067  0.033 -0.014 -0.018 -0.018 -0.009       
rt_ms     -0.746 -0.091  0.031  0.032  0.034  0.023 -0.056
fit warnings:
Some predictor variables are on very different scales: consider rescaling
optimizer (nloptwrap) convergence code: 0 (OK)
Model failed to converge with max|grad| = 7.92992 (tol = 0.002, component 1)
Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?
Model is nearly unidentifiable: large eigenvalue ratio
 - Rescale variables?
.report_step_block_rtms(stepwise_12_rt, "2 (12 steps)")


==============================
TRAINING (rt_ms) | Block 2 (12 steps) | Axis X
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    202.4649 11  < 2.2e-16 ***
Accuracy   1.3551  1     0.2444    
rt_ms     23.7765  1  1.082e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.641 0.0717 Inf     0.501     0.782
 2      0.820 0.0715 Inf     0.679     0.960
 3      0.797 0.0715 Inf     0.656     0.937
 4      0.686 0.0715 Inf     0.545     0.826
 5      0.697 0.0715 Inf     0.557     0.837
 6      0.700 0.0715 Inf     0.560     0.841
 7      0.637 0.0715 Inf     0.497     0.777
 8      0.633 0.0715 Inf     0.493     0.773
 9      0.651 0.0715 Inf     0.511     0.792
 10     0.661 0.0715 Inf     0.521     0.801
 11     0.613 0.0715 Inf     0.473     0.753
 12     0.549 0.0716 Inf     0.409     0.690

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.668 0.0706 Inf     0.530     0.806
 2      0.846 0.0706 Inf     0.708     0.985
 3      0.823 0.0706 Inf     0.685     0.962
 4      0.712 0.0706 Inf     0.574     0.851
 5      0.724 0.0705 Inf     0.586     0.862
 6      0.727 0.0706 Inf     0.589     0.865
 7      0.664 0.0705 Inf     0.525     0.802
 8      0.660 0.0705 Inf     0.522     0.798
 9      0.678 0.0705 Inf     0.540     0.816
 10     0.687 0.0706 Inf     0.549     0.826
 11     0.640 0.0706 Inf     0.501     0.778
 12     0.576 0.0706 Inf     0.438     0.714

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.17832 0.0249 Inf  -7.153  <.0001
 StepF1 - StepF3   -0.15532 0.0250 Inf  -6.211  <.0001
 StepF1 - StepF4   -0.04444 0.0250 Inf  -1.774  0.8322
 StepF1 - StepF5   -0.05605 0.0248 Inf  -2.263  0.5031
 StepF1 - StepF6   -0.05913 0.0249 Inf  -2.375  0.4230
 StepF1 - StepF7    0.00421 0.0248 Inf   0.170  1.0000
 StepF1 - StepF8    0.00792 0.0248 Inf   0.320  1.0000
 StepF1 - StepF9   -0.01019 0.0248 Inf  -0.411  1.0000
 StepF1 - StepF10  -0.01949 0.0248 Inf  -0.784  0.9998
 StepF1 - StepF11   0.02823 0.0249 Inf   1.134  0.9932
 StepF1 - StepF12   0.09193 0.0248 Inf   3.712  0.0111
 StepF2 - StepF3    0.02300 0.0245 Inf   0.937  0.9987
 StepF2 - StepF4    0.13388 0.0245 Inf   5.455  <.0001
 StepF2 - StepF5    0.12227 0.0246 Inf   4.979  <.0001
 StepF2 - StepF6    0.11920 0.0245 Inf   4.858  0.0001
 StepF2 - StepF7    0.18254 0.0246 Inf   7.432  <.0001
 StepF2 - StepF8    0.18625 0.0246 Inf   7.586  <.0001
 StepF2 - StepF9    0.16814 0.0246 Inf   6.848  <.0001
 StepF2 - StepF10   0.15884 0.0245 Inf   6.472  <.0001
 StepF2 - StepF11   0.20655 0.0245 Inf   8.418  <.0001
 StepF2 - StepF12   0.27025 0.0246 Inf  10.988  <.0001
 StepF3 - StepF4    0.11088 0.0245 Inf   4.519  0.0004
 StepF3 - StepF5    0.09927 0.0246 Inf   4.038  0.0031
 StepF3 - StepF6    0.09620 0.0245 Inf   3.919  0.0051
 StepF3 - StepF7    0.15954 0.0246 Inf   6.489  <.0001
 StepF3 - StepF8    0.16325 0.0246 Inf   6.644  <.0001
 StepF3 - StepF9    0.14514 0.0246 Inf   5.906  <.0001
 StepF3 - StepF10   0.13584 0.0246 Inf   5.532  <.0001
 StepF3 - StepF11   0.18355 0.0245 Inf   7.478  <.0001
 StepF3 - StepF12   0.24725 0.0246 Inf  10.042  <.0001
 StepF4 - StepF5   -0.01161 0.0246 Inf  -0.472  1.0000
 StepF4 - StepF6   -0.01469 0.0246 Inf  -0.598  1.0000
 StepF4 - StepF7    0.04865 0.0246 Inf   1.978  0.7087
 StepF4 - StepF8    0.05236 0.0246 Inf   2.130  0.6007
 StepF4 - StepF9    0.03425 0.0246 Inf   1.393  0.9651
 StepF4 - StepF10   0.02495 0.0246 Inf   1.016  0.9974
 StepF4 - StepF11   0.07267 0.0246 Inf   2.960  0.1205
 StepF4 - StepF12   0.13637 0.0246 Inf   5.536  <.0001
 StepF5 - StepF6   -0.00308 0.0246 Inf  -0.125  1.0000
 StepF5 - StepF7    0.06026 0.0245 Inf   2.456  0.3681
 StepF5 - StepF8    0.06398 0.0245 Inf   2.607  0.2753
 StepF5 - StepF9    0.04587 0.0245 Inf   1.869  0.7786
 StepF5 - StepF10   0.03657 0.0245 Inf   1.490  0.9437
 StepF5 - StepF11   0.08428 0.0246 Inf   3.433  0.0295
 StepF5 - StepF12   0.14798 0.0246 Inf   6.024  <.0001
 StepF6 - StepF7    0.06334 0.0246 Inf   2.580  0.2911
 StepF6 - StepF8    0.06705 0.0245 Inf   2.732  0.2105
 StepF6 - StepF9    0.04894 0.0245 Inf   1.994  0.6979
 StepF6 - StepF10   0.03964 0.0245 Inf   1.615  0.9039
 StepF6 - StepF11   0.08736 0.0245 Inf   3.560  0.0191
 StepF6 - StepF12   0.15106 0.0246 Inf   6.144  <.0001
 StepF7 - StepF8    0.00371 0.0245 Inf   0.151  1.0000
 StepF7 - StepF9   -0.01440 0.0245 Inf  -0.587  1.0000
 StepF7 - StepF10  -0.02370 0.0245 Inf  -0.966  0.9984
 StepF7 - StepF11   0.02402 0.0246 Inf   0.978  0.9981
 StepF7 - StepF12   0.08772 0.0246 Inf   3.571  0.0184
 StepF8 - StepF9   -0.01811 0.0245 Inf  -0.738  0.9999
 StepF8 - StepF10  -0.02741 0.0245 Inf  -1.117  0.9940
 StepF8 - StepF11   0.02031 0.0245 Inf   0.827  0.9996
 StepF8 - StepF12   0.08401 0.0246 Inf   3.420  0.0308
 StepF9 - StepF10  -0.00930 0.0245 Inf  -0.379  1.0000
 StepF9 - StepF11   0.03842 0.0245 Inf   1.565  0.9216
 StepF9 - StepF12   0.10212 0.0246 Inf   4.157  0.0019
 StepF10 - StepF11  0.04772 0.0245 Inf   1.945  0.7310
 StepF10 - StepF12  0.11142 0.0246 Inf   4.534  0.0004
 StepF11 - StepF12  0.06370 0.0246 Inf   2.591  0.2846

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.17832 0.0249 Inf  -7.153  <.0001
 StepF1 - StepF3   -0.15532 0.0250 Inf  -6.211  <.0001
 StepF1 - StepF4   -0.04444 0.0250 Inf  -1.774  0.8322
 StepF1 - StepF5   -0.05605 0.0248 Inf  -2.263  0.5031
 StepF1 - StepF6   -0.05913 0.0249 Inf  -2.375  0.4230
 StepF1 - StepF7    0.00421 0.0248 Inf   0.170  1.0000
 StepF1 - StepF8    0.00792 0.0248 Inf   0.320  1.0000
 StepF1 - StepF9   -0.01019 0.0248 Inf  -0.411  1.0000
 StepF1 - StepF10  -0.01949 0.0248 Inf  -0.784  0.9998
 StepF1 - StepF11   0.02823 0.0249 Inf   1.134  0.9932
 StepF1 - StepF12   0.09193 0.0248 Inf   3.712  0.0111
 StepF2 - StepF3    0.02300 0.0245 Inf   0.937  0.9987
 StepF2 - StepF4    0.13388 0.0245 Inf   5.455  <.0001
 StepF2 - StepF5    0.12227 0.0246 Inf   4.979  <.0001
 StepF2 - StepF6    0.11920 0.0245 Inf   4.858  0.0001
 StepF2 - StepF7    0.18254 0.0246 Inf   7.432  <.0001
 StepF2 - StepF8    0.18625 0.0246 Inf   7.586  <.0001
 StepF2 - StepF9    0.16814 0.0246 Inf   6.848  <.0001
 StepF2 - StepF10   0.15884 0.0245 Inf   6.472  <.0001
 StepF2 - StepF11   0.20655 0.0245 Inf   8.418  <.0001
 StepF2 - StepF12   0.27025 0.0246 Inf  10.988  <.0001
 StepF3 - StepF4    0.11088 0.0245 Inf   4.519  0.0004
 StepF3 - StepF5    0.09927 0.0246 Inf   4.038  0.0031
 StepF3 - StepF6    0.09620 0.0245 Inf   3.919  0.0051
 StepF3 - StepF7    0.15954 0.0246 Inf   6.489  <.0001
 StepF3 - StepF8    0.16325 0.0246 Inf   6.644  <.0001
 StepF3 - StepF9    0.14514 0.0246 Inf   5.906  <.0001
 StepF3 - StepF10   0.13584 0.0246 Inf   5.532  <.0001
 StepF3 - StepF11   0.18355 0.0245 Inf   7.478  <.0001
 StepF3 - StepF12   0.24725 0.0246 Inf  10.042  <.0001
 StepF4 - StepF5   -0.01161 0.0246 Inf  -0.472  1.0000
 StepF4 - StepF6   -0.01469 0.0246 Inf  -0.598  1.0000
 StepF4 - StepF7    0.04865 0.0246 Inf   1.978  0.7087
 StepF4 - StepF8    0.05236 0.0246 Inf   2.130  0.6007
 StepF4 - StepF9    0.03425 0.0246 Inf   1.393  0.9651
 StepF4 - StepF10   0.02495 0.0246 Inf   1.016  0.9974
 StepF4 - StepF11   0.07267 0.0246 Inf   2.960  0.1205
 StepF4 - StepF12   0.13637 0.0246 Inf   5.536  <.0001
 StepF5 - StepF6   -0.00308 0.0246 Inf  -0.125  1.0000
 StepF5 - StepF7    0.06026 0.0245 Inf   2.456  0.3681
 StepF5 - StepF8    0.06398 0.0245 Inf   2.607  0.2753
 StepF5 - StepF9    0.04587 0.0245 Inf   1.869  0.7786
 StepF5 - StepF10   0.03657 0.0245 Inf   1.490  0.9437
 StepF5 - StepF11   0.08428 0.0246 Inf   3.433  0.0295
 StepF5 - StepF12   0.14798 0.0246 Inf   6.024  <.0001
 StepF6 - StepF7    0.06334 0.0246 Inf   2.580  0.2911
 StepF6 - StepF8    0.06705 0.0245 Inf   2.732  0.2105
 StepF6 - StepF9    0.04894 0.0245 Inf   1.994  0.6979
 StepF6 - StepF10   0.03964 0.0245 Inf   1.615  0.9039
 StepF6 - StepF11   0.08736 0.0245 Inf   3.560  0.0191
 StepF6 - StepF12   0.15106 0.0246 Inf   6.144  <.0001
 StepF7 - StepF8    0.00371 0.0245 Inf   0.151  1.0000
 StepF7 - StepF9   -0.01440 0.0245 Inf  -0.587  1.0000
 StepF7 - StepF10  -0.02370 0.0245 Inf  -0.966  0.9984
 StepF7 - StepF11   0.02402 0.0246 Inf   0.978  0.9981
 StepF7 - StepF12   0.08772 0.0246 Inf   3.571  0.0184
 StepF8 - StepF9   -0.01811 0.0245 Inf  -0.738  0.9999
 StepF8 - StepF10  -0.02741 0.0245 Inf  -1.117  0.9940
 StepF8 - StepF11   0.02031 0.0245 Inf   0.827  0.9996
 StepF8 - StepF12   0.08401 0.0246 Inf   3.420  0.0308
 StepF9 - StepF10  -0.00930 0.0245 Inf  -0.379  1.0000
 StepF9 - StepF11   0.03842 0.0245 Inf   1.565  0.9216
 StepF9 - StepF12   0.10212 0.0246 Inf   4.157  0.0019
 StepF10 - StepF11  0.04772 0.0245 Inf   1.945  0.7310
 StepF10 - StepF12  0.11142 0.0246 Inf   4.534  0.0004
 StepF11 - StepF12  0.06370 0.0246 Inf   2.591  0.2846

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.17832 0.0249 Inf   7.153  <.0001
 StepF3 - StepF2   -0.02300 0.0245 Inf  -0.937  1.0000
 StepF4 - StepF3   -0.11088 0.0245 Inf  -4.519  0.0001
 StepF5 - StepF4    0.01161 0.0246 Inf   0.472  1.0000
 StepF6 - StepF5    0.00308 0.0246 Inf   0.125  1.0000
 StepF7 - StepF6   -0.06334 0.0246 Inf  -2.580  0.0861
 StepF8 - StepF7   -0.00371 0.0245 Inf  -0.151  1.0000
 StepF9 - StepF8    0.01811 0.0245 Inf   0.738  1.0000
 StepF10 - StepF9   0.00930 0.0245 Inf   0.379  1.0000
 StepF11 - StepF10 -0.04772 0.0245 Inf  -1.945  0.3628
 StepF12 - StepF11 -0.06370 0.0246 Inf  -2.591  0.0861

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.17832 0.0249 Inf   7.153  <.0001
 StepF3 - StepF2   -0.02300 0.0245 Inf  -0.937  1.0000
 StepF4 - StepF3   -0.11088 0.0245 Inf  -4.519  0.0001
 StepF5 - StepF4    0.01161 0.0246 Inf   0.472  1.0000
 StepF6 - StepF5    0.00308 0.0246 Inf   0.125  1.0000
 StepF7 - StepF6   -0.06334 0.0246 Inf  -2.580  0.0861
 StepF8 - StepF7   -0.00371 0.0245 Inf  -0.151  1.0000
 StepF9 - StepF8    0.01811 0.0245 Inf   0.738  1.0000
 StepF10 - StepF9   0.00930 0.0245 Inf   0.379  1.0000
 StepF11 - StepF10 -0.04772 0.0245 Inf  -1.945  0.3628
 StepF12 - StepF11 -0.06370 0.0246 Inf  -2.591  0.0861

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 25.8378 (tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
 - Rescale variables?
Warning: Some predictor variables are on very different scales: consider
rescaling

[Optional] Random-slope model for rt_ms | subject (summary):
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1 |  
    trial_id)
   Data: dd

REML criterion at convergence: 13994.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.2682 -0.4862 -0.1224  0.3220 11.8592 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr 
 trial_id (Intercept) 9.590e-02 0.3096759      
 subject  (Intercept) 2.627e-01 0.5125615      
          rt_ms       3.753e-08 0.0001937 -0.97
 Residual             2.243e-01 0.4735623      
Number of obs: 9249, groups:  trial_id, 771; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  7.191e-01  1.218e-01  1.962e+00   5.904 0.028770 *  
StepF1      -2.798e-02  1.685e-02  7.491e+03  -1.660 0.096902 .  
StepF2       1.429e-01  1.638e-02  8.553e+03   8.723  < 2e-16 ***
StepF3       1.183e-01  1.640e-02  8.554e+03   7.216 5.81e-13 ***
StepF4       8.386e-03  1.641e-02  8.559e+03   0.511 0.609237    
StepF5       2.604e-02  1.636e-02  8.544e+03   1.592 0.111525    
StepF6       2.625e-02  1.638e-02  8.428e+03   1.603 0.109073    
StepF7      -3.484e-02  1.637e-02  8.514e+03  -2.128 0.033357 *  
StepF8      -4.389e-02  1.636e-02  8.532e+03  -2.683 0.007320 ** 
StepF9      -2.494e-02  1.636e-02  8.565e+03  -1.525 0.127346    
StepF10     -1.331e-02  1.637e-02  8.517e+03  -0.813 0.416117    
StepF11     -5.684e-02  1.636e-02  8.567e+03  -3.475 0.000514 ***
Accuracy1   -1.438e-02  1.353e-02  4.526e+02  -1.063 0.288343    
rt_ms       -8.814e-05  4.818e-05  2.901e+00  -1.829 0.167904    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(summary(m_rs), correlation=TRUE)  or
    vcov(summary(m_rs))        if you need it
fit warnings:
Some predictor variables are on very different scales: consider rescaling
optimizer (nloptwrap) convergence code: 0 (OK)
Model failed to converge with max|grad| = 25.8378 (tol = 0.002, component 1)
Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?
Model is nearly unidentifiable: large eigenvalue ratio
 - Rescale variables?



==============================
TRAINING (rt_ms) | Block 2 (12 steps) | Axis Y
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    127.5802 11  < 2.2e-16 ***
Accuracy   3.3668  1   0.066525 .  
rt_ms      9.9847  1   0.001578 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.795 0.0850 Inf     0.628     0.961
 2      0.770 0.0848 Inf     0.604     0.936
 3      0.863 0.0848 Inf     0.697     1.030
 4      0.762 0.0847 Inf     0.596     0.928
 5      0.713 0.0848 Inf     0.547     0.879
 6      0.725 0.0848 Inf     0.559     0.892
 7      0.808 0.0848 Inf     0.642     0.974
 8      0.681 0.0848 Inf     0.515     0.847
 9      0.704 0.0848 Inf     0.538     0.870
 10     0.719 0.0848 Inf     0.553     0.885
 11     0.679 0.0848 Inf     0.513     0.845
 12     0.608 0.0848 Inf     0.442     0.774

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.840 0.0839 Inf     0.675     1.004
 2      0.815 0.0838 Inf     0.651     0.980
 3      0.908 0.0839 Inf     0.744     1.073
 4      0.807 0.0839 Inf     0.643     0.971
 5      0.758 0.0838 Inf     0.594     0.922
 6      0.770 0.0838 Inf     0.606     0.935
 7      0.853 0.0838 Inf     0.688     1.017
 8      0.726 0.0838 Inf     0.562     0.890
 9      0.749 0.0838 Inf     0.584     0.913
 10     0.764 0.0838 Inf     0.600     0.928
 11     0.724 0.0838 Inf     0.559     0.888
 12     0.653 0.0838 Inf     0.489     0.817

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.02441 0.0288 Inf   0.848  0.9995
 StepF1 - StepF3   -0.06884 0.0289 Inf  -2.383  0.4172
 StepF1 - StepF4    0.03256 0.0289 Inf   1.126  0.9936
 StepF1 - StepF5    0.08151 0.0286 Inf   2.850  0.1594
 StepF1 - StepF6    0.06915 0.0288 Inf   2.405  0.4022
 StepF1 - StepF7   -0.01313 0.0286 Inf  -0.459  1.0000
 StepF1 - StepF8    0.11374 0.0286 Inf   3.972  0.0041
 StepF1 - StepF9    0.09081 0.0286 Inf   3.172  0.0667
 StepF1 - StepF10   0.07549 0.0287 Inf   2.630  0.2624
 StepF1 - StepF11   0.11581 0.0287 Inf   4.028  0.0033
 StepF1 - StepF12   0.18653 0.0286 Inf   6.522  <.0001
 StepF2 - StepF3   -0.09325 0.0283 Inf  -3.290  0.0467
 StepF2 - StepF4    0.00815 0.0283 Inf   0.288  1.0000
 StepF2 - StepF5    0.05711 0.0284 Inf   2.013  0.6845
 StepF2 - StepF6    0.04475 0.0283 Inf   1.579  0.9170
 StepF2 - StepF7   -0.03753 0.0284 Inf  -1.323  0.9763
 StepF2 - StepF8    0.08933 0.0284 Inf   3.150  0.0712
 StepF2 - StepF9    0.06640 0.0284 Inf   2.342  0.4467
 StepF2 - StepF10   0.05108 0.0283 Inf   1.802  0.8173
 StepF2 - StepF11   0.09140 0.0283 Inf   3.225  0.0570
 StepF2 - StepF12   0.16212 0.0284 Inf   5.707  <.0001
 StepF3 - StepF4    0.10140 0.0283 Inf   3.578  0.0180
 StepF3 - StepF5    0.15035 0.0284 Inf   5.296  <.0001
 StepF3 - StepF6    0.13800 0.0283 Inf   4.868  0.0001
 StepF3 - StepF7    0.05572 0.0284 Inf   1.962  0.7193
 StepF3 - StepF8    0.18258 0.0284 Inf   6.434  <.0001
 StepF3 - StepF9    0.15965 0.0284 Inf   5.625  <.0001
 StepF3 - StepF10   0.14433 0.0284 Inf   5.089  <.0001
 StepF3 - StepF11   0.18465 0.0283 Inf   6.513  <.0001
 StepF3 - StepF12   0.25537 0.0284 Inf   8.980  <.0001
 StepF4 - StepF5    0.04895 0.0284 Inf   1.723  0.8578
 StepF4 - StepF6    0.03659 0.0284 Inf   1.291  0.9805
 StepF4 - StepF7   -0.04569 0.0284 Inf  -1.608  0.9066
 StepF4 - StepF8    0.08118 0.0284 Inf   2.859  0.1557
 StepF4 - StepF9    0.05825 0.0284 Inf   2.052  0.6576
 StepF4 - StepF10   0.04293 0.0284 Inf   1.513  0.9374
 StepF4 - StepF11   0.08324 0.0284 Inf   2.936  0.1284
 StepF4 - StepF12   0.15397 0.0285 Inf   5.412  <.0001
 StepF5 - StepF6   -0.01236 0.0284 Inf  -0.436  1.0000
 StepF5 - StepF7   -0.09464 0.0283 Inf  -3.339  0.0400
 StepF5 - StepF8    0.03222 0.0283 Inf   1.137  0.9930
 StepF5 - StepF9    0.00930 0.0283 Inf   0.328  1.0000
 StepF5 - StepF10  -0.00602 0.0283 Inf  -0.213  1.0000
 StepF5 - StepF11   0.03429 0.0284 Inf   1.209  0.9884
 StepF5 - StepF12   0.10502 0.0284 Inf   3.702  0.0116
 StepF6 - StepF7   -0.08228 0.0284 Inf  -2.901  0.1402
 StepF6 - StepF8    0.04458 0.0284 Inf   1.573  0.9191
 StepF6 - StepF9    0.02166 0.0284 Inf   0.764  0.9998
 StepF6 - StepF10   0.00633 0.0283 Inf   0.223  1.0000
 StepF6 - StepF11   0.04665 0.0283 Inf   1.646  0.8919
 StepF6 - StepF12   0.11737 0.0284 Inf   4.133  0.0021
 StepF7 - StepF8    0.12686 0.0283 Inf   4.476  0.0005
 StepF7 - StepF9    0.10394 0.0283 Inf   3.667  0.0131
 StepF7 - StepF10   0.08861 0.0283 Inf   3.126  0.0764
 StepF7 - StepF11   0.12893 0.0284 Inf   4.546  0.0003
 StepF7 - StepF12   0.19965 0.0284 Inf   7.037  <.0001
 StepF8 - StepF9   -0.02293 0.0283 Inf  -0.809  0.9997
 StepF8 - StepF10  -0.03825 0.0283 Inf  -1.349  0.9725
 StepF8 - StepF11   0.00207 0.0283 Inf   0.073  1.0000
 StepF8 - StepF12   0.07279 0.0284 Inf   2.565  0.2995
 StepF9 - StepF10  -0.01532 0.0283 Inf  -0.541  1.0000
 StepF9 - StepF11   0.02500 0.0284 Inf   0.882  0.9993
 StepF9 - StepF12   0.09572 0.0284 Inf   3.374  0.0358
 StepF10 - StepF11  0.04032 0.0283 Inf   1.423  0.9594
 StepF10 - StepF12  0.11104 0.0284 Inf   3.912  0.0052
 StepF11 - StepF12  0.07072 0.0284 Inf   2.491  0.3457

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.02441 0.0288 Inf   0.848  0.9995
 StepF1 - StepF3   -0.06884 0.0289 Inf  -2.383  0.4172
 StepF1 - StepF4    0.03256 0.0289 Inf   1.126  0.9936
 StepF1 - StepF5    0.08151 0.0286 Inf   2.850  0.1594
 StepF1 - StepF6    0.06915 0.0288 Inf   2.405  0.4022
 StepF1 - StepF7   -0.01313 0.0286 Inf  -0.459  1.0000
 StepF1 - StepF8    0.11374 0.0286 Inf   3.972  0.0041
 StepF1 - StepF9    0.09081 0.0286 Inf   3.172  0.0667
 StepF1 - StepF10   0.07549 0.0287 Inf   2.630  0.2624
 StepF1 - StepF11   0.11581 0.0287 Inf   4.028  0.0033
 StepF1 - StepF12   0.18653 0.0286 Inf   6.522  <.0001
 StepF2 - StepF3   -0.09325 0.0283 Inf  -3.290  0.0467
 StepF2 - StepF4    0.00815 0.0283 Inf   0.288  1.0000
 StepF2 - StepF5    0.05711 0.0284 Inf   2.013  0.6845
 StepF2 - StepF6    0.04475 0.0283 Inf   1.579  0.9170
 StepF2 - StepF7   -0.03753 0.0284 Inf  -1.323  0.9763
 StepF2 - StepF8    0.08933 0.0284 Inf   3.150  0.0712
 StepF2 - StepF9    0.06640 0.0284 Inf   2.342  0.4467
 StepF2 - StepF10   0.05108 0.0283 Inf   1.802  0.8173
 StepF2 - StepF11   0.09140 0.0283 Inf   3.225  0.0570
 StepF2 - StepF12   0.16212 0.0284 Inf   5.707  <.0001
 StepF3 - StepF4    0.10140 0.0283 Inf   3.578  0.0180
 StepF3 - StepF5    0.15035 0.0284 Inf   5.296  <.0001
 StepF3 - StepF6    0.13800 0.0283 Inf   4.868  0.0001
 StepF3 - StepF7    0.05572 0.0284 Inf   1.962  0.7193
 StepF3 - StepF8    0.18258 0.0284 Inf   6.434  <.0001
 StepF3 - StepF9    0.15965 0.0284 Inf   5.625  <.0001
 StepF3 - StepF10   0.14433 0.0284 Inf   5.089  <.0001
 StepF3 - StepF11   0.18465 0.0283 Inf   6.513  <.0001
 StepF3 - StepF12   0.25537 0.0284 Inf   8.980  <.0001
 StepF4 - StepF5    0.04895 0.0284 Inf   1.723  0.8578
 StepF4 - StepF6    0.03659 0.0284 Inf   1.291  0.9805
 StepF4 - StepF7   -0.04569 0.0284 Inf  -1.608  0.9066
 StepF4 - StepF8    0.08118 0.0284 Inf   2.859  0.1557
 StepF4 - StepF9    0.05825 0.0284 Inf   2.052  0.6576
 StepF4 - StepF10   0.04293 0.0284 Inf   1.513  0.9374
 StepF4 - StepF11   0.08324 0.0284 Inf   2.936  0.1284
 StepF4 - StepF12   0.15397 0.0285 Inf   5.412  <.0001
 StepF5 - StepF6   -0.01236 0.0284 Inf  -0.436  1.0000
 StepF5 - StepF7   -0.09464 0.0283 Inf  -3.339  0.0400
 StepF5 - StepF8    0.03222 0.0283 Inf   1.137  0.9930
 StepF5 - StepF9    0.00930 0.0283 Inf   0.328  1.0000
 StepF5 - StepF10  -0.00602 0.0283 Inf  -0.213  1.0000
 StepF5 - StepF11   0.03429 0.0284 Inf   1.209  0.9884
 StepF5 - StepF12   0.10502 0.0284 Inf   3.702  0.0116
 StepF6 - StepF7   -0.08228 0.0284 Inf  -2.901  0.1402
 StepF6 - StepF8    0.04458 0.0284 Inf   1.573  0.9191
 StepF6 - StepF9    0.02166 0.0284 Inf   0.764  0.9998
 StepF6 - StepF10   0.00633 0.0283 Inf   0.223  1.0000
 StepF6 - StepF11   0.04665 0.0283 Inf   1.646  0.8919
 StepF6 - StepF12   0.11737 0.0284 Inf   4.133  0.0021
 StepF7 - StepF8    0.12686 0.0283 Inf   4.476  0.0005
 StepF7 - StepF9    0.10394 0.0283 Inf   3.667  0.0131
 StepF7 - StepF10   0.08861 0.0283 Inf   3.126  0.0764
 StepF7 - StepF11   0.12893 0.0284 Inf   4.546  0.0003
 StepF7 - StepF12   0.19965 0.0284 Inf   7.037  <.0001
 StepF8 - StepF9   -0.02293 0.0283 Inf  -0.809  0.9997
 StepF8 - StepF10  -0.03825 0.0283 Inf  -1.349  0.9725
 StepF8 - StepF11   0.00207 0.0283 Inf   0.073  1.0000
 StepF8 - StepF12   0.07279 0.0284 Inf   2.565  0.2995
 StepF9 - StepF10  -0.01532 0.0283 Inf  -0.541  1.0000
 StepF9 - StepF11   0.02500 0.0284 Inf   0.882  0.9993
 StepF9 - StepF12   0.09572 0.0284 Inf   3.374  0.0358
 StepF10 - StepF11  0.04032 0.0283 Inf   1.423  0.9594
 StepF10 - StepF12  0.11104 0.0284 Inf   3.912  0.0052
 StepF11 - StepF12  0.07072 0.0284 Inf   2.491  0.3457

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    -0.0244 0.0288 Inf  -0.848  1.0000
 StepF3 - StepF2     0.0932 0.0283 Inf   3.290  0.0090
 StepF4 - StepF3    -0.1014 0.0283 Inf  -3.578  0.0035
 StepF5 - StepF4    -0.0490 0.0284 Inf  -1.723  0.5089
 StepF6 - StepF5     0.0124 0.0284 Inf   0.436  1.0000
 StepF7 - StepF6     0.0823 0.0284 Inf   2.901  0.0297
 StepF8 - StepF7    -0.1269 0.0283 Inf  -4.476  0.0001
 StepF9 - StepF8     0.0229 0.0283 Inf   0.809  1.0000
 StepF10 - StepF9    0.0153 0.0283 Inf   0.541  1.0000
 StepF11 - StepF10  -0.0403 0.0283 Inf  -1.423  0.7744
 StepF12 - StepF11  -0.0707 0.0284 Inf  -2.491  0.0893

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    -0.0244 0.0288 Inf  -0.848  1.0000
 StepF3 - StepF2     0.0932 0.0283 Inf   3.290  0.0090
 StepF4 - StepF3    -0.1014 0.0283 Inf  -3.578  0.0035
 StepF5 - StepF4    -0.0490 0.0284 Inf  -1.723  0.5089
 StepF6 - StepF5     0.0124 0.0284 Inf   0.436  1.0000
 StepF7 - StepF6     0.0823 0.0284 Inf   2.901  0.0297
 StepF8 - StepF7    -0.1269 0.0283 Inf  -4.476  0.0001
 StepF9 - StepF8     0.0229 0.0283 Inf   0.809  1.0000
 StepF10 - StepF9    0.0153 0.0283 Inf   0.541  1.0000
 StepF11 - StepF10  -0.0403 0.0283 Inf  -1.423  0.7744
 StepF12 - StepF11  -0.0707 0.0284 Inf  -2.491  0.0893

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning: Model failed to converge with 1 negative eigenvalue: -5.9e+00

[Optional] Random-slope model for rt_ms | subject (summary):
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1 |  
    trial_id)
   Data: dd

REML criterion at convergence: 16514.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.4892 -0.4741 -0.1345  0.3114 21.0301 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr 
 trial_id (Intercept) 7.131e-02 0.2670403      
 subject  (Intercept) 6.299e-01 0.7936873      
          rt_ms       5.677e-08 0.0002383 -0.83
 Residual             3.054e-01 0.5525982      
Number of obs: 9249, groups:  trial_id, 771; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  7.873e-01  1.877e-01  8.557e+03   4.194 2.77e-05 ***
StepF1       5.954e-02  1.976e-02  8.440e+03   3.014 0.002588 ** 
StepF2       3.305e-02  1.913e-02  8.508e+03   1.727 0.084180 .  
StepF3       1.224e-01  1.916e-02  8.511e+03   6.391 1.74e-10 ***
StepF4       2.154e-02  1.917e-02  8.511e+03   1.124 0.261092    
StepF5      -2.396e-02  1.912e-02  8.507e+03  -1.254 0.210026    
StepF6      -8.818e-03  1.917e-02  8.480e+03  -0.460 0.645492    
StepF7       7.271e-02  1.914e-02  8.506e+03   3.800 0.000146 ***
StepF8      -5.865e-02  1.912e-02  8.500e+03  -3.067 0.002169 ** 
StepF9      -3.326e-02  1.910e-02  8.506e+03  -1.741 0.081678 .  
StepF10     -1.192e-02  1.913e-02  8.506e+03  -0.623 0.533281    
StepF11     -5.207e-02  1.911e-02  8.507e+03  -2.725 0.006436 ** 
Accuracy1   -2.237e-02  1.252e-02  7.270e+02  -1.786 0.074458 .  
rt_ms       -7.612e-05  5.937e-05  7.276e+00  -1.282 0.239149    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(summary(m_rs), correlation=TRUE)  or
    vcov(summary(m_rs))        if you need it
fit warnings:
Some predictor variables are on very different scales: consider rescaling
optimizer (nloptwrap) convergence code: 0 (OK)
unable to evaluate scaled gradient
Model failed to converge: degenerate  Hessian with 1 negative eigenvalues



==============================
TRAINING (rt_ms) | Block 2 (12 steps) | Axis Z
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    157.5865 11  < 2.2e-16 ***
Accuracy   4.1857  1   0.040767 *  
rt_ms      7.6789  1   0.005587 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.39 0.141 Inf     1.110      1.66
 2       1.61 0.141 Inf     1.338      1.89
 3       1.58 0.141 Inf     1.306      1.86
 4       1.46 0.141 Inf     1.181      1.73
 5       1.48 0.141 Inf     1.203      1.75
 6       1.35 0.141 Inf     1.071      1.62
 7       1.41 0.141 Inf     1.138      1.69
 8       1.33 0.141 Inf     1.051      1.60
 9       1.33 0.141 Inf     1.056      1.61
 10      1.35 0.141 Inf     1.071      1.62
 11      1.31 0.141 Inf     1.035      1.59
 12      1.12 0.141 Inf     0.849      1.40

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.49 0.139 Inf     1.217      1.76
 2       1.72 0.138 Inf     1.444      1.99
 3       1.68 0.139 Inf     1.412      1.96
 4       1.56 0.139 Inf     1.287      1.83
 5       1.58 0.138 Inf     1.309      1.85
 6       1.45 0.138 Inf     1.177      1.72
 7       1.52 0.138 Inf     1.244      1.79
 8       1.43 0.138 Inf     1.158      1.70
 9       1.43 0.138 Inf     1.163      1.71
 10      1.45 0.138 Inf     1.177      1.72
 11      1.41 0.138 Inf     1.142      1.68
 12      1.23 0.138 Inf     0.955      1.50

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -2.27e-01 0.0494 Inf  -4.595  0.0003
 StepF1 - StepF3   -1.95e-01 0.0495 Inf  -3.935  0.0048
 StepF1 - StepF4   -6.98e-02 0.0496 Inf  -1.407  0.9625
 StepF1 - StepF5   -9.19e-02 0.0490 Inf  -1.873  0.7760
 StepF1 - StepF6    4.01e-02 0.0493 Inf   0.813  0.9997
 StepF1 - StepF7   -2.69e-02 0.0490 Inf  -0.548  1.0000
 StepF1 - StepF8    5.99e-02 0.0491 Inf   1.220  0.9875
 StepF1 - StepF9    5.48e-02 0.0491 Inf   1.116  0.9941
 StepF1 - StepF10   4.01e-02 0.0492 Inf   0.815  0.9997
 StepF1 - StepF11   7.57e-02 0.0493 Inf   1.536  0.9308
 StepF1 - StepF12   2.62e-01 0.0490 Inf   5.346  <.0001
 StepF2 - StepF3    3.20e-02 0.0486 Inf   0.657  1.0000
 StepF2 - StepF4    1.57e-01 0.0486 Inf   3.231  0.0560
 StepF2 - StepF5    1.35e-01 0.0486 Inf   2.775  0.1906
 StepF2 - StepF6    2.67e-01 0.0486 Inf   5.493  <.0001
 StepF2 - StepF7    2.00e-01 0.0486 Inf   4.112  0.0023
 StepF2 - StepF8    2.87e-01 0.0486 Inf   5.898  <.0001
 StepF2 - StepF9    2.82e-01 0.0486 Inf   5.792  <.0001
 StepF2 - StepF10   2.67e-01 0.0486 Inf   5.493  <.0001
 StepF2 - StepF11   3.03e-01 0.0486 Inf   6.227  <.0001
 StepF2 - StepF12   4.89e-01 0.0487 Inf  10.040  <.0001
 StepF3 - StepF4    1.25e-01 0.0486 Inf   2.574  0.2942
 StepF3 - StepF5    1.03e-01 0.0487 Inf   2.116  0.6112
 StepF3 - StepF6    2.35e-01 0.0486 Inf   4.834  0.0001
 StepF3 - StepF7    1.68e-01 0.0487 Inf   3.451  0.0278
 StepF3 - StepF8    2.55e-01 0.0487 Inf   5.237  <.0001
 StepF3 - StepF9    2.50e-01 0.0487 Inf   5.131  <.0001
 StepF3 - StepF10   2.35e-01 0.0486 Inf   4.833  0.0001
 StepF3 - StepF11   2.71e-01 0.0486 Inf   5.567  <.0001
 StepF3 - StepF12   4.57e-01 0.0488 Inf   9.374  <.0001
 StepF4 - StepF5   -2.21e-02 0.0487 Inf  -0.454  1.0000
 StepF4 - StepF6    1.10e-01 0.0486 Inf   2.260  0.5057
 StepF4 - StepF7    4.29e-02 0.0487 Inf   0.881  0.9993
 StepF4 - StepF8    1.30e-01 0.0487 Inf   2.665  0.2441
 StepF4 - StepF9    1.25e-01 0.0487 Inf   2.559  0.3034
 StepF4 - StepF10   1.10e-01 0.0486 Inf   2.259  0.5061
 StepF4 - StepF11   1.46e-01 0.0486 Inf   2.993  0.1104
 StepF4 - StepF12   3.32e-01 0.0488 Inf   6.805  <.0001
 StepF5 - StepF6    1.32e-01 0.0486 Inf   2.714  0.2191
 StepF5 - StepF7    6.50e-02 0.0486 Inf   1.338  0.9742
 StepF5 - StepF8    1.52e-01 0.0486 Inf   3.124  0.0768
 StepF5 - StepF9    1.47e-01 0.0486 Inf   3.018  0.1032
 StepF5 - StepF10   1.32e-01 0.0486 Inf   2.715  0.2184
 StepF5 - StepF11   1.68e-01 0.0486 Inf   3.447  0.0281
 StepF5 - StepF12   3.54e-01 0.0486 Inf   7.278  <.0001
 StepF6 - StepF7   -6.69e-02 0.0486 Inf  -1.376  0.9681
 StepF6 - StepF8    1.98e-02 0.0486 Inf   0.408  1.0000
 StepF6 - StepF9    1.47e-02 0.0486 Inf   0.303  1.0000
 StepF6 - StepF10   2.19e-05 0.0486 Inf   0.000  1.0000
 StepF6 - StepF11   3.57e-02 0.0486 Inf   0.734  0.9999
 StepF6 - StepF12   2.22e-01 0.0487 Inf   4.562  0.0003
 StepF7 - StepF8    8.68e-02 0.0486 Inf   1.786  0.8263
 StepF7 - StepF9    8.16e-02 0.0486 Inf   1.680  0.8776
 StepF7 - StepF10   6.70e-02 0.0486 Inf   1.377  0.9679
 StepF7 - StepF11   1.03e-01 0.0486 Inf   2.110  0.6157
 StepF7 - StepF12   2.89e-01 0.0486 Inf   5.942  <.0001
 StepF8 - StepF9   -5.13e-03 0.0486 Inf  -0.106  1.0000
 StepF8 - StepF10  -1.98e-02 0.0486 Inf  -0.408  1.0000
 StepF8 - StepF11   1.58e-02 0.0486 Inf   0.325  1.0000
 StepF8 - StepF12   2.02e-01 0.0486 Inf   4.157  0.0019
 StepF9 - StepF10  -1.47e-02 0.0486 Inf  -0.302  1.0000
 StepF9 - StepF11   2.09e-02 0.0486 Inf   0.431  1.0000
 StepF9 - StepF12   2.07e-01 0.0486 Inf   4.263  0.0012
 StepF10 - StepF11  3.56e-02 0.0486 Inf   0.733  0.9999
 StepF10 - StepF12  2.22e-01 0.0487 Inf   4.563  0.0003
 StepF11 - StepF12  1.86e-01 0.0487 Inf   3.829  0.0072

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -2.27e-01 0.0494 Inf  -4.595  0.0003
 StepF1 - StepF3   -1.95e-01 0.0495 Inf  -3.935  0.0048
 StepF1 - StepF4   -6.98e-02 0.0496 Inf  -1.407  0.9625
 StepF1 - StepF5   -9.19e-02 0.0490 Inf  -1.873  0.7760
 StepF1 - StepF6    4.01e-02 0.0493 Inf   0.813  0.9997
 StepF1 - StepF7   -2.69e-02 0.0490 Inf  -0.548  1.0000
 StepF1 - StepF8    5.99e-02 0.0491 Inf   1.220  0.9875
 StepF1 - StepF9    5.48e-02 0.0491 Inf   1.116  0.9941
 StepF1 - StepF10   4.01e-02 0.0492 Inf   0.815  0.9997
 StepF1 - StepF11   7.57e-02 0.0493 Inf   1.536  0.9308
 StepF1 - StepF12   2.62e-01 0.0490 Inf   5.346  <.0001
 StepF2 - StepF3    3.20e-02 0.0486 Inf   0.657  1.0000
 StepF2 - StepF4    1.57e-01 0.0486 Inf   3.231  0.0560
 StepF2 - StepF5    1.35e-01 0.0486 Inf   2.775  0.1906
 StepF2 - StepF6    2.67e-01 0.0486 Inf   5.493  <.0001
 StepF2 - StepF7    2.00e-01 0.0486 Inf   4.112  0.0023
 StepF2 - StepF8    2.87e-01 0.0486 Inf   5.898  <.0001
 StepF2 - StepF9    2.82e-01 0.0486 Inf   5.792  <.0001
 StepF2 - StepF10   2.67e-01 0.0486 Inf   5.493  <.0001
 StepF2 - StepF11   3.03e-01 0.0486 Inf   6.227  <.0001
 StepF2 - StepF12   4.89e-01 0.0487 Inf  10.040  <.0001
 StepF3 - StepF4    1.25e-01 0.0486 Inf   2.574  0.2942
 StepF3 - StepF5    1.03e-01 0.0487 Inf   2.116  0.6112
 StepF3 - StepF6    2.35e-01 0.0486 Inf   4.834  0.0001
 StepF3 - StepF7    1.68e-01 0.0487 Inf   3.451  0.0278
 StepF3 - StepF8    2.55e-01 0.0487 Inf   5.237  <.0001
 StepF3 - StepF9    2.50e-01 0.0487 Inf   5.131  <.0001
 StepF3 - StepF10   2.35e-01 0.0486 Inf   4.833  0.0001
 StepF3 - StepF11   2.71e-01 0.0486 Inf   5.567  <.0001
 StepF3 - StepF12   4.57e-01 0.0488 Inf   9.374  <.0001
 StepF4 - StepF5   -2.21e-02 0.0487 Inf  -0.454  1.0000
 StepF4 - StepF6    1.10e-01 0.0486 Inf   2.260  0.5057
 StepF4 - StepF7    4.29e-02 0.0487 Inf   0.881  0.9993
 StepF4 - StepF8    1.30e-01 0.0487 Inf   2.665  0.2441
 StepF4 - StepF9    1.25e-01 0.0487 Inf   2.559  0.3034
 StepF4 - StepF10   1.10e-01 0.0486 Inf   2.259  0.5061
 StepF4 - StepF11   1.46e-01 0.0486 Inf   2.993  0.1104
 StepF4 - StepF12   3.32e-01 0.0488 Inf   6.805  <.0001
 StepF5 - StepF6    1.32e-01 0.0486 Inf   2.714  0.2191
 StepF5 - StepF7    6.50e-02 0.0486 Inf   1.338  0.9742
 StepF5 - StepF8    1.52e-01 0.0486 Inf   3.124  0.0768
 StepF5 - StepF9    1.47e-01 0.0486 Inf   3.018  0.1032
 StepF5 - StepF10   1.32e-01 0.0486 Inf   2.715  0.2184
 StepF5 - StepF11   1.68e-01 0.0486 Inf   3.447  0.0281
 StepF5 - StepF12   3.54e-01 0.0486 Inf   7.278  <.0001
 StepF6 - StepF7   -6.69e-02 0.0486 Inf  -1.376  0.9681
 StepF6 - StepF8    1.98e-02 0.0486 Inf   0.408  1.0000
 StepF6 - StepF9    1.47e-02 0.0486 Inf   0.303  1.0000
 StepF6 - StepF10   2.19e-05 0.0486 Inf   0.000  1.0000
 StepF6 - StepF11   3.57e-02 0.0486 Inf   0.734  0.9999
 StepF6 - StepF12   2.22e-01 0.0487 Inf   4.562  0.0003
 StepF7 - StepF8    8.68e-02 0.0486 Inf   1.786  0.8263
 StepF7 - StepF9    8.16e-02 0.0486 Inf   1.680  0.8776
 StepF7 - StepF10   6.70e-02 0.0486 Inf   1.377  0.9679
 StepF7 - StepF11   1.03e-01 0.0486 Inf   2.110  0.6157
 StepF7 - StepF12   2.89e-01 0.0486 Inf   5.942  <.0001
 StepF8 - StepF9   -5.13e-03 0.0486 Inf  -0.106  1.0000
 StepF8 - StepF10  -1.98e-02 0.0486 Inf  -0.408  1.0000
 StepF8 - StepF11   1.58e-02 0.0486 Inf   0.325  1.0000
 StepF8 - StepF12   2.02e-01 0.0486 Inf   4.157  0.0019
 StepF9 - StepF10  -1.47e-02 0.0486 Inf  -0.302  1.0000
 StepF9 - StepF11   2.09e-02 0.0486 Inf   0.431  1.0000
 StepF9 - StepF12   2.07e-01 0.0486 Inf   4.263  0.0012
 StepF10 - StepF11  3.56e-02 0.0486 Inf   0.733  0.9999
 StepF10 - StepF12  2.22e-01 0.0487 Inf   4.563  0.0003
 StepF11 - StepF12  1.86e-01 0.0487 Inf   3.829  0.0072

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.22685 0.0494 Inf   4.595  <.0001
 StepF3 - StepF2   -0.03195 0.0486 Inf  -0.657  1.0000
 StepF4 - StepF3   -0.12510 0.0486 Inf  -2.574  0.0803
 StepF5 - StepF4    0.02209 0.0487 Inf   0.454  1.0000
 StepF6 - StepF5   -0.13195 0.0486 Inf  -2.714  0.0598
 StepF7 - StepF6    0.06693 0.0486 Inf   1.376  1.0000
 StepF8 - StepF7   -0.08677 0.0486 Inf  -1.786  0.5192
 StepF9 - StepF8    0.00513 0.0486 Inf   0.106  1.0000
 StepF10 - StepF9   0.01469 0.0486 Inf   0.302  1.0000
 StepF11 - StepF10 -0.03563 0.0486 Inf  -0.733  1.0000
 StepF12 - StepF11 -0.18643 0.0487 Inf  -3.829  0.0013

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.22685 0.0494 Inf   4.595  <.0001
 StepF3 - StepF2   -0.03195 0.0486 Inf  -0.657  1.0000
 StepF4 - StepF3   -0.12510 0.0486 Inf  -2.574  0.0803
 StepF5 - StepF4    0.02209 0.0487 Inf   0.454  1.0000
 StepF6 - StepF5   -0.13195 0.0486 Inf  -2.714  0.0598
 StepF7 - StepF6    0.06693 0.0486 Inf   1.376  1.0000
 StepF8 - StepF7   -0.08677 0.0486 Inf  -1.786  0.5192
 StepF9 - StepF8    0.00513 0.0486 Inf   0.106  1.0000
 StepF10 - StepF9   0.01469 0.0486 Inf   0.302  1.0000
 StepF11 - StepF10 -0.03563 0.0486 Inf  -0.733  1.0000
 StepF12 - StepF11 -0.18643 0.0487 Inf  -3.829  0.0013

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning: Model failed to converge with 1 negative eigenvalue: -6.4e+00

[Optional] Random-slope model for rt_ms | subject (summary):
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1 |  
    trial_id)
   Data: dd

REML criterion at convergence: 26768.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.9363 -0.4888 -0.1076  0.3642 14.1517 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr 
 trial_id (Intercept) 3.969e-01 0.6300367      
 subject  (Intercept) 2.720e+00 1.6492945      
          rt_ms       1.943e-07 0.0004408 -0.92
 Residual             8.890e-01 0.9428564      
Number of obs: 9249, groups:  trial_id, 771; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.482e+00  3.900e-01  8.623e+03   3.800 0.000146 ***
StepF1      -6.105e-03  3.368e-02  8.320e+03  -0.181 0.856150    
StepF2       2.186e-01  3.263e-02  8.558e+03   6.699 2.22e-11 ***
StepF3       1.812e-01  3.267e-02  8.559e+03   5.545 3.03e-08 ***
StepF4       6.003e-02  3.269e-02  8.560e+03   1.836 0.066340 .  
StepF5       8.608e-02  3.260e-02  8.554e+03   2.640 0.008303 ** 
StepF6      -5.198e-02  3.267e-02  8.498e+03  -1.591 0.111651    
StepF7       2.833e-02  3.263e-02  8.547e+03   0.868 0.385395    
StepF8      -6.838e-02  3.261e-02  8.542e+03  -2.097 0.036021 *  
StepF9      -6.429e-02  3.258e-02  8.558e+03  -1.973 0.048520 *  
StepF10     -4.768e-02  3.262e-02  8.546e+03  -1.461 0.143943    
StepF11     -7.445e-02  3.259e-02  8.559e+03  -2.284 0.022380 *  
Accuracy1   -5.174e-02  2.753e-02  5.735e+02  -1.880 0.060654 .  
rt_ms       -1.040e-04  1.088e-04  7.159e+00  -0.956 0.370280    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 14 > 12.
Use print(summary(m_rs), correlation=TRUE)  or
    vcov(summary(m_rs))        if you need it
fit warnings:
Some predictor variables are on very different scales: consider rescaling
optimizer (nloptwrap) convergence code: 0 (OK)
unable to evaluate scaled gradient
Model failed to converge: degenerate  Hessian with 1 negative eigenvalues
.report_step_block_rtms(stepwise_18_rt, "3 (18 steps)")


==============================
TRAINING (rt_ms) | Block 3 (18 steps) | Axis X
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    92.4695 17  2.165e-12 ***
Accuracy  0.5914  1  0.4418734    
rt_ms    11.2769  1  0.0007848 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.584 0.0494 Inf     0.488     0.681
 2      0.608 0.0493 Inf     0.511     0.705
 3      0.614 0.0493 Inf     0.517     0.711
 4      0.583 0.0493 Inf     0.486     0.680
 5      0.581 0.0493 Inf     0.485     0.678
 6      0.597 0.0493 Inf     0.501     0.694
 7      0.596 0.0493 Inf     0.499     0.692
 8      0.566 0.0493 Inf     0.469     0.662
 9      0.572 0.0493 Inf     0.475     0.668
 10     0.571 0.0493 Inf     0.474     0.668
 11     0.549 0.0493 Inf     0.453     0.646
 12     0.501 0.0493 Inf     0.405     0.598
 13     0.503 0.0494 Inf     0.406     0.600
 14     0.554 0.0493 Inf     0.457     0.651
 15     0.532 0.0493 Inf     0.435     0.629
 16     0.537 0.0493 Inf     0.441     0.634
 17     0.513 0.0493 Inf     0.416     0.609
 18     0.525 0.0493 Inf     0.428     0.621

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.567 0.0491 Inf     0.471     0.664
 2      0.591 0.0491 Inf     0.495     0.687
 3      0.597 0.0491 Inf     0.501     0.693
 4      0.566 0.0491 Inf     0.470     0.662
 5      0.564 0.0491 Inf     0.468     0.660
 6      0.580 0.0491 Inf     0.484     0.676
 7      0.579 0.0491 Inf     0.483     0.675
 8      0.549 0.0491 Inf     0.453     0.645
 9      0.555 0.0491 Inf     0.458     0.651
 10     0.554 0.0491 Inf     0.458     0.650
 11     0.532 0.0491 Inf     0.436     0.629
 12     0.484 0.0491 Inf     0.388     0.581
 13     0.486 0.0491 Inf     0.390     0.582
 14     0.537 0.0491 Inf     0.441     0.633
 15     0.515 0.0491 Inf     0.419     0.611
 16     0.520 0.0491 Inf     0.424     0.617
 17     0.496 0.0491 Inf     0.399     0.592
 18     0.508 0.0491 Inf     0.412     0.604

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.023631 0.0218 Inf  -1.086  0.9998
 StepF1 - StepF3   -0.029687 0.0218 Inf  -1.362  0.9969
 StepF1 - StepF4    0.001437 0.0218 Inf   0.066  1.0000
 StepF1 - StepF5    0.003149 0.0217 Inf   0.145  1.0000
 StepF1 - StepF6   -0.012797 0.0217 Inf  -0.591  1.0000
 StepF1 - StepF7   -0.011304 0.0217 Inf  -0.521  1.0000
 StepF1 - StepF8    0.018756 0.0217 Inf   0.865  1.0000
 StepF1 - StepF9    0.012773 0.0216 Inf   0.591  1.0000
 StepF1 - StepF10   0.013207 0.0216 Inf   0.611  1.0000
 StepF1 - StepF11   0.034995 0.0217 Inf   1.616  0.9799
 StepF1 - StepF12   0.083110 0.0217 Inf   3.831  0.0152
 StepF1 - StepF13   0.081533 0.0216 Inf   3.783  0.0181
 StepF1 - StepF14   0.030484 0.0216 Inf   1.409  0.9954
 StepF1 - StepF15   0.052518 0.0216 Inf   2.426  0.5880
 StepF1 - StepF16   0.047049 0.0217 Inf   2.166  0.7763
 StepF1 - StepF17   0.071784 0.0217 Inf   3.309  0.0872
 StepF1 - StepF18   0.059664 0.0216 Inf   2.757  0.3407
 StepF2 - StepF3   -0.006056 0.0215 Inf  -0.282  1.0000
 StepF2 - StepF4    0.025068 0.0215 Inf   1.166  0.9996
 StepF2 - StepF5    0.026780 0.0215 Inf   1.245  0.9990
 StepF2 - StepF6    0.010834 0.0215 Inf   0.504  1.0000
 StepF2 - StepF7    0.012327 0.0215 Inf   0.573  1.0000
 StepF2 - StepF8    0.042387 0.0215 Inf   1.971  0.8832
 StepF2 - StepF9    0.036405 0.0215 Inf   1.691  0.9686
 StepF2 - StepF10   0.036839 0.0215 Inf   1.711  0.9649
 StepF2 - StepF11   0.058627 0.0215 Inf   2.725  0.3625
 StepF2 - StepF12   0.106741 0.0215 Inf   4.964  0.0001
 StepF2 - StepF13   0.105164 0.0216 Inf   4.874  0.0002
 StepF2 - StepF14   0.054115 0.0215 Inf   2.515  0.5188
 StepF2 - StepF15   0.076149 0.0215 Inf   3.540  0.0423
 StepF2 - StepF16   0.070681 0.0215 Inf   3.287  0.0928
 StepF2 - StepF17   0.095416 0.0215 Inf   4.437  0.0013
 StepF2 - StepF18   0.083296 0.0215 Inf   3.867  0.0133
 StepF3 - StepF4    0.031124 0.0215 Inf   1.448  0.9938
 StepF3 - StepF5    0.032836 0.0215 Inf   1.526  0.9889
 StepF3 - StepF6    0.016890 0.0215 Inf   0.785  1.0000
 StepF3 - StepF7    0.018383 0.0215 Inf   0.855  1.0000
 StepF3 - StepF8    0.048443 0.0215 Inf   2.252  0.7181
 StepF3 - StepF9    0.042460 0.0215 Inf   1.971  0.8833
 StepF3 - StepF10   0.042894 0.0215 Inf   1.991  0.8739
 StepF3 - StepF11   0.064682 0.0215 Inf   3.006  0.1972
 StepF3 - StepF12   0.112797 0.0215 Inf   5.244  <.0001
 StepF3 - StepF13   0.111220 0.0216 Inf   5.150  <.0001
 StepF3 - StepF14   0.060171 0.0215 Inf   2.795  0.3160
 StepF3 - StepF15   0.082205 0.0215 Inf   3.820  0.0159
 StepF3 - StepF16   0.076736 0.0215 Inf   3.569  0.0385
 StepF3 - StepF17   0.101471 0.0215 Inf   4.718  0.0003
 StepF3 - StepF18   0.089352 0.0216 Inf   4.146  0.0044
 StepF4 - StepF5    0.001712 0.0215 Inf   0.080  1.0000
 StepF4 - StepF6   -0.014234 0.0215 Inf  -0.662  1.0000
 StepF4 - StepF7   -0.012741 0.0215 Inf  -0.592  1.0000
 StepF4 - StepF8    0.017319 0.0215 Inf   0.805  1.0000
 StepF4 - StepF9    0.011336 0.0215 Inf   0.526  1.0000
 StepF4 - StepF10   0.011770 0.0215 Inf   0.546  1.0000
 StepF4 - StepF11   0.033558 0.0215 Inf   1.559  0.9861
 StepF4 - StepF12   0.081673 0.0215 Inf   3.797  0.0172
 StepF4 - StepF13   0.080096 0.0216 Inf   3.709  0.0237
 StepF4 - StepF14   0.029047 0.0215 Inf   1.349  0.9973
 StepF4 - StepF15   0.051081 0.0215 Inf   2.373  0.6284
 StepF4 - StepF16   0.045612 0.0215 Inf   2.121  0.8042
 StepF4 - StepF17   0.070347 0.0215 Inf   3.271  0.0974
 StepF4 - StepF18   0.058227 0.0216 Inf   2.702  0.3788
 StepF5 - StepF6   -0.015946 0.0215 Inf  -0.742  1.0000
 StepF5 - StepF7   -0.014453 0.0215 Inf  -0.672  1.0000
 StepF5 - StepF8    0.015607 0.0215 Inf   0.726  1.0000
 StepF5 - StepF9    0.009625 0.0215 Inf   0.448  1.0000
 StepF5 - StepF10   0.010058 0.0215 Inf   0.468  1.0000
 StepF5 - StepF11   0.031847 0.0215 Inf   1.481  0.9920
 StepF5 - StepF12   0.079961 0.0215 Inf   3.719  0.0228
 StepF5 - StepF13   0.078384 0.0215 Inf   3.640  0.0302
 StepF5 - StepF14   0.027335 0.0215 Inf   1.271  0.9987
 StepF5 - StepF15   0.049369 0.0215 Inf   2.296  0.6863
 StepF5 - StepF16   0.043901 0.0215 Inf   2.042  0.8489
 StepF5 - StepF17   0.068636 0.0215 Inf   3.192  0.1214
 StepF5 - StepF18   0.056516 0.0215 Inf   2.626  0.4337
 StepF6 - StepF7    0.001493 0.0215 Inf   0.069  1.0000
 StepF6 - StepF8    0.031553 0.0215 Inf   1.468  0.9928
 StepF6 - StepF9    0.025571 0.0215 Inf   1.189  0.9994
 StepF6 - StepF10   0.026005 0.0215 Inf   1.209  0.9993
 StepF6 - StepF11   0.047793 0.0215 Inf   2.223  0.7384
 StepF6 - StepF12   0.095907 0.0215 Inf   4.461  0.0011
 StepF6 - StepF13   0.094330 0.0215 Inf   4.381  0.0016
 StepF6 - StepF14   0.043281 0.0215 Inf   2.013  0.8635
 StepF6 - StepF15   0.065315 0.0215 Inf   3.038  0.1820
 StepF6 - StepF16   0.059847 0.0215 Inf   2.783  0.3235
 StepF6 - StepF17   0.084582 0.0215 Inf   3.934  0.0103
 StepF6 - StepF18   0.072462 0.0215 Inf   3.367  0.0731
 StepF7 - StepF8    0.030060 0.0215 Inf   1.398  0.9958
 StepF7 - StepF9    0.024077 0.0215 Inf   1.119  0.9997
 StepF7 - StepF10   0.024511 0.0215 Inf   1.139  0.9997
 StepF7 - StepF11   0.046299 0.0215 Inf   2.153  0.7846
 StepF7 - StepF12   0.094414 0.0215 Inf   4.391  0.0015
 StepF7 - StepF13   0.092837 0.0216 Inf   4.307  0.0022
 StepF7 - StepF14   0.041788 0.0215 Inf   1.943  0.8954
 StepF7 - StepF15   0.063822 0.0215 Inf   2.968  0.2158
 StepF7 - StepF16   0.058353 0.0215 Inf   2.714  0.3702
 StepF7 - StepF17   0.083088 0.0215 Inf   3.865  0.0134
 StepF7 - StepF18   0.070969 0.0215 Inf   3.297  0.0903
 StepF8 - StepF9   -0.005982 0.0215 Inf  -0.278  1.0000
 StepF8 - StepF10  -0.005549 0.0215 Inf  -0.258  1.0000
 StepF8 - StepF11   0.016240 0.0215 Inf   0.755  1.0000
 StepF8 - StepF12   0.064354 0.0215 Inf   2.993  0.2031
 StepF8 - StepF13   0.062777 0.0215 Inf   2.914  0.2444
 StepF8 - StepF14   0.011728 0.0215 Inf   0.545  1.0000
 StepF8 - StepF15   0.033762 0.0215 Inf   1.570  0.9850
 StepF8 - StepF16   0.028293 0.0215 Inf   1.316  0.9980
 StepF8 - StepF17   0.053028 0.0215 Inf   2.467  0.5563
 StepF8 - StepF18   0.040909 0.0215 Inf   1.901  0.9120
 StepF9 - StepF10   0.000434 0.0215 Inf   0.020  1.0000
 StepF9 - StepF11   0.022222 0.0215 Inf   1.033  0.9999
 StepF9 - StepF12   0.070336 0.0215 Inf   3.270  0.0976
 StepF9 - StepF13   0.068759 0.0215 Inf   3.197  0.1200
 StepF9 - StepF14   0.017710 0.0215 Inf   0.824  1.0000
 StepF9 - StepF15   0.039745 0.0215 Inf   1.848  0.9301
 StepF9 - StepF16   0.034276 0.0215 Inf   1.593  0.9826
 StepF9 - StepF17   0.059011 0.0215 Inf   2.743  0.3502
 StepF9 - StepF18   0.046891 0.0215 Inf   2.179  0.7676
 StepF10 - StepF11  0.021788 0.0215 Inf   1.013  0.9999
 StepF10 - StepF12  0.069902 0.0215 Inf   3.250  0.1034
 StepF10 - StepF13  0.068326 0.0215 Inf   3.176  0.1270
 StepF10 - StepF14  0.017276 0.0215 Inf   0.804  1.0000
 StepF10 - StepF15  0.039311 0.0215 Inf   1.828  0.9363
 StepF10 - StepF16  0.033842 0.0215 Inf   1.573  0.9848
 StepF10 - StepF17  0.058577 0.0215 Inf   2.723  0.3639
 StepF10 - StepF18  0.046457 0.0215 Inf   2.159  0.7806
 StepF11 - StepF12  0.048114 0.0215 Inf   2.238  0.7282
 StepF11 - StepF13  0.046537 0.0215 Inf   2.162  0.7790
 StepF11 - StepF14 -0.004512 0.0215 Inf  -0.210  1.0000
 StepF11 - StepF15  0.017523 0.0215 Inf   0.815  1.0000
 StepF11 - StepF16  0.012054 0.0215 Inf   0.561  1.0000
 StepF11 - StepF17  0.036789 0.0215 Inf   1.711  0.9649
 StepF11 - StepF18  0.024669 0.0215 Inf   1.147  0.9996
 StepF12 - StepF13 -0.001577 0.0215 Inf  -0.073  1.0000
 StepF12 - StepF14 -0.052626 0.0215 Inf  -2.447  0.5714
 StepF12 - StepF15 -0.030592 0.0215 Inf  -1.423  0.9949
 StepF12 - StepF16 -0.036060 0.0215 Inf  -1.677  0.9710
 StepF12 - StepF17 -0.011325 0.0215 Inf  -0.527  1.0000
 StepF12 - StepF18 -0.023445 0.0215 Inf  -1.089  0.9998
 StepF13 - StepF14 -0.051049 0.0215 Inf  -2.372  0.6292
 StepF13 - StepF15 -0.029015 0.0215 Inf  -1.348  0.9973
 StepF13 - StepF16 -0.034483 0.0216 Inf  -1.599  0.9819
 StepF13 - StepF17 -0.009748 0.0215 Inf  -0.452  1.0000
 StepF13 - StepF18 -0.021868 0.0215 Inf  -1.016  0.9999
 StepF14 - StepF15  0.022034 0.0215 Inf   1.025  0.9999
 StepF14 - StepF16  0.016566 0.0215 Inf   0.770  1.0000
 StepF14 - StepF17  0.041301 0.0215 Inf   1.920  0.9045
 StepF14 - StepF18  0.029181 0.0215 Inf   1.356  0.9971
 StepF15 - StepF16 -0.005469 0.0215 Inf  -0.254  1.0000
 StepF15 - StepF17  0.019266 0.0215 Inf   0.896  1.0000
 StepF15 - StepF18  0.007147 0.0215 Inf   0.332  1.0000
 StepF16 - StepF17  0.024735 0.0215 Inf   1.150  0.9996
 StepF16 - StepF18  0.012615 0.0215 Inf   0.586  1.0000
 StepF17 - StepF18 -0.012120 0.0215 Inf  -0.563  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.023631 0.0218 Inf  -1.086  0.9998
 StepF1 - StepF3   -0.029687 0.0218 Inf  -1.362  0.9969
 StepF1 - StepF4    0.001437 0.0218 Inf   0.066  1.0000
 StepF1 - StepF5    0.003149 0.0217 Inf   0.145  1.0000
 StepF1 - StepF6   -0.012797 0.0217 Inf  -0.591  1.0000
 StepF1 - StepF7   -0.011304 0.0217 Inf  -0.521  1.0000
 StepF1 - StepF8    0.018756 0.0217 Inf   0.865  1.0000
 StepF1 - StepF9    0.012773 0.0216 Inf   0.591  1.0000
 StepF1 - StepF10   0.013207 0.0216 Inf   0.611  1.0000
 StepF1 - StepF11   0.034995 0.0217 Inf   1.616  0.9799
 StepF1 - StepF12   0.083110 0.0217 Inf   3.831  0.0152
 StepF1 - StepF13   0.081533 0.0216 Inf   3.783  0.0181
 StepF1 - StepF14   0.030484 0.0216 Inf   1.409  0.9954
 StepF1 - StepF15   0.052518 0.0216 Inf   2.426  0.5880
 StepF1 - StepF16   0.047049 0.0217 Inf   2.166  0.7763
 StepF1 - StepF17   0.071784 0.0217 Inf   3.309  0.0872
 StepF1 - StepF18   0.059664 0.0216 Inf   2.757  0.3407
 StepF2 - StepF3   -0.006056 0.0215 Inf  -0.282  1.0000
 StepF2 - StepF4    0.025068 0.0215 Inf   1.166  0.9996
 StepF2 - StepF5    0.026780 0.0215 Inf   1.245  0.9990
 StepF2 - StepF6    0.010834 0.0215 Inf   0.504  1.0000
 StepF2 - StepF7    0.012327 0.0215 Inf   0.573  1.0000
 StepF2 - StepF8    0.042387 0.0215 Inf   1.971  0.8832
 StepF2 - StepF9    0.036405 0.0215 Inf   1.691  0.9686
 StepF2 - StepF10   0.036839 0.0215 Inf   1.711  0.9649
 StepF2 - StepF11   0.058627 0.0215 Inf   2.725  0.3625
 StepF2 - StepF12   0.106741 0.0215 Inf   4.964  0.0001
 StepF2 - StepF13   0.105164 0.0216 Inf   4.874  0.0002
 StepF2 - StepF14   0.054115 0.0215 Inf   2.515  0.5188
 StepF2 - StepF15   0.076149 0.0215 Inf   3.540  0.0423
 StepF2 - StepF16   0.070681 0.0215 Inf   3.287  0.0928
 StepF2 - StepF17   0.095416 0.0215 Inf   4.437  0.0013
 StepF2 - StepF18   0.083296 0.0215 Inf   3.867  0.0133
 StepF3 - StepF4    0.031124 0.0215 Inf   1.448  0.9938
 StepF3 - StepF5    0.032836 0.0215 Inf   1.526  0.9889
 StepF3 - StepF6    0.016890 0.0215 Inf   0.785  1.0000
 StepF3 - StepF7    0.018383 0.0215 Inf   0.855  1.0000
 StepF3 - StepF8    0.048443 0.0215 Inf   2.252  0.7181
 StepF3 - StepF9    0.042460 0.0215 Inf   1.971  0.8833
 StepF3 - StepF10   0.042894 0.0215 Inf   1.991  0.8739
 StepF3 - StepF11   0.064682 0.0215 Inf   3.006  0.1972
 StepF3 - StepF12   0.112797 0.0215 Inf   5.244  <.0001
 StepF3 - StepF13   0.111220 0.0216 Inf   5.150  <.0001
 StepF3 - StepF14   0.060171 0.0215 Inf   2.795  0.3160
 StepF3 - StepF15   0.082205 0.0215 Inf   3.820  0.0159
 StepF3 - StepF16   0.076736 0.0215 Inf   3.569  0.0385
 StepF3 - StepF17   0.101471 0.0215 Inf   4.718  0.0003
 StepF3 - StepF18   0.089352 0.0216 Inf   4.146  0.0044
 StepF4 - StepF5    0.001712 0.0215 Inf   0.080  1.0000
 StepF4 - StepF6   -0.014234 0.0215 Inf  -0.662  1.0000
 StepF4 - StepF7   -0.012741 0.0215 Inf  -0.592  1.0000
 StepF4 - StepF8    0.017319 0.0215 Inf   0.805  1.0000
 StepF4 - StepF9    0.011336 0.0215 Inf   0.526  1.0000
 StepF4 - StepF10   0.011770 0.0215 Inf   0.546  1.0000
 StepF4 - StepF11   0.033558 0.0215 Inf   1.559  0.9861
 StepF4 - StepF12   0.081673 0.0215 Inf   3.797  0.0172
 StepF4 - StepF13   0.080096 0.0216 Inf   3.709  0.0237
 StepF4 - StepF14   0.029047 0.0215 Inf   1.349  0.9973
 StepF4 - StepF15   0.051081 0.0215 Inf   2.373  0.6284
 StepF4 - StepF16   0.045612 0.0215 Inf   2.121  0.8042
 StepF4 - StepF17   0.070347 0.0215 Inf   3.271  0.0974
 StepF4 - StepF18   0.058227 0.0216 Inf   2.702  0.3788
 StepF5 - StepF6   -0.015946 0.0215 Inf  -0.742  1.0000
 StepF5 - StepF7   -0.014453 0.0215 Inf  -0.672  1.0000
 StepF5 - StepF8    0.015607 0.0215 Inf   0.726  1.0000
 StepF5 - StepF9    0.009625 0.0215 Inf   0.448  1.0000
 StepF5 - StepF10   0.010058 0.0215 Inf   0.468  1.0000
 StepF5 - StepF11   0.031847 0.0215 Inf   1.481  0.9920
 StepF5 - StepF12   0.079961 0.0215 Inf   3.719  0.0228
 StepF5 - StepF13   0.078384 0.0215 Inf   3.640  0.0302
 StepF5 - StepF14   0.027335 0.0215 Inf   1.271  0.9987
 StepF5 - StepF15   0.049369 0.0215 Inf   2.296  0.6863
 StepF5 - StepF16   0.043901 0.0215 Inf   2.042  0.8489
 StepF5 - StepF17   0.068636 0.0215 Inf   3.192  0.1214
 StepF5 - StepF18   0.056516 0.0215 Inf   2.626  0.4337
 StepF6 - StepF7    0.001493 0.0215 Inf   0.069  1.0000
 StepF6 - StepF8    0.031553 0.0215 Inf   1.468  0.9928
 StepF6 - StepF9    0.025571 0.0215 Inf   1.189  0.9994
 StepF6 - StepF10   0.026005 0.0215 Inf   1.209  0.9993
 StepF6 - StepF11   0.047793 0.0215 Inf   2.223  0.7384
 StepF6 - StepF12   0.095907 0.0215 Inf   4.461  0.0011
 StepF6 - StepF13   0.094330 0.0215 Inf   4.381  0.0016
 StepF6 - StepF14   0.043281 0.0215 Inf   2.013  0.8635
 StepF6 - StepF15   0.065315 0.0215 Inf   3.038  0.1820
 StepF6 - StepF16   0.059847 0.0215 Inf   2.783  0.3235
 StepF6 - StepF17   0.084582 0.0215 Inf   3.934  0.0103
 StepF6 - StepF18   0.072462 0.0215 Inf   3.367  0.0731
 StepF7 - StepF8    0.030060 0.0215 Inf   1.398  0.9958
 StepF7 - StepF9    0.024077 0.0215 Inf   1.119  0.9997
 StepF7 - StepF10   0.024511 0.0215 Inf   1.139  0.9997
 StepF7 - StepF11   0.046299 0.0215 Inf   2.153  0.7846
 StepF7 - StepF12   0.094414 0.0215 Inf   4.391  0.0015
 StepF7 - StepF13   0.092837 0.0216 Inf   4.307  0.0022
 StepF7 - StepF14   0.041788 0.0215 Inf   1.943  0.8954
 StepF7 - StepF15   0.063822 0.0215 Inf   2.968  0.2158
 StepF7 - StepF16   0.058353 0.0215 Inf   2.714  0.3702
 StepF7 - StepF17   0.083088 0.0215 Inf   3.865  0.0134
 StepF7 - StepF18   0.070969 0.0215 Inf   3.297  0.0903
 StepF8 - StepF9   -0.005982 0.0215 Inf  -0.278  1.0000
 StepF8 - StepF10  -0.005549 0.0215 Inf  -0.258  1.0000
 StepF8 - StepF11   0.016240 0.0215 Inf   0.755  1.0000
 StepF8 - StepF12   0.064354 0.0215 Inf   2.993  0.2031
 StepF8 - StepF13   0.062777 0.0215 Inf   2.914  0.2444
 StepF8 - StepF14   0.011728 0.0215 Inf   0.545  1.0000
 StepF8 - StepF15   0.033762 0.0215 Inf   1.570  0.9850
 StepF8 - StepF16   0.028293 0.0215 Inf   1.316  0.9980
 StepF8 - StepF17   0.053028 0.0215 Inf   2.467  0.5563
 StepF8 - StepF18   0.040909 0.0215 Inf   1.901  0.9120
 StepF9 - StepF10   0.000434 0.0215 Inf   0.020  1.0000
 StepF9 - StepF11   0.022222 0.0215 Inf   1.033  0.9999
 StepF9 - StepF12   0.070336 0.0215 Inf   3.270  0.0976
 StepF9 - StepF13   0.068759 0.0215 Inf   3.197  0.1200
 StepF9 - StepF14   0.017710 0.0215 Inf   0.824  1.0000
 StepF9 - StepF15   0.039745 0.0215 Inf   1.848  0.9301
 StepF9 - StepF16   0.034276 0.0215 Inf   1.593  0.9826
 StepF9 - StepF17   0.059011 0.0215 Inf   2.743  0.3502
 StepF9 - StepF18   0.046891 0.0215 Inf   2.179  0.7676
 StepF10 - StepF11  0.021788 0.0215 Inf   1.013  0.9999
 StepF10 - StepF12  0.069902 0.0215 Inf   3.250  0.1034
 StepF10 - StepF13  0.068326 0.0215 Inf   3.176  0.1270
 StepF10 - StepF14  0.017276 0.0215 Inf   0.804  1.0000
 StepF10 - StepF15  0.039311 0.0215 Inf   1.828  0.9363
 StepF10 - StepF16  0.033842 0.0215 Inf   1.573  0.9848
 StepF10 - StepF17  0.058577 0.0215 Inf   2.723  0.3639
 StepF10 - StepF18  0.046457 0.0215 Inf   2.159  0.7806
 StepF11 - StepF12  0.048114 0.0215 Inf   2.238  0.7282
 StepF11 - StepF13  0.046537 0.0215 Inf   2.162  0.7790
 StepF11 - StepF14 -0.004512 0.0215 Inf  -0.210  1.0000
 StepF11 - StepF15  0.017523 0.0215 Inf   0.815  1.0000
 StepF11 - StepF16  0.012054 0.0215 Inf   0.561  1.0000
 StepF11 - StepF17  0.036789 0.0215 Inf   1.711  0.9649
 StepF11 - StepF18  0.024669 0.0215 Inf   1.147  0.9996
 StepF12 - StepF13 -0.001577 0.0215 Inf  -0.073  1.0000
 StepF12 - StepF14 -0.052626 0.0215 Inf  -2.447  0.5714
 StepF12 - StepF15 -0.030592 0.0215 Inf  -1.423  0.9949
 StepF12 - StepF16 -0.036060 0.0215 Inf  -1.677  0.9710
 StepF12 - StepF17 -0.011325 0.0215 Inf  -0.527  1.0000
 StepF12 - StepF18 -0.023445 0.0215 Inf  -1.089  0.9998
 StepF13 - StepF14 -0.051049 0.0215 Inf  -2.372  0.6292
 StepF13 - StepF15 -0.029015 0.0215 Inf  -1.348  0.9973
 StepF13 - StepF16 -0.034483 0.0216 Inf  -1.599  0.9819
 StepF13 - StepF17 -0.009748 0.0215 Inf  -0.452  1.0000
 StepF13 - StepF18 -0.021868 0.0215 Inf  -1.016  0.9999
 StepF14 - StepF15  0.022034 0.0215 Inf   1.025  0.9999
 StepF14 - StepF16  0.016566 0.0215 Inf   0.770  1.0000
 StepF14 - StepF17  0.041301 0.0215 Inf   1.920  0.9045
 StepF14 - StepF18  0.029181 0.0215 Inf   1.356  0.9971
 StepF15 - StepF16 -0.005469 0.0215 Inf  -0.254  1.0000
 StepF15 - StepF17  0.019266 0.0215 Inf   0.896  1.0000
 StepF15 - StepF18  0.007147 0.0215 Inf   0.332  1.0000
 StepF16 - StepF17  0.024735 0.0215 Inf   1.150  0.9996
 StepF16 - StepF18  0.012615 0.0215 Inf   0.586  1.0000
 StepF17 - StepF18 -0.012120 0.0215 Inf  -0.563  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.023631 0.0218 Inf   1.086  1.0000
 StepF3 - StepF2    0.006056 0.0215 Inf   0.282  1.0000
 StepF4 - StepF3   -0.031124 0.0215 Inf  -1.448  1.0000
 StepF5 - StepF4   -0.001712 0.0215 Inf  -0.080  1.0000
 StepF6 - StepF5    0.015946 0.0215 Inf   0.742  1.0000
 StepF7 - StepF6   -0.001493 0.0215 Inf  -0.069  1.0000
 StepF8 - StepF7   -0.030060 0.0215 Inf  -1.398  1.0000
 StepF9 - StepF8    0.005982 0.0215 Inf   0.278  1.0000
 StepF10 - StepF9  -0.000434 0.0215 Inf  -0.020  1.0000
 StepF11 - StepF10 -0.021788 0.0215 Inf  -1.013  1.0000
 StepF12 - StepF11 -0.048114 0.0215 Inf  -2.238  0.4038
 StepF13 - StepF12  0.001577 0.0215 Inf   0.073  1.0000
 StepF14 - StepF13  0.051049 0.0215 Inf   2.372  0.3004
 StepF15 - StepF14 -0.022034 0.0215 Inf  -1.025  1.0000
 StepF16 - StepF15  0.005469 0.0215 Inf   0.254  1.0000
 StepF17 - StepF16 -0.024735 0.0215 Inf  -1.150  1.0000
 StepF18 - StepF17  0.012120 0.0215 Inf   0.563  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.023631 0.0218 Inf   1.086  1.0000
 StepF3 - StepF2    0.006056 0.0215 Inf   0.282  1.0000
 StepF4 - StepF3   -0.031124 0.0215 Inf  -1.448  1.0000
 StepF5 - StepF4   -0.001712 0.0215 Inf  -0.080  1.0000
 StepF6 - StepF5    0.015946 0.0215 Inf   0.742  1.0000
 StepF7 - StepF6   -0.001493 0.0215 Inf  -0.069  1.0000
 StepF8 - StepF7   -0.030060 0.0215 Inf  -1.398  1.0000
 StepF9 - StepF8    0.005982 0.0215 Inf   0.278  1.0000
 StepF10 - StepF9  -0.000434 0.0215 Inf  -0.020  1.0000
 StepF11 - StepF10 -0.021788 0.0215 Inf  -1.013  1.0000
 StepF12 - StepF11 -0.048114 0.0215 Inf  -2.238  0.4038
 StepF13 - StepF12  0.001577 0.0215 Inf   0.073  1.0000
 StepF14 - StepF13  0.051049 0.0215 Inf   2.372  0.3004
 StepF15 - StepF14 -0.022034 0.0215 Inf  -1.025  1.0000
 StepF16 - StepF15  0.005469 0.0215 Inf   0.254  1.0000
 StepF17 - StepF16 -0.024735 0.0215 Inf  -1.150  1.0000
 StepF18 - StepF17  0.012120 0.0215 Inf   0.563  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 
Warning: Some predictor variables are on very different scales: consider
rescaling
boundary (singular) fit: see help('isSingular')
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning: Model failed to converge with 1 negative eigenvalue: -1.1e+01

[Optional] Random-slope model for rt_ms | subject (summary):
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1 |  
    trial_id)
   Data: dd

REML criterion at convergence: 14920.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6156 -0.5363 -0.1601  0.3247 16.7623 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr 
 trial_id (Intercept) 1.359e-01 0.3686269      
 subject  (Intercept) 2.027e-01 0.4502203      
          rt_ms       1.180e-08 0.0001086 -0.97
 Residual             1.586e-01 0.3981910      
Number of obs: 12778, groups:  trial_id, 710; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  5.610e-01  1.072e-01  1.264e+04   5.233  1.7e-07 ***
StepF1       2.385e-02  1.481e-02  1.162e+04   1.610 0.107385    
StepF2       4.793e-02  1.456e-02  1.204e+04   3.293 0.000994 ***
StepF3       5.324e-02  1.456e-02  1.205e+04   3.657 0.000256 ***
StepF4       2.260e-02  1.457e-02  1.205e+04   1.551 0.120822    
StepF5       2.308e-02  1.454e-02  1.203e+04   1.587 0.112496    
StepF6       3.723e-02  1.455e-02  1.195e+04   2.558 0.010535 *  
StepF7       3.503e-02  1.454e-02  1.204e+04   2.409 0.015999 *  
StepF8       6.311e-03  1.454e-02  1.204e+04   0.434 0.664173    
StepF9       1.096e-02  1.454e-02  1.204e+04   0.754 0.450817    
StepF10      8.176e-03  1.455e-02  1.194e+04   0.562 0.574300    
StepF11     -1.159e-02  1.454e-02  1.204e+04  -0.797 0.425449    
StepF12     -5.893e-02  1.454e-02  1.204e+04  -4.052  5.1e-05 ***
StepF13     -5.238e-02  1.461e-02  1.171e+04  -3.584 0.000340 ***
StepF14     -8.377e-03  1.454e-02  1.203e+04  -0.576 0.564481    
StepF15     -2.940e-02  1.454e-02  1.204e+04  -2.022 0.043156 *  
StepF16     -2.333e-02  1.454e-02  1.205e+04  -1.605 0.108527    
StepF17     -4.853e-02  1.454e-02  1.204e+04  -3.338 0.000845 ***
Accuracy1    5.656e-03  1.613e-02  1.481e+02   0.351 0.726329    
rt_ms       -2.378e-05  2.723e-05  1.131e+01  -0.874 0.400558    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 20 > 12.
Use print(summary(m_rs), correlation=TRUE)  or
    vcov(summary(m_rs))        if you need it
fit warnings:
Some predictor variables are on very different scales: consider rescaling
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')



==============================
TRAINING (rt_ms) | Block 3 (18 steps) | Axis Y
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    160.7794 17  < 2.2e-16 ***
Accuracy   0.7371  1   0.390580    
rt_ms      7.7475  1   0.005379 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.600 0.0539 Inf     0.495     0.706
 2      0.678 0.0538 Inf     0.573     0.784
 3      0.696 0.0538 Inf     0.591     0.802
 4      0.592 0.0538 Inf     0.487     0.698
 5      0.603 0.0538 Inf     0.498     0.709
 6      0.637 0.0538 Inf     0.532     0.743
 7      0.660 0.0538 Inf     0.554     0.765
 8      0.577 0.0538 Inf     0.472     0.683
 9      0.604 0.0538 Inf     0.499     0.710
 10     0.663 0.0538 Inf     0.558     0.769
 11     0.654 0.0538 Inf     0.549     0.760
 12     0.536 0.0538 Inf     0.430     0.641
 13     0.554 0.0539 Inf     0.449     0.660
 14     0.565 0.0538 Inf     0.459     0.670
 15     0.601 0.0538 Inf     0.496     0.707
 16     0.553 0.0538 Inf     0.447     0.658
 17     0.569 0.0538 Inf     0.464     0.675
 18     0.537 0.0538 Inf     0.431     0.642

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.579 0.0536 Inf     0.474     0.685
 2      0.658 0.0536 Inf     0.553     0.763
 3      0.676 0.0536 Inf     0.571     0.781
 4      0.571 0.0536 Inf     0.466     0.676
 5      0.583 0.0536 Inf     0.478     0.688
 6      0.616 0.0536 Inf     0.512     0.721
 7      0.639 0.0536 Inf     0.534     0.744
 8      0.557 0.0536 Inf     0.452     0.661
 9      0.583 0.0536 Inf     0.479     0.688
 10     0.642 0.0536 Inf     0.537     0.747
 11     0.634 0.0536 Inf     0.529     0.739
 12     0.515 0.0536 Inf     0.410     0.620
 13     0.534 0.0536 Inf     0.429     0.639
 14     0.544 0.0536 Inf     0.439     0.649
 15     0.580 0.0536 Inf     0.475     0.685
 16     0.532 0.0536 Inf     0.427     0.637
 17     0.548 0.0536 Inf     0.443     0.653
 18     0.516 0.0536 Inf     0.411     0.621

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.078123 0.0231 Inf  -3.376  0.0712
 StepF1 - StepF3   -0.096071 0.0232 Inf  -4.145  0.0044
 StepF1 - StepF4    0.008114 0.0232 Inf   0.350  1.0000
 StepF1 - StepF5   -0.003149 0.0231 Inf  -0.137  1.0000
 StepF1 - StepF6   -0.036994 0.0230 Inf  -1.605  0.9812
 StepF1 - StepF7   -0.059457 0.0231 Inf  -2.575  0.4727
 StepF1 - StepF8    0.022965 0.0231 Inf   0.996  0.9999
 StepF1 - StepF9   -0.004007 0.0230 Inf  -0.174  1.0000
 StepF1 - StepF10  -0.062947 0.0230 Inf  -2.738  0.3538
 StepF1 - StepF11  -0.054225 0.0230 Inf  -2.354  0.6429
 StepF1 - StepF12   0.064256 0.0231 Inf   2.785  0.3225
 StepF1 - StepF13   0.045772 0.0229 Inf   1.997  0.8713
 StepF1 - StepF14   0.035721 0.0230 Inf   1.552  0.9867
 StepF1 - StepF15  -0.000833 0.0230 Inf  -0.036  1.0000
 StepF1 - StepF16   0.047468 0.0231 Inf   2.055  0.8422
 StepF1 - StepF17   0.031138 0.0231 Inf   1.349  0.9972
 StepF1 - StepF18   0.063320 0.0230 Inf   2.751  0.3449
 StepF2 - StepF3   -0.017948 0.0229 Inf  -0.785  1.0000
 StepF2 - StepF4    0.086237 0.0229 Inf   3.771  0.0190
 StepF2 - StepF5    0.074973 0.0229 Inf   3.277  0.0955
 StepF2 - StepF6    0.041129 0.0229 Inf   1.798  0.9450
 StepF2 - StepF7    0.018666 0.0229 Inf   0.816  1.0000
 StepF2 - StepF8    0.101088 0.0229 Inf   4.419  0.0014
 StepF2 - StepF9    0.074116 0.0229 Inf   3.236  0.1074
 StepF2 - StepF10   0.015176 0.0229 Inf   0.663  1.0000
 StepF2 - StepF11   0.023898 0.0229 Inf   1.044  0.9999
 StepF2 - StepF12   0.142379 0.0229 Inf   6.225  <.0001
 StepF2 - StepF13   0.123895 0.0230 Inf   5.398  <.0001
 StepF2 - StepF14   0.113844 0.0229 Inf   4.974  0.0001
 StepF2 - StepF15   0.077290 0.0229 Inf   3.378  0.0709
 StepF2 - StepF16   0.125591 0.0229 Inf   5.492  <.0001
 StepF2 - StepF17   0.109261 0.0229 Inf   4.777  0.0003
 StepF2 - StepF18   0.141443 0.0229 Inf   6.174  <.0001
 StepF3 - StepF4    0.104185 0.0229 Inf   4.556  0.0007
 StepF3 - StepF5    0.092921 0.0229 Inf   4.061  0.0062
 StepF3 - StepF6    0.059077 0.0229 Inf   2.581  0.4676
 StepF3 - StepF7    0.036614 0.0229 Inf   1.601  0.9817
 StepF3 - StepF8    0.119036 0.0229 Inf   5.203  <.0001
 StepF3 - StepF9    0.092064 0.0229 Inf   4.018  0.0074
 StepF3 - StepF10   0.033124 0.0229 Inf   1.446  0.9939
 StepF3 - StepF11   0.041846 0.0229 Inf   1.828  0.9364
 StepF3 - StepF12   0.160326 0.0229 Inf   7.008  <.0001
 StepF3 - StepF13   0.141843 0.0230 Inf   6.174  <.0001
 StepF3 - StepF14   0.131791 0.0229 Inf   5.755  <.0001
 StepF3 - StepF15   0.095238 0.0229 Inf   4.160  0.0042
 StepF3 - StepF16   0.143539 0.0229 Inf   6.276  <.0001
 StepF3 - StepF17   0.127209 0.0229 Inf   5.560  <.0001
 StepF3 - StepF18   0.159391 0.0229 Inf   6.953  <.0001
 StepF4 - StepF5   -0.011263 0.0229 Inf  -0.492  1.0000
 StepF4 - StepF6   -0.045108 0.0229 Inf  -1.971  0.8833
 StepF4 - StepF7   -0.067571 0.0229 Inf  -2.954  0.2230
 StepF4 - StepF8    0.014851 0.0229 Inf   0.649  1.0000
 StepF4 - StepF9   -0.012121 0.0229 Inf  -0.529  1.0000
 StepF4 - StepF10  -0.071061 0.0229 Inf  -3.102  0.1548
 StepF4 - StepF11  -0.062339 0.0229 Inf  -2.723  0.3639
 StepF4 - StepF12   0.056142 0.0229 Inf   2.454  0.5661
 StepF4 - StepF13   0.037658 0.0230 Inf   1.639  0.9768
 StepF4 - StepF14   0.027607 0.0229 Inf   1.205  0.9993
 StepF4 - StepF15  -0.008947 0.0229 Inf  -0.391  1.0000
 StepF4 - StepF16   0.039354 0.0229 Inf   1.721  0.9630
 StepF4 - StepF17   0.023024 0.0229 Inf   1.006  0.9999
 StepF4 - StepF18   0.055206 0.0229 Inf   2.408  0.6015
 StepF5 - StepF6   -0.033844 0.0229 Inf  -1.480  0.9921
 StepF5 - StepF7   -0.056307 0.0229 Inf  -2.462  0.5597
 StepF5 - StepF8    0.026115 0.0229 Inf   1.142  0.9997
 StepF5 - StepF9   -0.000857 0.0229 Inf  -0.037  1.0000
 StepF5 - StepF10  -0.059798 0.0229 Inf  -2.614  0.4428
 StepF5 - StepF11  -0.051075 0.0229 Inf  -2.233  0.7312
 StepF5 - StepF12   0.067405 0.0229 Inf   2.948  0.2263
 StepF5 - StepF13   0.048922 0.0229 Inf   2.136  0.7955
 StepF5 - StepF14   0.038870 0.0229 Inf   1.700  0.9671
 StepF5 - StepF15   0.002316 0.0229 Inf   0.101  1.0000
 StepF5 - StepF16   0.050618 0.0229 Inf   2.213  0.7451
 StepF5 - StepF17   0.034288 0.0229 Inf   1.499  0.9908
 StepF5 - StepF18   0.066470 0.0229 Inf   2.904  0.2501
 StepF6 - StepF7   -0.022463 0.0229 Inf  -0.982  1.0000
 StepF6 - StepF8    0.059959 0.0229 Inf   2.622  0.4370
 StepF6 - StepF9    0.032987 0.0229 Inf   1.442  0.9940
 StepF6 - StepF10  -0.025953 0.0229 Inf  -1.135  0.9997
 StepF6 - StepF11  -0.017231 0.0229 Inf  -0.753  1.0000
 StepF6 - StepF12   0.101249 0.0229 Inf   4.427  0.0013
 StepF6 - StepF13   0.082766 0.0229 Inf   3.614  0.0330
 StepF6 - StepF14   0.072714 0.0229 Inf   3.179  0.1258
 StepF6 - StepF15   0.036161 0.0229 Inf   1.581  0.9839
 StepF6 - StepF16   0.084462 0.0229 Inf   3.693  0.0251
 StepF6 - StepF17   0.068132 0.0229 Inf   2.979  0.2101
 StepF6 - StepF18   0.100314 0.0229 Inf   4.383  0.0016
 StepF7 - StepF8    0.082422 0.0229 Inf   3.604  0.0341
 StepF7 - StepF9    0.055450 0.0229 Inf   2.423  0.5902
 StepF7 - StepF10  -0.003490 0.0229 Inf  -0.153  1.0000
 StepF7 - StepF11   0.005232 0.0229 Inf   0.229  1.0000
 StepF7 - StepF12   0.123713 0.0229 Inf   5.410  <.0001
 StepF7 - StepF13   0.105229 0.0229 Inf   4.590  0.0006
 StepF7 - StepF14   0.095177 0.0229 Inf   4.160  0.0042
 StepF7 - StepF15   0.058624 0.0229 Inf   2.563  0.4816
 StepF7 - StepF16   0.106925 0.0229 Inf   4.676  0.0004
 StepF7 - StepF17   0.090595 0.0229 Inf   3.962  0.0092
 StepF7 - StepF18   0.122777 0.0229 Inf   5.362  <.0001
 StepF8 - StepF9   -0.026972 0.0229 Inf  -1.179  0.9995
 StepF8 - StepF10  -0.085912 0.0229 Inf  -3.755  0.0201
 StepF8 - StepF11  -0.077190 0.0229 Inf  -3.375  0.0714
 StepF8 - StepF12   0.041290 0.0229 Inf   1.806  0.9428
 StepF8 - StepF13   0.022807 0.0229 Inf   0.995  0.9999
 StepF8 - StepF14   0.012755 0.0229 Inf   0.558  1.0000
 StepF8 - StepF15  -0.023798 0.0229 Inf  -1.041  0.9999
 StepF8 - StepF16   0.024503 0.0229 Inf   1.071  0.9999
 StepF8 - StepF17   0.008173 0.0229 Inf   0.357  1.0000
 StepF8 - StepF18   0.040355 0.0229 Inf   1.763  0.9538
 StepF9 - StepF10  -0.058940 0.0229 Inf  -2.577  0.4705
 StepF9 - StepF11  -0.050218 0.0229 Inf  -2.196  0.7570
 StepF9 - StepF12   0.068262 0.0229 Inf   2.983  0.2080
 StepF9 - StepF13   0.049779 0.0229 Inf   2.176  0.7701
 StepF9 - StepF14   0.039727 0.0229 Inf   1.737  0.9596
 StepF9 - StepF15   0.003174 0.0229 Inf   0.139  1.0000
 StepF9 - StepF16   0.051475 0.0229 Inf   2.249  0.7204
 StepF9 - StepF17   0.035145 0.0229 Inf   1.536  0.9881
 StepF9 - StepF18   0.067327 0.0229 Inf   2.942  0.2293
 StepF10 - StepF11  0.008723 0.0229 Inf   0.381  1.0000
 StepF10 - StepF12  0.127203 0.0229 Inf   5.560  <.0001
 StepF10 - StepF13  0.108719 0.0229 Inf   4.751  0.0003
 StepF10 - StepF14  0.098668 0.0229 Inf   4.315  0.0022
 StepF10 - StepF15  0.062114 0.0229 Inf   2.716  0.3690
 StepF10 - StepF16  0.110415 0.0229 Inf   4.824  0.0002
 StepF10 - StepF17  0.094086 0.0229 Inf   4.112  0.0051
 StepF10 - StepF18  0.126267 0.0229 Inf   5.517  <.0001
 StepF11 - StepF12  0.118480 0.0229 Inf   5.180  <.0001
 StepF11 - StepF13  0.099997 0.0229 Inf   4.367  0.0017
 StepF11 - StepF14  0.089945 0.0229 Inf   3.933  0.0103
 StepF11 - StepF15  0.053392 0.0229 Inf   2.335  0.6577
 StepF11 - StepF16  0.101693 0.0229 Inf   4.446  0.0012
 StepF11 - StepF17  0.085363 0.0229 Inf   3.732  0.0218
 StepF11 - StepF18  0.117545 0.0229 Inf   5.136  <.0001
 StepF12 - StepF13 -0.018483 0.0229 Inf  -0.807  1.0000
 StepF12 - StepF14 -0.028535 0.0229 Inf  -1.247  0.9989
 StepF12 - StepF15 -0.065089 0.0229 Inf  -2.846  0.2840
 StepF12 - StepF16 -0.016788 0.0229 Inf  -0.734  1.0000
 StepF12 - StepF17 -0.033117 0.0229 Inf  -1.448  0.9938
 StepF12 - StepF18 -0.000936 0.0229 Inf  -0.041  1.0000
 StepF13 - StepF14 -0.010052 0.0229 Inf  -0.439  1.0000
 StepF13 - StepF15 -0.046605 0.0229 Inf  -2.036  0.8522
 StepF13 - StepF16  0.001696 0.0229 Inf   0.074  1.0000
 StepF13 - StepF17 -0.014634 0.0229 Inf  -0.639  1.0000
 StepF13 - StepF18  0.017548 0.0229 Inf   0.766  1.0000
 StepF14 - StepF15 -0.036554 0.0229 Inf  -1.598  0.9820
 StepF14 - StepF16  0.011747 0.0229 Inf   0.513  1.0000
 StepF14 - StepF17 -0.004582 0.0229 Inf  -0.200  1.0000
 StepF14 - StepF18  0.027600 0.0229 Inf   1.206  0.9993
 StepF15 - StepF16  0.048301 0.0229 Inf   2.111  0.8100
 StepF15 - StepF17  0.031971 0.0229 Inf   1.398  0.9958
 StepF15 - StepF18  0.064153 0.0229 Inf   2.803  0.3106
 StepF16 - StepF17 -0.016330 0.0229 Inf  -0.714  1.0000
 StepF16 - StepF18  0.015852 0.0229 Inf   0.692  1.0000
 StepF17 - StepF18  0.032182 0.0229 Inf   1.406  0.9956

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.078123 0.0231 Inf  -3.376  0.0712
 StepF1 - StepF3   -0.096071 0.0232 Inf  -4.145  0.0044
 StepF1 - StepF4    0.008114 0.0232 Inf   0.350  1.0000
 StepF1 - StepF5   -0.003149 0.0231 Inf  -0.137  1.0000
 StepF1 - StepF6   -0.036994 0.0230 Inf  -1.605  0.9812
 StepF1 - StepF7   -0.059457 0.0231 Inf  -2.575  0.4727
 StepF1 - StepF8    0.022965 0.0231 Inf   0.996  0.9999
 StepF1 - StepF9   -0.004007 0.0230 Inf  -0.174  1.0000
 StepF1 - StepF10  -0.062947 0.0230 Inf  -2.738  0.3538
 StepF1 - StepF11  -0.054225 0.0230 Inf  -2.354  0.6429
 StepF1 - StepF12   0.064256 0.0231 Inf   2.785  0.3225
 StepF1 - StepF13   0.045772 0.0229 Inf   1.997  0.8713
 StepF1 - StepF14   0.035721 0.0230 Inf   1.552  0.9867
 StepF1 - StepF15  -0.000833 0.0230 Inf  -0.036  1.0000
 StepF1 - StepF16   0.047468 0.0231 Inf   2.055  0.8422
 StepF1 - StepF17   0.031138 0.0231 Inf   1.349  0.9972
 StepF1 - StepF18   0.063320 0.0230 Inf   2.751  0.3449
 StepF2 - StepF3   -0.017948 0.0229 Inf  -0.785  1.0000
 StepF2 - StepF4    0.086237 0.0229 Inf   3.771  0.0190
 StepF2 - StepF5    0.074973 0.0229 Inf   3.277  0.0955
 StepF2 - StepF6    0.041129 0.0229 Inf   1.798  0.9450
 StepF2 - StepF7    0.018666 0.0229 Inf   0.816  1.0000
 StepF2 - StepF8    0.101088 0.0229 Inf   4.419  0.0014
 StepF2 - StepF9    0.074116 0.0229 Inf   3.236  0.1074
 StepF2 - StepF10   0.015176 0.0229 Inf   0.663  1.0000
 StepF2 - StepF11   0.023898 0.0229 Inf   1.044  0.9999
 StepF2 - StepF12   0.142379 0.0229 Inf   6.225  <.0001
 StepF2 - StepF13   0.123895 0.0230 Inf   5.398  <.0001
 StepF2 - StepF14   0.113844 0.0229 Inf   4.974  0.0001
 StepF2 - StepF15   0.077290 0.0229 Inf   3.378  0.0709
 StepF2 - StepF16   0.125591 0.0229 Inf   5.492  <.0001
 StepF2 - StepF17   0.109261 0.0229 Inf   4.777  0.0003
 StepF2 - StepF18   0.141443 0.0229 Inf   6.174  <.0001
 StepF3 - StepF4    0.104185 0.0229 Inf   4.556  0.0007
 StepF3 - StepF5    0.092921 0.0229 Inf   4.061  0.0062
 StepF3 - StepF6    0.059077 0.0229 Inf   2.581  0.4676
 StepF3 - StepF7    0.036614 0.0229 Inf   1.601  0.9817
 StepF3 - StepF8    0.119036 0.0229 Inf   5.203  <.0001
 StepF3 - StepF9    0.092064 0.0229 Inf   4.018  0.0074
 StepF3 - StepF10   0.033124 0.0229 Inf   1.446  0.9939
 StepF3 - StepF11   0.041846 0.0229 Inf   1.828  0.9364
 StepF3 - StepF12   0.160326 0.0229 Inf   7.008  <.0001
 StepF3 - StepF13   0.141843 0.0230 Inf   6.174  <.0001
 StepF3 - StepF14   0.131791 0.0229 Inf   5.755  <.0001
 StepF3 - StepF15   0.095238 0.0229 Inf   4.160  0.0042
 StepF3 - StepF16   0.143539 0.0229 Inf   6.276  <.0001
 StepF3 - StepF17   0.127209 0.0229 Inf   5.560  <.0001
 StepF3 - StepF18   0.159391 0.0229 Inf   6.953  <.0001
 StepF4 - StepF5   -0.011263 0.0229 Inf  -0.492  1.0000
 StepF4 - StepF6   -0.045108 0.0229 Inf  -1.971  0.8833
 StepF4 - StepF7   -0.067571 0.0229 Inf  -2.954  0.2230
 StepF4 - StepF8    0.014851 0.0229 Inf   0.649  1.0000
 StepF4 - StepF9   -0.012121 0.0229 Inf  -0.529  1.0000
 StepF4 - StepF10  -0.071061 0.0229 Inf  -3.102  0.1548
 StepF4 - StepF11  -0.062339 0.0229 Inf  -2.723  0.3639
 StepF4 - StepF12   0.056142 0.0229 Inf   2.454  0.5661
 StepF4 - StepF13   0.037658 0.0230 Inf   1.639  0.9768
 StepF4 - StepF14   0.027607 0.0229 Inf   1.205  0.9993
 StepF4 - StepF15  -0.008947 0.0229 Inf  -0.391  1.0000
 StepF4 - StepF16   0.039354 0.0229 Inf   1.721  0.9630
 StepF4 - StepF17   0.023024 0.0229 Inf   1.006  0.9999
 StepF4 - StepF18   0.055206 0.0229 Inf   2.408  0.6015
 StepF5 - StepF6   -0.033844 0.0229 Inf  -1.480  0.9921
 StepF5 - StepF7   -0.056307 0.0229 Inf  -2.462  0.5597
 StepF5 - StepF8    0.026115 0.0229 Inf   1.142  0.9997
 StepF5 - StepF9   -0.000857 0.0229 Inf  -0.037  1.0000
 StepF5 - StepF10  -0.059798 0.0229 Inf  -2.614  0.4428
 StepF5 - StepF11  -0.051075 0.0229 Inf  -2.233  0.7312
 StepF5 - StepF12   0.067405 0.0229 Inf   2.948  0.2263
 StepF5 - StepF13   0.048922 0.0229 Inf   2.136  0.7955
 StepF5 - StepF14   0.038870 0.0229 Inf   1.700  0.9671
 StepF5 - StepF15   0.002316 0.0229 Inf   0.101  1.0000
 StepF5 - StepF16   0.050618 0.0229 Inf   2.213  0.7451
 StepF5 - StepF17   0.034288 0.0229 Inf   1.499  0.9908
 StepF5 - StepF18   0.066470 0.0229 Inf   2.904  0.2501
 StepF6 - StepF7   -0.022463 0.0229 Inf  -0.982  1.0000
 StepF6 - StepF8    0.059959 0.0229 Inf   2.622  0.4370
 StepF6 - StepF9    0.032987 0.0229 Inf   1.442  0.9940
 StepF6 - StepF10  -0.025953 0.0229 Inf  -1.135  0.9997
 StepF6 - StepF11  -0.017231 0.0229 Inf  -0.753  1.0000
 StepF6 - StepF12   0.101249 0.0229 Inf   4.427  0.0013
 StepF6 - StepF13   0.082766 0.0229 Inf   3.614  0.0330
 StepF6 - StepF14   0.072714 0.0229 Inf   3.179  0.1258
 StepF6 - StepF15   0.036161 0.0229 Inf   1.581  0.9839
 StepF6 - StepF16   0.084462 0.0229 Inf   3.693  0.0251
 StepF6 - StepF17   0.068132 0.0229 Inf   2.979  0.2101
 StepF6 - StepF18   0.100314 0.0229 Inf   4.383  0.0016
 StepF7 - StepF8    0.082422 0.0229 Inf   3.604  0.0341
 StepF7 - StepF9    0.055450 0.0229 Inf   2.423  0.5902
 StepF7 - StepF10  -0.003490 0.0229 Inf  -0.153  1.0000
 StepF7 - StepF11   0.005232 0.0229 Inf   0.229  1.0000
 StepF7 - StepF12   0.123713 0.0229 Inf   5.410  <.0001
 StepF7 - StepF13   0.105229 0.0229 Inf   4.590  0.0006
 StepF7 - StepF14   0.095177 0.0229 Inf   4.160  0.0042
 StepF7 - StepF15   0.058624 0.0229 Inf   2.563  0.4816
 StepF7 - StepF16   0.106925 0.0229 Inf   4.676  0.0004
 StepF7 - StepF17   0.090595 0.0229 Inf   3.962  0.0092
 StepF7 - StepF18   0.122777 0.0229 Inf   5.362  <.0001
 StepF8 - StepF9   -0.026972 0.0229 Inf  -1.179  0.9995
 StepF8 - StepF10  -0.085912 0.0229 Inf  -3.755  0.0201
 StepF8 - StepF11  -0.077190 0.0229 Inf  -3.375  0.0714
 StepF8 - StepF12   0.041290 0.0229 Inf   1.806  0.9428
 StepF8 - StepF13   0.022807 0.0229 Inf   0.995  0.9999
 StepF8 - StepF14   0.012755 0.0229 Inf   0.558  1.0000
 StepF8 - StepF15  -0.023798 0.0229 Inf  -1.041  0.9999
 StepF8 - StepF16   0.024503 0.0229 Inf   1.071  0.9999
 StepF8 - StepF17   0.008173 0.0229 Inf   0.357  1.0000
 StepF8 - StepF18   0.040355 0.0229 Inf   1.763  0.9538
 StepF9 - StepF10  -0.058940 0.0229 Inf  -2.577  0.4705
 StepF9 - StepF11  -0.050218 0.0229 Inf  -2.196  0.7570
 StepF9 - StepF12   0.068262 0.0229 Inf   2.983  0.2080
 StepF9 - StepF13   0.049779 0.0229 Inf   2.176  0.7701
 StepF9 - StepF14   0.039727 0.0229 Inf   1.737  0.9596
 StepF9 - StepF15   0.003174 0.0229 Inf   0.139  1.0000
 StepF9 - StepF16   0.051475 0.0229 Inf   2.249  0.7204
 StepF9 - StepF17   0.035145 0.0229 Inf   1.536  0.9881
 StepF9 - StepF18   0.067327 0.0229 Inf   2.942  0.2293
 StepF10 - StepF11  0.008723 0.0229 Inf   0.381  1.0000
 StepF10 - StepF12  0.127203 0.0229 Inf   5.560  <.0001
 StepF10 - StepF13  0.108719 0.0229 Inf   4.751  0.0003
 StepF10 - StepF14  0.098668 0.0229 Inf   4.315  0.0022
 StepF10 - StepF15  0.062114 0.0229 Inf   2.716  0.3690
 StepF10 - StepF16  0.110415 0.0229 Inf   4.824  0.0002
 StepF10 - StepF17  0.094086 0.0229 Inf   4.112  0.0051
 StepF10 - StepF18  0.126267 0.0229 Inf   5.517  <.0001
 StepF11 - StepF12  0.118480 0.0229 Inf   5.180  <.0001
 StepF11 - StepF13  0.099997 0.0229 Inf   4.367  0.0017
 StepF11 - StepF14  0.089945 0.0229 Inf   3.933  0.0103
 StepF11 - StepF15  0.053392 0.0229 Inf   2.335  0.6577
 StepF11 - StepF16  0.101693 0.0229 Inf   4.446  0.0012
 StepF11 - StepF17  0.085363 0.0229 Inf   3.732  0.0218
 StepF11 - StepF18  0.117545 0.0229 Inf   5.136  <.0001
 StepF12 - StepF13 -0.018483 0.0229 Inf  -0.807  1.0000
 StepF12 - StepF14 -0.028535 0.0229 Inf  -1.247  0.9989
 StepF12 - StepF15 -0.065089 0.0229 Inf  -2.846  0.2840
 StepF12 - StepF16 -0.016788 0.0229 Inf  -0.734  1.0000
 StepF12 - StepF17 -0.033117 0.0229 Inf  -1.448  0.9938
 StepF12 - StepF18 -0.000936 0.0229 Inf  -0.041  1.0000
 StepF13 - StepF14 -0.010052 0.0229 Inf  -0.439  1.0000
 StepF13 - StepF15 -0.046605 0.0229 Inf  -2.036  0.8522
 StepF13 - StepF16  0.001696 0.0229 Inf   0.074  1.0000
 StepF13 - StepF17 -0.014634 0.0229 Inf  -0.639  1.0000
 StepF13 - StepF18  0.017548 0.0229 Inf   0.766  1.0000
 StepF14 - StepF15 -0.036554 0.0229 Inf  -1.598  0.9820
 StepF14 - StepF16  0.011747 0.0229 Inf   0.513  1.0000
 StepF14 - StepF17 -0.004582 0.0229 Inf  -0.200  1.0000
 StepF14 - StepF18  0.027600 0.0229 Inf   1.206  0.9993
 StepF15 - StepF16  0.048301 0.0229 Inf   2.111  0.8100
 StepF15 - StepF17  0.031971 0.0229 Inf   1.398  0.9958
 StepF15 - StepF18  0.064153 0.0229 Inf   2.803  0.3106
 StepF16 - StepF17 -0.016330 0.0229 Inf  -0.714  1.0000
 StepF16 - StepF18  0.015852 0.0229 Inf   0.692  1.0000
 StepF17 - StepF18  0.032182 0.0229 Inf   1.406  0.9956

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.07812 0.0231 Inf   3.376  0.0103
 StepF3 - StepF2    0.01795 0.0229 Inf   0.785  1.0000
 StepF4 - StepF3   -0.10418 0.0229 Inf  -4.556  0.0001
 StepF5 - StepF4    0.01126 0.0229 Inf   0.492  1.0000
 StepF6 - StepF5    0.03384 0.0229 Inf   1.480  1.0000
 StepF7 - StepF6    0.02246 0.0229 Inf   0.982  1.0000
 StepF8 - StepF7   -0.08242 0.0229 Inf  -3.604  0.0047
 StepF9 - StepF8    0.02697 0.0229 Inf   1.179  1.0000
 StepF10 - StepF9   0.05894 0.0229 Inf   2.577  0.1294
 StepF11 - StepF10 -0.00872 0.0229 Inf  -0.381  1.0000
 StepF12 - StepF11 -0.11848 0.0229 Inf  -5.180  <.0001
 StepF13 - StepF12  0.01848 0.0229 Inf   0.807  1.0000
 StepF14 - StepF13  0.01005 0.0229 Inf   0.439  1.0000
 StepF15 - StepF14  0.03655 0.0229 Inf   1.598  1.0000
 StepF16 - StepF15 -0.04830 0.0229 Inf  -2.111  0.4168
 StepF17 - StepF16  0.01633 0.0229 Inf   0.714  1.0000
 StepF18 - StepF17 -0.03218 0.0229 Inf  -1.406  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.07812 0.0231 Inf   3.376  0.0103
 StepF3 - StepF2    0.01795 0.0229 Inf   0.785  1.0000
 StepF4 - StepF3   -0.10418 0.0229 Inf  -4.556  0.0001
 StepF5 - StepF4    0.01126 0.0229 Inf   0.492  1.0000
 StepF6 - StepF5    0.03384 0.0229 Inf   1.480  1.0000
 StepF7 - StepF6    0.02246 0.0229 Inf   0.982  1.0000
 StepF8 - StepF7   -0.08242 0.0229 Inf  -3.604  0.0047
 StepF9 - StepF8    0.02697 0.0229 Inf   1.179  1.0000
 StepF10 - StepF9   0.05894 0.0229 Inf   2.577  0.1294
 StepF11 - StepF10 -0.00872 0.0229 Inf  -0.381  1.0000
 StepF12 - StepF11 -0.11848 0.0229 Inf  -5.180  <.0001
 StepF13 - StepF12  0.01848 0.0229 Inf   0.807  1.0000
 StepF14 - StepF13  0.01005 0.0229 Inf   0.439  1.0000
 StepF15 - StepF14  0.03655 0.0229 Inf   1.598  1.0000
 StepF16 - StepF15 -0.04830 0.0229 Inf  -2.111  0.4168
 StepF17 - StepF16  0.01633 0.0229 Inf   0.714  1.0000
 StepF18 - StepF17 -0.03218 0.0229 Inf  -1.406  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 
Warning: Some predictor variables are on very different scales: consider
rescaling
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 25.3913 (tol = 0.002, component 1)
Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
 - Rescale variables?
Warning: Some predictor variables are on very different scales: consider
rescaling

[Optional] Random-slope model for rt_ms | subject (summary):
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1 |  
    trial_id)
   Data: dd

REML criterion at convergence: 16387.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.8335 -0.5400 -0.1679  0.3267  8.8004 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr 
 trial_id (Intercept) 8.846e-02 2.974e-01      
 subject  (Intercept) 1.282e-01 3.581e-01      
          rt_ms       5.272e-09 7.261e-05 -0.48
 Residual             1.830e-01 4.277e-01      
Number of obs: 12778, groups:  trial_id, 710; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  6.022e-01  8.544e-02  1.042e+00   7.048 0.083379 .  
StepF1      -6.875e-03  1.596e-02  1.177e+04  -0.431 0.666585    
StepF2       7.386e-02  1.565e-02  1.209e+04   4.720 2.38e-06 ***
StepF3       9.144e-02  1.565e-02  1.210e+04   5.845 5.21e-09 ***
StepF4      -1.229e-02  1.565e-02  1.209e+04  -0.785 0.432394    
StepF5      -1.289e-03  1.564e-02  1.208e+04  -0.082 0.934273    
StepF6       3.251e-02  1.566e-02  1.195e+04   2.076 0.037954 *  
StepF7       5.552e-02  1.563e-02  1.209e+04   3.553 0.000383 ***
StepF8      -2.692e-02  1.562e-02  1.209e+04  -1.723 0.084890 .  
StepF9       3.344e-04  1.563e-02  1.209e+04   0.021 0.982931    
StepF10      5.772e-02  1.566e-02  1.188e+04   3.685 0.000230 ***
StepF11      5.003e-02  1.563e-02  1.209e+04   3.202 0.001370 ** 
StepF12     -6.877e-02  1.563e-02  1.209e+04  -4.400 1.09e-05 ***
StepF13     -4.553e-02  1.574e-02  1.170e+04  -2.892 0.003835 ** 
StepF14     -4.147e-02  1.563e-02  1.204e+04  -2.653 0.007991 ** 
StepF15     -4.535e-03  1.562e-02  1.209e+04  -0.290 0.771607    
StepF16     -5.105e-02  1.562e-02  1.209e+04  -3.268 0.001086 ** 
StepF17     -3.476e-02  1.562e-02  1.209e+04  -2.225 0.026111 *  
Accuracy1    1.057e-02  1.350e-02  4.987e+02   0.783 0.434017    
rt_ms       -1.715e-05  2.029e-05  7.129e+00  -0.845 0.425492    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 20 > 12.
Use print(summary(m_rs), correlation=TRUE)  or
    vcov(summary(m_rs))        if you need it
fit warnings:
Some predictor variables are on very different scales: consider rescaling
optimizer (nloptwrap) convergence code: 0 (OK)
Model failed to converge with max|grad| = 25.3913 (tol = 0.002, component 1)
Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?
Model is nearly unidentifiable: large eigenvalue ratio
 - Rescale variables?



==============================
TRAINING (rt_ms) | Block 3 (18 steps) | Axis Z
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    150.4538 17    < 2e-16 ***
Accuracy   1.1998  1    0.27335    
rt_ms      2.8769  1    0.08986 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.23 0.124 Inf     0.983      1.47
 2       1.38 0.124 Inf     1.139      1.62
 3       1.39 0.124 Inf     1.149      1.63
 4       1.25 0.124 Inf     1.006      1.49
 5       1.27 0.124 Inf     1.028      1.51
 6       1.29 0.124 Inf     1.052      1.54
 7       1.30 0.124 Inf     1.060      1.54
 8       1.29 0.124 Inf     1.051      1.54
 9       1.25 0.124 Inf     1.004      1.49
 10      1.29 0.124 Inf     1.048      1.53
 11      1.25 0.124 Inf     1.006      1.49
 12      1.13 0.124 Inf     0.888      1.37
 13      1.20 0.124 Inf     0.956      1.44
 14      1.24 0.124 Inf     1.002      1.49
 15      1.19 0.124 Inf     0.951      1.44
 16      1.13 0.124 Inf     0.889      1.37
 17      1.11 0.124 Inf     0.865      1.35
 18      1.08 0.124 Inf     0.839      1.32

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.16 0.123 Inf     0.923      1.40
 2       1.32 0.123 Inf     1.079      1.56
 3       1.33 0.123 Inf     1.088      1.57
 4       1.19 0.123 Inf     0.946      1.43
 5       1.21 0.123 Inf     0.967      1.45
 6       1.23 0.123 Inf     0.992      1.47
 7       1.24 0.123 Inf     1.000      1.48
 8       1.23 0.123 Inf     0.990      1.47
 9       1.18 0.123 Inf     0.944      1.43
 10      1.23 0.123 Inf     0.988      1.47
 11      1.19 0.123 Inf     0.945      1.43
 12      1.07 0.123 Inf     0.828      1.31
 13      1.14 0.123 Inf     0.895      1.38
 14      1.18 0.123 Inf     0.941      1.42
 15      1.13 0.123 Inf     0.891      1.37
 16      1.07 0.123 Inf     0.828      1.31
 17      1.04 0.123 Inf     0.804      1.29
 18      1.02 0.123 Inf     0.779      1.26

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.156268 0.0415 Inf  -3.763  0.0195
 StepF1 - StepF3   -0.165700 0.0416 Inf  -3.983  0.0085
 StepF1 - StepF4   -0.023194 0.0416 Inf  -0.558  1.0000
 StepF1 - StepF5   -0.044502 0.0414 Inf  -1.076  0.9998
 StepF1 - StepF6   -0.068933 0.0414 Inf  -1.667  0.9727
 StepF1 - StepF7   -0.077152 0.0414 Inf  -1.861  0.9259
 StepF1 - StepF8   -0.067784 0.0414 Inf  -1.637  0.9771
 StepF1 - StepF9   -0.021047 0.0412 Inf  -0.510  1.0000
 StepF1 - StepF10  -0.065258 0.0413 Inf  -1.582  0.9838
 StepF1 - StepF11  -0.022380 0.0413 Inf  -0.541  1.0000
 StepF1 - StepF12   0.095021 0.0414 Inf   2.295  0.6876
 StepF1 - StepF13   0.027432 0.0411 Inf   0.667  1.0000
 StepF1 - StepF14  -0.018450 0.0413 Inf  -0.447  1.0000
 StepF1 - StepF15   0.031790 0.0413 Inf   0.769  1.0000
 StepF1 - StepF16   0.094519 0.0415 Inf   2.279  0.6985
 StepF1 - StepF17   0.118663 0.0414 Inf   2.865  0.2725
 StepF1 - StepF18   0.143970 0.0413 Inf   3.485  0.0505
 StepF2 - StepF3   -0.009432 0.0410 Inf  -0.230  1.0000
 StepF2 - StepF4    0.133074 0.0410 Inf   3.242  0.1056
 StepF2 - StepF5    0.111766 0.0411 Inf   2.722  0.3644
 StepF2 - StepF6    0.087335 0.0411 Inf   2.127  0.8006
 StepF2 - StepF7    0.079116 0.0410 Inf   1.928  0.9017
 StepF2 - StepF8    0.088484 0.0410 Inf   2.156  0.7830
 StepF2 - StepF9    0.135221 0.0411 Inf   3.290  0.0920
 StepF2 - StepF10   0.091011 0.0411 Inf   2.215  0.7440
 StepF2 - StepF11   0.133888 0.0411 Inf   3.260  0.1003
 StepF2 - StepF12   0.251290 0.0410 Inf   6.122  <.0001
 StepF2 - StepF13   0.183700 0.0412 Inf   4.460  0.0011
 StepF2 - StepF14   0.137818 0.0411 Inf   3.355  0.0759
 StepF2 - StepF15   0.188058 0.0411 Inf   4.579  0.0007
 StepF2 - StepF16   0.250787 0.0410 Inf   6.111  <.0001
 StepF2 - StepF17   0.274931 0.0410 Inf   6.698  <.0001
 StepF2 - StepF18   0.300238 0.0411 Inf   7.302  <.0001
 StepF3 - StepF4    0.142506 0.0410 Inf   3.472  0.0527
 StepF3 - StepF5    0.121198 0.0411 Inf   2.951  0.2244
 StepF3 - StepF6    0.096767 0.0411 Inf   2.356  0.6417
 StepF3 - StepF7    0.088548 0.0411 Inf   2.157  0.7821
 StepF3 - StepF8    0.097916 0.0411 Inf   2.385  0.6198
 StepF3 - StepF9    0.144653 0.0411 Inf   3.518  0.0455
 StepF3 - StepF10   0.100442 0.0411 Inf   2.443  0.5747
 StepF3 - StepF11   0.143320 0.0411 Inf   3.489  0.0500
 StepF3 - StepF12   0.260721 0.0411 Inf   6.350  <.0001
 StepF3 - StepF13   0.193132 0.0412 Inf   4.684  0.0004
 StepF3 - StepF14   0.147250 0.0411 Inf   3.583  0.0367
 StepF3 - StepF15   0.197490 0.0411 Inf   4.807  0.0002
 StepF3 - StepF16   0.260219 0.0410 Inf   6.339  <.0001
 StepF3 - StepF17   0.284363 0.0411 Inf   6.926  <.0001
 StepF3 - StepF18   0.309670 0.0411 Inf   7.528  <.0001
 StepF4 - StepF5   -0.021308 0.0411 Inf  -0.519  1.0000
 StepF4 - StepF6   -0.045738 0.0411 Inf  -1.114  0.9998
 StepF4 - StepF7   -0.053958 0.0411 Inf  -1.314  0.9980
 StepF4 - StepF8   -0.044590 0.0411 Inf  -1.086  0.9998
 StepF4 - StepF9    0.002147 0.0411 Inf   0.052  1.0000
 StepF4 - StepF10  -0.042063 0.0411 Inf  -1.023  0.9999
 StepF4 - StepF11   0.000814 0.0411 Inf   0.020  1.0000
 StepF4 - StepF12   0.118216 0.0411 Inf   2.879  0.2642
 StepF4 - StepF13   0.050627 0.0412 Inf   1.228  0.9991
 StepF4 - StepF14   0.004744 0.0411 Inf   0.115  1.0000
 StepF4 - StepF15   0.054984 0.0411 Inf   1.338  0.9975
 StepF4 - StepF16   0.117714 0.0410 Inf   2.868  0.2709
 StepF4 - StepF17   0.141857 0.0411 Inf   3.455  0.0557
 StepF4 - StepF18   0.167164 0.0411 Inf   4.064  0.0062
 StepF5 - StepF6   -0.024431 0.0410 Inf  -0.595  1.0000
 StepF5 - StepF7   -0.032650 0.0410 Inf  -0.796  1.0000
 StepF5 - StepF8   -0.023282 0.0410 Inf  -0.567  1.0000
 StepF5 - StepF9    0.023455 0.0411 Inf   0.571  1.0000
 StepF5 - StepF10  -0.020755 0.0411 Inf  -0.506  1.0000
 StepF5 - StepF11   0.022122 0.0410 Inf   0.539  1.0000
 StepF5 - StepF12   0.139524 0.0410 Inf   3.400  0.0662
 StepF5 - StepF13   0.071934 0.0411 Inf   1.750  0.9568
 StepF5 - StepF14   0.026052 0.0410 Inf   0.635  1.0000
 StepF5 - StepF15   0.076292 0.0410 Inf   1.859  0.9267
 StepF5 - StepF16   0.139021 0.0410 Inf   3.387  0.0688
 StepF5 - StepF17   0.163165 0.0410 Inf   3.976  0.0088
 StepF5 - StepF18   0.188472 0.0411 Inf   4.588  0.0006
 StepF6 - StepF7   -0.008219 0.0410 Inf  -0.200  1.0000
 StepF6 - StepF8    0.001149 0.0410 Inf   0.028  1.0000
 StepF6 - StepF9    0.047885 0.0411 Inf   1.167  0.9996
 StepF6 - StepF10   0.003675 0.0410 Inf   0.090  1.0000
 StepF6 - StepF11   0.046552 0.0410 Inf   1.134  0.9997
 StepF6 - StepF12   0.163954 0.0410 Inf   3.995  0.0081
 StepF6 - StepF13   0.096365 0.0411 Inf   2.345  0.6503
 StepF6 - StepF14   0.050483 0.0410 Inf   1.230  0.9991
 StepF6 - StepF15   0.100723 0.0410 Inf   2.454  0.5658
 StepF6 - StepF16   0.163452 0.0410 Inf   3.982  0.0085
 StepF6 - StepF17   0.187596 0.0410 Inf   4.571  0.0007
 StepF6 - StepF18   0.212903 0.0411 Inf   5.183  <.0001
 StepF7 - StepF8    0.009368 0.0410 Inf   0.228  1.0000
 StepF7 - StepF9    0.056105 0.0411 Inf   1.366  0.9968
 StepF7 - StepF10   0.011894 0.0411 Inf   0.290  1.0000
 StepF7 - StepF11   0.054772 0.0410 Inf   1.334  0.9976
 StepF7 - StepF12   0.172173 0.0410 Inf   4.195  0.0036
 StepF7 - StepF13   0.104584 0.0411 Inf   2.542  0.4978
 StepF7 - StepF14   0.058702 0.0411 Inf   1.430  0.9946
 StepF7 - StepF15   0.108942 0.0410 Inf   2.654  0.4133
 StepF7 - StepF16   0.171671 0.0410 Inf   4.183  0.0038
 StepF7 - StepF17   0.195815 0.0410 Inf   4.771  0.0003
 StepF7 - StepF18   0.221122 0.0411 Inf   5.381  <.0001
 StepF8 - StepF9    0.046736 0.0411 Inf   1.138  0.9997
 StepF8 - StepF10   0.002526 0.0411 Inf   0.062  1.0000
 StepF8 - StepF11   0.045404 0.0410 Inf   1.106  0.9998
 StepF8 - StepF12   0.162805 0.0410 Inf   3.967  0.0091
 StepF8 - StepF13   0.095216 0.0411 Inf   2.315  0.6721
 StepF8 - StepF14   0.049334 0.0410 Inf   1.202  0.9993
 StepF8 - StepF15   0.099574 0.0410 Inf   2.426  0.5877
 StepF8 - StepF16   0.162303 0.0410 Inf   3.955  0.0095
 StepF8 - StepF17   0.186447 0.0410 Inf   4.543  0.0008
 StepF8 - StepF18   0.211754 0.0411 Inf   5.154  <.0001
 StepF9 - StepF10  -0.044210 0.0410 Inf  -1.077  0.9998
 StepF9 - StepF11  -0.001333 0.0410 Inf  -0.032  1.0000
 StepF9 - StepF12   0.116069 0.0411 Inf   2.827  0.2958
 StepF9 - StepF13   0.048480 0.0411 Inf   1.181  0.9995
 StepF9 - StepF14   0.002597 0.0410 Inf   0.063  1.0000
 StepF9 - StepF15   0.052837 0.0410 Inf   1.287  0.9984
 StepF9 - StepF16   0.115567 0.0411 Inf   2.813  0.3041
 StepF9 - StepF17   0.139710 0.0411 Inf   3.402  0.0657
 StepF9 - StepF18   0.165017 0.0411 Inf   4.018  0.0074
 StepF10 - StepF11  0.042877 0.0410 Inf   1.045  0.9999
 StepF10 - StepF12  0.160279 0.0411 Inf   3.904  0.0116
 StepF10 - StepF13  0.092690 0.0411 Inf   2.257  0.7145
 StepF10 - StepF14  0.046807 0.0410 Inf   1.141  0.9997
 StepF10 - StepF15  0.097048 0.0410 Inf   2.365  0.6352
 StepF10 - StepF16  0.159777 0.0411 Inf   3.890  0.0122
 StepF10 - StepF17  0.183920 0.0411 Inf   4.479  0.0010
 StepF10 - StepF18  0.209228 0.0411 Inf   5.094  0.0001
 StepF11 - StepF12  0.117402 0.0410 Inf   2.860  0.2753
 StepF11 - StepF13  0.049813 0.0411 Inf   1.212  0.9993
 StepF11 - StepF14  0.003930 0.0410 Inf   0.096  1.0000
 StepF11 - StepF15  0.054170 0.0410 Inf   1.320  0.9979
 StepF11 - StepF16  0.116900 0.0411 Inf   2.848  0.2829
 StepF11 - StepF17  0.141043 0.0410 Inf   3.436  0.0591
 StepF11 - StepF18  0.166350 0.0411 Inf   4.050  0.0065
 StepF12 - StepF13 -0.067589 0.0411 Inf  -1.643  0.9762
 StepF12 - StepF14 -0.113471 0.0411 Inf  -2.764  0.3360
 StepF12 - StepF15 -0.063231 0.0410 Inf  -1.541  0.9877
 StepF12 - StepF16 -0.000502 0.0410 Inf  -0.012  1.0000
 StepF12 - StepF17  0.023641 0.0410 Inf   0.576  1.0000
 StepF12 - StepF18  0.048949 0.0411 Inf   1.191  0.9994
 StepF13 - StepF14 -0.045882 0.0411 Inf  -1.117  0.9997
 StepF13 - StepF15  0.004358 0.0411 Inf   0.106  1.0000
 StepF13 - StepF16  0.067087 0.0412 Inf   1.630  0.9781
 StepF13 - StepF17  0.091231 0.0411 Inf   2.218  0.7418
 StepF13 - StepF18  0.116538 0.0411 Inf   2.835  0.2903
 StepF14 - StepF15  0.050240 0.0410 Inf   1.224  0.9992
 StepF14 - StepF16  0.112969 0.0411 Inf   2.751  0.3447
 StepF14 - StepF17  0.137113 0.0411 Inf   3.340  0.0794
 StepF14 - StepF18  0.162420 0.0411 Inf   3.955  0.0095
 StepF15 - StepF16  0.062729 0.0411 Inf   1.528  0.9888
 StepF15 - StepF17  0.086873 0.0410 Inf   2.117  0.8070
 StepF15 - StepF18  0.112180 0.0411 Inf   2.731  0.3583
 StepF16 - StepF17  0.024143 0.0410 Inf   0.588  1.0000
 StepF16 - StepF18  0.049451 0.0411 Inf   1.203  0.9993
 StepF17 - StepF18  0.025307 0.0411 Inf   0.616  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.156268 0.0415 Inf  -3.763  0.0195
 StepF1 - StepF3   -0.165700 0.0416 Inf  -3.983  0.0085
 StepF1 - StepF4   -0.023194 0.0416 Inf  -0.558  1.0000
 StepF1 - StepF5   -0.044502 0.0414 Inf  -1.076  0.9998
 StepF1 - StepF6   -0.068933 0.0414 Inf  -1.667  0.9727
 StepF1 - StepF7   -0.077152 0.0414 Inf  -1.861  0.9259
 StepF1 - StepF8   -0.067784 0.0414 Inf  -1.637  0.9771
 StepF1 - StepF9   -0.021047 0.0412 Inf  -0.510  1.0000
 StepF1 - StepF10  -0.065258 0.0413 Inf  -1.582  0.9838
 StepF1 - StepF11  -0.022380 0.0413 Inf  -0.541  1.0000
 StepF1 - StepF12   0.095021 0.0414 Inf   2.295  0.6876
 StepF1 - StepF13   0.027432 0.0411 Inf   0.667  1.0000
 StepF1 - StepF14  -0.018450 0.0413 Inf  -0.447  1.0000
 StepF1 - StepF15   0.031790 0.0413 Inf   0.769  1.0000
 StepF1 - StepF16   0.094519 0.0415 Inf   2.279  0.6985
 StepF1 - StepF17   0.118663 0.0414 Inf   2.865  0.2725
 StepF1 - StepF18   0.143970 0.0413 Inf   3.485  0.0505
 StepF2 - StepF3   -0.009432 0.0410 Inf  -0.230  1.0000
 StepF2 - StepF4    0.133074 0.0410 Inf   3.242  0.1056
 StepF2 - StepF5    0.111766 0.0411 Inf   2.722  0.3644
 StepF2 - StepF6    0.087335 0.0411 Inf   2.127  0.8006
 StepF2 - StepF7    0.079116 0.0410 Inf   1.928  0.9017
 StepF2 - StepF8    0.088484 0.0410 Inf   2.156  0.7830
 StepF2 - StepF9    0.135221 0.0411 Inf   3.290  0.0920
 StepF2 - StepF10   0.091011 0.0411 Inf   2.215  0.7440
 StepF2 - StepF11   0.133888 0.0411 Inf   3.260  0.1003
 StepF2 - StepF12   0.251290 0.0410 Inf   6.122  <.0001
 StepF2 - StepF13   0.183700 0.0412 Inf   4.460  0.0011
 StepF2 - StepF14   0.137818 0.0411 Inf   3.355  0.0759
 StepF2 - StepF15   0.188058 0.0411 Inf   4.579  0.0007
 StepF2 - StepF16   0.250787 0.0410 Inf   6.111  <.0001
 StepF2 - StepF17   0.274931 0.0410 Inf   6.698  <.0001
 StepF2 - StepF18   0.300238 0.0411 Inf   7.302  <.0001
 StepF3 - StepF4    0.142506 0.0410 Inf   3.472  0.0527
 StepF3 - StepF5    0.121198 0.0411 Inf   2.951  0.2244
 StepF3 - StepF6    0.096767 0.0411 Inf   2.356  0.6417
 StepF3 - StepF7    0.088548 0.0411 Inf   2.157  0.7821
 StepF3 - StepF8    0.097916 0.0411 Inf   2.385  0.6198
 StepF3 - StepF9    0.144653 0.0411 Inf   3.518  0.0455
 StepF3 - StepF10   0.100442 0.0411 Inf   2.443  0.5747
 StepF3 - StepF11   0.143320 0.0411 Inf   3.489  0.0500
 StepF3 - StepF12   0.260721 0.0411 Inf   6.350  <.0001
 StepF3 - StepF13   0.193132 0.0412 Inf   4.684  0.0004
 StepF3 - StepF14   0.147250 0.0411 Inf   3.583  0.0367
 StepF3 - StepF15   0.197490 0.0411 Inf   4.807  0.0002
 StepF3 - StepF16   0.260219 0.0410 Inf   6.339  <.0001
 StepF3 - StepF17   0.284363 0.0411 Inf   6.926  <.0001
 StepF3 - StepF18   0.309670 0.0411 Inf   7.528  <.0001
 StepF4 - StepF5   -0.021308 0.0411 Inf  -0.519  1.0000
 StepF4 - StepF6   -0.045738 0.0411 Inf  -1.114  0.9998
 StepF4 - StepF7   -0.053958 0.0411 Inf  -1.314  0.9980
 StepF4 - StepF8   -0.044590 0.0411 Inf  -1.086  0.9998
 StepF4 - StepF9    0.002147 0.0411 Inf   0.052  1.0000
 StepF4 - StepF10  -0.042063 0.0411 Inf  -1.023  0.9999
 StepF4 - StepF11   0.000814 0.0411 Inf   0.020  1.0000
 StepF4 - StepF12   0.118216 0.0411 Inf   2.879  0.2642
 StepF4 - StepF13   0.050627 0.0412 Inf   1.228  0.9991
 StepF4 - StepF14   0.004744 0.0411 Inf   0.115  1.0000
 StepF4 - StepF15   0.054984 0.0411 Inf   1.338  0.9975
 StepF4 - StepF16   0.117714 0.0410 Inf   2.868  0.2709
 StepF4 - StepF17   0.141857 0.0411 Inf   3.455  0.0557
 StepF4 - StepF18   0.167164 0.0411 Inf   4.064  0.0062
 StepF5 - StepF6   -0.024431 0.0410 Inf  -0.595  1.0000
 StepF5 - StepF7   -0.032650 0.0410 Inf  -0.796  1.0000
 StepF5 - StepF8   -0.023282 0.0410 Inf  -0.567  1.0000
 StepF5 - StepF9    0.023455 0.0411 Inf   0.571  1.0000
 StepF5 - StepF10  -0.020755 0.0411 Inf  -0.506  1.0000
 StepF5 - StepF11   0.022122 0.0410 Inf   0.539  1.0000
 StepF5 - StepF12   0.139524 0.0410 Inf   3.400  0.0662
 StepF5 - StepF13   0.071934 0.0411 Inf   1.750  0.9568
 StepF5 - StepF14   0.026052 0.0410 Inf   0.635  1.0000
 StepF5 - StepF15   0.076292 0.0410 Inf   1.859  0.9267
 StepF5 - StepF16   0.139021 0.0410 Inf   3.387  0.0688
 StepF5 - StepF17   0.163165 0.0410 Inf   3.976  0.0088
 StepF5 - StepF18   0.188472 0.0411 Inf   4.588  0.0006
 StepF6 - StepF7   -0.008219 0.0410 Inf  -0.200  1.0000
 StepF6 - StepF8    0.001149 0.0410 Inf   0.028  1.0000
 StepF6 - StepF9    0.047885 0.0411 Inf   1.167  0.9996
 StepF6 - StepF10   0.003675 0.0410 Inf   0.090  1.0000
 StepF6 - StepF11   0.046552 0.0410 Inf   1.134  0.9997
 StepF6 - StepF12   0.163954 0.0410 Inf   3.995  0.0081
 StepF6 - StepF13   0.096365 0.0411 Inf   2.345  0.6503
 StepF6 - StepF14   0.050483 0.0410 Inf   1.230  0.9991
 StepF6 - StepF15   0.100723 0.0410 Inf   2.454  0.5658
 StepF6 - StepF16   0.163452 0.0410 Inf   3.982  0.0085
 StepF6 - StepF17   0.187596 0.0410 Inf   4.571  0.0007
 StepF6 - StepF18   0.212903 0.0411 Inf   5.183  <.0001
 StepF7 - StepF8    0.009368 0.0410 Inf   0.228  1.0000
 StepF7 - StepF9    0.056105 0.0411 Inf   1.366  0.9968
 StepF7 - StepF10   0.011894 0.0411 Inf   0.290  1.0000
 StepF7 - StepF11   0.054772 0.0410 Inf   1.334  0.9976
 StepF7 - StepF12   0.172173 0.0410 Inf   4.195  0.0036
 StepF7 - StepF13   0.104584 0.0411 Inf   2.542  0.4978
 StepF7 - StepF14   0.058702 0.0411 Inf   1.430  0.9946
 StepF7 - StepF15   0.108942 0.0410 Inf   2.654  0.4133
 StepF7 - StepF16   0.171671 0.0410 Inf   4.183  0.0038
 StepF7 - StepF17   0.195815 0.0410 Inf   4.771  0.0003
 StepF7 - StepF18   0.221122 0.0411 Inf   5.381  <.0001
 StepF8 - StepF9    0.046736 0.0411 Inf   1.138  0.9997
 StepF8 - StepF10   0.002526 0.0411 Inf   0.062  1.0000
 StepF8 - StepF11   0.045404 0.0410 Inf   1.106  0.9998
 StepF8 - StepF12   0.162805 0.0410 Inf   3.967  0.0091
 StepF8 - StepF13   0.095216 0.0411 Inf   2.315  0.6721
 StepF8 - StepF14   0.049334 0.0410 Inf   1.202  0.9993
 StepF8 - StepF15   0.099574 0.0410 Inf   2.426  0.5877
 StepF8 - StepF16   0.162303 0.0410 Inf   3.955  0.0095
 StepF8 - StepF17   0.186447 0.0410 Inf   4.543  0.0008
 StepF8 - StepF18   0.211754 0.0411 Inf   5.154  <.0001
 StepF9 - StepF10  -0.044210 0.0410 Inf  -1.077  0.9998
 StepF9 - StepF11  -0.001333 0.0410 Inf  -0.032  1.0000
 StepF9 - StepF12   0.116069 0.0411 Inf   2.827  0.2958
 StepF9 - StepF13   0.048480 0.0411 Inf   1.181  0.9995
 StepF9 - StepF14   0.002597 0.0410 Inf   0.063  1.0000
 StepF9 - StepF15   0.052837 0.0410 Inf   1.287  0.9984
 StepF9 - StepF16   0.115567 0.0411 Inf   2.813  0.3041
 StepF9 - StepF17   0.139710 0.0411 Inf   3.402  0.0657
 StepF9 - StepF18   0.165017 0.0411 Inf   4.018  0.0074
 StepF10 - StepF11  0.042877 0.0410 Inf   1.045  0.9999
 StepF10 - StepF12  0.160279 0.0411 Inf   3.904  0.0116
 StepF10 - StepF13  0.092690 0.0411 Inf   2.257  0.7145
 StepF10 - StepF14  0.046807 0.0410 Inf   1.141  0.9997
 StepF10 - StepF15  0.097048 0.0410 Inf   2.365  0.6352
 StepF10 - StepF16  0.159777 0.0411 Inf   3.890  0.0122
 StepF10 - StepF17  0.183920 0.0411 Inf   4.479  0.0010
 StepF10 - StepF18  0.209228 0.0411 Inf   5.094  0.0001
 StepF11 - StepF12  0.117402 0.0410 Inf   2.860  0.2753
 StepF11 - StepF13  0.049813 0.0411 Inf   1.212  0.9993
 StepF11 - StepF14  0.003930 0.0410 Inf   0.096  1.0000
 StepF11 - StepF15  0.054170 0.0410 Inf   1.320  0.9979
 StepF11 - StepF16  0.116900 0.0411 Inf   2.848  0.2829
 StepF11 - StepF17  0.141043 0.0410 Inf   3.436  0.0591
 StepF11 - StepF18  0.166350 0.0411 Inf   4.050  0.0065
 StepF12 - StepF13 -0.067589 0.0411 Inf  -1.643  0.9762
 StepF12 - StepF14 -0.113471 0.0411 Inf  -2.764  0.3360
 StepF12 - StepF15 -0.063231 0.0410 Inf  -1.541  0.9877
 StepF12 - StepF16 -0.000502 0.0410 Inf  -0.012  1.0000
 StepF12 - StepF17  0.023641 0.0410 Inf   0.576  1.0000
 StepF12 - StepF18  0.048949 0.0411 Inf   1.191  0.9994
 StepF13 - StepF14 -0.045882 0.0411 Inf  -1.117  0.9997
 StepF13 - StepF15  0.004358 0.0411 Inf   0.106  1.0000
 StepF13 - StepF16  0.067087 0.0412 Inf   1.630  0.9781
 StepF13 - StepF17  0.091231 0.0411 Inf   2.218  0.7418
 StepF13 - StepF18  0.116538 0.0411 Inf   2.835  0.2903
 StepF14 - StepF15  0.050240 0.0410 Inf   1.224  0.9992
 StepF14 - StepF16  0.112969 0.0411 Inf   2.751  0.3447
 StepF14 - StepF17  0.137113 0.0411 Inf   3.340  0.0794
 StepF14 - StepF18  0.162420 0.0411 Inf   3.955  0.0095
 StepF15 - StepF16  0.062729 0.0411 Inf   1.528  0.9888
 StepF15 - StepF17  0.086873 0.0410 Inf   2.117  0.8070
 StepF15 - StepF18  0.112180 0.0411 Inf   2.731  0.3583
 StepF16 - StepF17  0.024143 0.0410 Inf   0.588  1.0000
 StepF16 - StepF18  0.049451 0.0411 Inf   1.203  0.9993
 StepF17 - StepF18  0.025307 0.0411 Inf   0.616  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.15627 0.0415 Inf   3.763  0.0029
 StepF3 - StepF2    0.00943 0.0410 Inf   0.230  1.0000
 StepF4 - StepF3   -0.14251 0.0410 Inf  -3.472  0.0083
 StepF5 - StepF4    0.02131 0.0411 Inf   0.519  1.0000
 StepF6 - StepF5    0.02443 0.0410 Inf   0.595  1.0000
 StepF7 - StepF6    0.00822 0.0410 Inf   0.200  1.0000
 StepF8 - StepF7   -0.00937 0.0410 Inf  -0.228  1.0000
 StepF9 - StepF8   -0.04674 0.0411 Inf  -1.138  1.0000
 StepF10 - StepF9   0.04421 0.0410 Inf   1.077  1.0000
 StepF11 - StepF10 -0.04288 0.0410 Inf  -1.045  1.0000
 StepF12 - StepF11 -0.11740 0.0410 Inf  -2.860  0.0635
 StepF13 - StepF12  0.06759 0.0411 Inf   1.643  1.0000
 StepF14 - StepF13  0.04588 0.0411 Inf   1.117  1.0000
 StepF15 - StepF14 -0.05024 0.0410 Inf  -1.224  1.0000
 StepF16 - StepF15 -0.06273 0.0411 Inf  -1.528  1.0000
 StepF17 - StepF16 -0.02414 0.0410 Inf  -0.588  1.0000
 StepF18 - StepF17 -0.02531 0.0411 Inf  -0.616  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.15627 0.0415 Inf   3.763  0.0029
 StepF3 - StepF2    0.00943 0.0410 Inf   0.230  1.0000
 StepF4 - StepF3   -0.14251 0.0410 Inf  -3.472  0.0083
 StepF5 - StepF4    0.02131 0.0411 Inf   0.519  1.0000
 StepF6 - StepF5    0.02443 0.0410 Inf   0.595  1.0000
 StepF7 - StepF6    0.00822 0.0410 Inf   0.200  1.0000
 StepF8 - StepF7   -0.00937 0.0410 Inf  -0.228  1.0000
 StepF9 - StepF8   -0.04674 0.0411 Inf  -1.138  1.0000
 StepF10 - StepF9   0.04421 0.0410 Inf   1.077  1.0000
 StepF11 - StepF10 -0.04288 0.0410 Inf  -1.045  1.0000
 StepF12 - StepF11 -0.11740 0.0410 Inf  -2.860  0.0635
 StepF13 - StepF12  0.06759 0.0411 Inf   1.643  1.0000
 StepF14 - StepF13  0.04588 0.0411 Inf   1.117  1.0000
 StepF15 - StepF14 -0.05024 0.0410 Inf  -1.224  1.0000
 StepF16 - StepF15 -0.06273 0.0411 Inf  -1.528  1.0000
 StepF17 - StepF16 -0.02414 0.0410 Inf  -0.588  1.0000
 StepF18 - StepF17 -0.02531 0.0411 Inf  -0.616  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 
Warning: Some predictor variables are on very different scales: consider
rescaling
boundary (singular) fit: see help('isSingular')
Warning: Some predictor variables are on very different scales: consider
rescaling

[Optional] Random-slope model for rt_ms | subject (summary):
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ StepF + Accuracy + rt_ms + (1 + rt_ms | subject) + (1 |  
    trial_id)
   Data: dd

REML criterion at convergence: 31780.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.1293 -0.5343 -0.1401  0.3573 10.2860 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr
 trial_id (Intercept) 7.621e-01 0.8729682     
 subject  (Intercept) 5.467e-01 0.7393984     
          rt_ms       5.013e-09 0.0000708 0.13
 Residual             5.816e-01 0.7626053     
Number of obs: 12778, groups:  trial_id, 710; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.217e+00  1.778e-01  2.808e+00   6.848 0.007850 ** 
StepF1      -1.420e-02  2.839e-02  1.121e+04  -0.500 0.616944    
StepF2       1.458e-01  2.788e-02  1.209e+04   5.231 1.71e-07 ***
StepF3       1.537e-01  2.789e-02  1.211e+04   5.513 3.59e-08 ***
StepF4       1.187e-02  2.790e-02  1.211e+04   0.425 0.670563    
StepF5       3.235e-02  2.785e-02  1.207e+04   1.161 0.245530    
StepF6       5.717e-02  2.788e-02  1.188e+04   2.050 0.040344 *  
StepF7       6.646e-02  2.785e-02  1.211e+04   2.386 0.017037 *  
StepF8       5.701e-02  2.784e-02  1.211e+04   2.048 0.040611 *  
StepF9       7.957e-03  2.785e-02  1.210e+04   0.286 0.775095    
StepF10      5.199e-02  2.788e-02  1.183e+04   1.865 0.062217 .  
StepF11      1.192e-02  2.785e-02  1.209e+04   0.428 0.668550    
StepF12     -1.072e-01  2.785e-02  1.210e+04  -3.849 0.000119 ***
StepF13     -4.033e-02  2.800e-02  1.129e+04  -1.440 0.149870    
StepF14      5.934e-03  2.785e-02  1.207e+04   0.213 0.831252    
StepF15     -4.611e-02  2.784e-02  1.210e+04  -1.656 0.097675 .  
StepF16     -1.070e-01  2.785e-02  1.211e+04  -3.841 0.000123 ***
StepF17     -1.302e-01  2.784e-02  1.211e+04  -4.677 2.94e-06 ***
Accuracy1    3.140e-02  3.820e-02  2.279e+02   0.822 0.411928    
rt_ms       -1.741e-05  2.462e-05  7.707e+00  -0.707 0.500246    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 20 > 12.
Use print(summary(m_rs), correlation=TRUE)  or
    vcov(summary(m_rs))        if you need it
fit warnings:
Some predictor variables are on very different scales: consider rescaling
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
# ---- RUN: TEST (Blocks 4–5) ----
# Block 4
.report_step_test_rtms(sw_b4_6_rt,  "4", "6 steps")


==============================
TEST (rt_ms) | Block 4 | 6 steps | Axis X
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    39.8252  5   1.62e-07 ***
Accuracy  0.5446  1    0.46053    
rt_ms     4.5293  1    0.03332 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.709 0.0802 Inf     0.552     0.866
 2      0.814 0.0793 Inf     0.659     0.969
 3      0.804 0.0793 Inf     0.649     0.960
 4      0.752 0.0793 Inf     0.597     0.908
 5      0.621 0.0793 Inf     0.465     0.776
 6      0.653 0.0793 Inf     0.497     0.808

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.672 0.0719 Inf     0.531     0.813
 2      0.777 0.0712 Inf     0.637     0.916
 3      0.767 0.0712 Inf     0.627     0.907
 4      0.715 0.0713 Inf     0.575     0.855
 5      0.583 0.0712 Inf     0.444     0.723
 6      0.616 0.0712 Inf     0.476     0.755

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.10484 0.0416 Inf  -2.523  0.1173
 StepF1 - StepF3 -0.09510 0.0419 Inf  -2.270  0.2065
 StepF1 - StepF4 -0.04331 0.0423 Inf  -1.023  0.9104
 StepF1 - StepF5  0.08858 0.0418 Inf   2.118  0.2780
 StepF1 - StepF6  0.05637 0.0410 Inf   1.374  0.7425
 StepF2 - StepF3  0.00974 0.0396 Inf   0.246  0.9999
 StepF2 - StepF4  0.06154 0.0396 Inf   1.553  0.6297
 StepF2 - StepF5  0.19342 0.0396 Inf   4.889  <.0001
 StepF2 - StepF6  0.16121 0.0396 Inf   4.071  0.0007
 StepF3 - StepF4  0.05180 0.0396 Inf   1.309  0.7803
 StepF3 - StepF5  0.18368 0.0396 Inf   4.644  0.0001
 StepF3 - StepF6  0.15147 0.0397 Inf   3.819  0.0019
 StepF4 - StepF5  0.13189 0.0396 Inf   3.332  0.0111
 StepF4 - StepF6  0.09968 0.0398 Inf   2.506  0.1223
 StepF5 - StepF6 -0.03221 0.0396 Inf  -0.812  0.9654

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.10484 0.0416 Inf  -2.523  0.1173
 StepF1 - StepF3 -0.09510 0.0419 Inf  -2.270  0.2065
 StepF1 - StepF4 -0.04331 0.0423 Inf  -1.023  0.9104
 StepF1 - StepF5  0.08858 0.0418 Inf   2.118  0.2780
 StepF1 - StepF6  0.05637 0.0410 Inf   1.374  0.7425
 StepF2 - StepF3  0.00974 0.0396 Inf   0.246  0.9999
 StepF2 - StepF4  0.06154 0.0396 Inf   1.553  0.6297
 StepF2 - StepF5  0.19342 0.0396 Inf   4.889  <.0001
 StepF2 - StepF6  0.16121 0.0396 Inf   4.071  0.0007
 StepF3 - StepF4  0.05180 0.0396 Inf   1.309  0.7803
 StepF3 - StepF5  0.18368 0.0396 Inf   4.644  0.0001
 StepF3 - StepF6  0.15147 0.0397 Inf   3.819  0.0019
 StepF4 - StepF5  0.13189 0.0396 Inf   3.332  0.0111
 StepF4 - StepF6  0.09968 0.0398 Inf   2.506  0.1223
 StepF5 - StepF6 -0.03221 0.0396 Inf  -0.812  0.9654

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.10484 0.0416 Inf   2.523  0.0465
 StepF3 - StepF2 -0.00974 0.0396 Inf  -0.246  0.8332
 StepF4 - StepF3 -0.05180 0.0396 Inf  -1.309  0.5717
 StepF5 - StepF4 -0.13189 0.0396 Inf  -3.332  0.0043
 StepF6 - StepF5  0.03221 0.0396 Inf   0.812  0.8332

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.10484 0.0416 Inf   2.523  0.0465
 StepF3 - StepF2 -0.00974 0.0396 Inf  -0.246  0.8332
 StepF4 - StepF3 -0.05180 0.0396 Inf  -1.309  0.5717
 StepF5 - StepF4 -0.13189 0.0396 Inf  -3.332  0.0043
 StepF6 - StepF5  0.03221 0.0396 Inf   0.812  0.8332

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST (rt_ms) | Block 4 | 6 steps | Axis Y
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    38.6464  5  2.798e-07 ***
Accuracy  0.0116  1     0.9142    
rt_ms     1.6224  1     0.2028    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.713 0.0954 Inf     0.525     0.900
 2      0.899 0.0944 Inf     0.714     1.084
 3      0.874 0.0945 Inf     0.689     1.060
 4      0.753 0.0945 Inf     0.568     0.939
 5      0.683 0.0945 Inf     0.498     0.869
 6      0.752 0.0945 Inf     0.567     0.937

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.707 0.0874 Inf     0.535     0.878
 2      0.893 0.0867 Inf     0.723     1.063
 3      0.869 0.0867 Inf     0.699     1.039
 4      0.748 0.0868 Inf     0.577     0.918
 5      0.678 0.0867 Inf     0.508     0.848
 6      0.746 0.0866 Inf     0.576     0.916

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.18636 0.0464 Inf  -4.020  0.0008
 StepF1 - StepF3 -0.16190 0.0468 Inf  -3.463  0.0071
 StepF1 - StepF4 -0.04086 0.0472 Inf  -0.865  0.9548
 StepF1 - StepF5  0.02909 0.0467 Inf   0.623  0.9894
 StepF1 - StepF6 -0.03921 0.0458 Inf  -0.857  0.9566
 StepF2 - StepF3  0.02446 0.0442 Inf   0.554  0.9938
 StepF2 - StepF4  0.14551 0.0442 Inf   3.291  0.0128
 StepF2 - StepF5  0.21545 0.0441 Inf   4.880  <.0001
 StepF2 - StepF6  0.14716 0.0442 Inf   3.330  0.0112
 StepF3 - StepF4  0.12105 0.0442 Inf   2.741  0.0674
 StepF3 - StepF5  0.19099 0.0441 Inf   4.327  0.0002
 StepF3 - StepF6  0.12270 0.0443 Inf   2.772  0.0620
 StepF4 - StepF5  0.06995 0.0442 Inf   1.584  0.6095
 StepF4 - StepF6  0.00165 0.0444 Inf   0.037  1.0000
 StepF5 - StepF6 -0.06830 0.0442 Inf  -1.544  0.6359

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.18636 0.0464 Inf  -4.020  0.0008
 StepF1 - StepF3 -0.16190 0.0468 Inf  -3.463  0.0071
 StepF1 - StepF4 -0.04086 0.0472 Inf  -0.865  0.9548
 StepF1 - StepF5  0.02909 0.0467 Inf   0.623  0.9894
 StepF1 - StepF6 -0.03921 0.0458 Inf  -0.857  0.9566
 StepF2 - StepF3  0.02446 0.0442 Inf   0.554  0.9938
 StepF2 - StepF4  0.14551 0.0442 Inf   3.291  0.0128
 StepF2 - StepF5  0.21545 0.0441 Inf   4.880  <.0001
 StepF2 - StepF6  0.14716 0.0442 Inf   3.330  0.0112
 StepF3 - StepF4  0.12105 0.0442 Inf   2.741  0.0674
 StepF3 - StepF5  0.19099 0.0441 Inf   4.327  0.0002
 StepF3 - StepF6  0.12270 0.0443 Inf   2.772  0.0620
 StepF4 - StepF5  0.06995 0.0442 Inf   1.584  0.6095
 StepF4 - StepF6  0.00165 0.0444 Inf   0.037  1.0000
 StepF5 - StepF6 -0.06830 0.0442 Inf  -1.544  0.6359

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1864 0.0464 Inf   4.020  0.0003
 StepF3 - StepF2  -0.0245 0.0442 Inf  -0.554  0.5796
 StepF4 - StepF3  -0.1210 0.0442 Inf  -2.741  0.0245
 StepF5 - StepF4  -0.0699 0.0442 Inf  -1.584  0.3399
 StepF6 - StepF5   0.0683 0.0442 Inf   1.544  0.3399

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1864 0.0464 Inf   4.020  0.0003
 StepF3 - StepF2  -0.0245 0.0442 Inf  -0.554  0.5796
 StepF4 - StepF3  -0.1210 0.0442 Inf  -2.741  0.0245
 StepF5 - StepF4  -0.0699 0.0442 Inf  -1.584  0.3399
 StepF6 - StepF5   0.0683 0.0442 Inf   1.544  0.3399

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST (rt_ms) | Block 4 | 6 steps | Axis Z
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    45.7962  5  9.992e-09 ***
Accuracy  0.1530  1     0.6957    
rt_ms     0.3747  1     0.5405    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.41 0.176 Inf     1.060      1.75
 2       1.66 0.174 Inf     1.315      2.00
 3       1.71 0.174 Inf     1.372      2.06
 4       1.57 0.175 Inf     1.226      1.91
 5       1.33 0.174 Inf     0.985      1.67
 6       1.32 0.174 Inf     0.981      1.66

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.45 0.156 Inf     1.144      1.76
 2       1.70 0.155 Inf     1.398      2.01
 3       1.76 0.155 Inf     1.456      2.06
 4       1.61 0.155 Inf     1.309      1.92
 5       1.37 0.155 Inf     1.069      1.68
 6       1.37 0.155 Inf     1.064      1.67

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2510 0.0828 Inf  -3.032  0.0293
 StepF1 - StepF3  -0.3087 0.0835 Inf  -3.698  0.0030
 StepF1 - StepF4  -0.1627 0.0844 Inf  -1.928  0.3846
 StepF1 - StepF5   0.0784 0.0833 Inf   0.941  0.9360
 StepF1 - StepF6   0.0828 0.0817 Inf   1.014  0.9136
 StepF2 - StepF3  -0.0577 0.0787 Inf  -0.733  0.9779
 StepF2 - StepF4   0.0883 0.0788 Inf   1.120  0.8733
 StepF2 - StepF5   0.3293 0.0787 Inf   4.183  0.0004
 StepF2 - StepF6   0.3337 0.0788 Inf   4.236  0.0003
 StepF3 - StepF4   0.1460 0.0787 Inf   1.855  0.4305
 StepF3 - StepF5   0.3871 0.0787 Inf   4.918  <.0001
 StepF3 - StepF6   0.3915 0.0789 Inf   4.960  <.0001
 StepF4 - StepF5   0.2410 0.0788 Inf   3.060  0.0269
 StepF4 - StepF6   0.2454 0.0792 Inf   3.100  0.0237
 StepF5 - StepF6   0.0044 0.0789 Inf   0.056  1.0000

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2510 0.0828 Inf  -3.032  0.0293
 StepF1 - StepF3  -0.3087 0.0835 Inf  -3.698  0.0030
 StepF1 - StepF4  -0.1627 0.0844 Inf  -1.928  0.3846
 StepF1 - StepF5   0.0784 0.0833 Inf   0.941  0.9360
 StepF1 - StepF6   0.0828 0.0817 Inf   1.014  0.9136
 StepF2 - StepF3  -0.0577 0.0787 Inf  -0.733  0.9779
 StepF2 - StepF4   0.0883 0.0788 Inf   1.120  0.8733
 StepF2 - StepF5   0.3293 0.0787 Inf   4.183  0.0004
 StepF2 - StepF6   0.3337 0.0788 Inf   4.236  0.0003
 StepF3 - StepF4   0.1460 0.0787 Inf   1.855  0.4305
 StepF3 - StepF5   0.3871 0.0787 Inf   4.918  <.0001
 StepF3 - StepF6   0.3915 0.0789 Inf   4.960  <.0001
 StepF4 - StepF5   0.2410 0.0788 Inf   3.060  0.0269
 StepF4 - StepF6   0.2454 0.0792 Inf   3.100  0.0237
 StepF5 - StepF6   0.0044 0.0789 Inf   0.056  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2510 0.0828 Inf   3.032  0.0111
 StepF3 - StepF2   0.0577 0.0787 Inf   0.733  0.9267
 StepF4 - StepF3  -0.1460 0.0787 Inf  -1.855  0.1910
 StepF5 - StepF4  -0.2410 0.0788 Inf  -3.060  0.0111
 StepF6 - StepF5  -0.0044 0.0789 Inf  -0.056  0.9555

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2510 0.0828 Inf   3.032  0.0111
 StepF3 - StepF2   0.0577 0.0787 Inf   0.733  0.9267
 StepF4 - StepF3  -0.1460 0.0787 Inf  -1.855  0.1910
 StepF5 - StepF4  -0.2410 0.0788 Inf  -3.060  0.0111
 StepF6 - StepF5  -0.0044 0.0789 Inf  -0.056  0.9555

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
.report_step_test_rtms(sw_b4_12_rt, "4", "12 steps")


==============================
TEST (rt_ms) | Block 4 | 12 steps | Axis X
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    78.1244 11  3.398e-12 ***
Accuracy  0.1995  1     0.6551    
rt_ms     0.0047  1     0.9453    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.696 0.0760 Inf     0.547     0.845
 2      0.786 0.0758 Inf     0.637     0.934
 3      0.783 0.0758 Inf     0.635     0.932
 4      0.716 0.0758 Inf     0.568     0.865
 5      0.678 0.0758 Inf     0.529     0.826
 6      0.763 0.0758 Inf     0.615     0.912
 7      0.724 0.0759 Inf     0.576     0.873
 8      0.708 0.0758 Inf     0.559     0.856
 9      0.678 0.0758 Inf     0.529     0.826
 10     0.628 0.0758 Inf     0.479     0.776
 11     0.641 0.0758 Inf     0.493     0.790
 12     0.538 0.0758 Inf     0.389     0.686

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.680 0.0724 Inf     0.538     0.822
 2      0.770 0.0722 Inf     0.629     0.912
 3      0.768 0.0723 Inf     0.626     0.910
 4      0.701 0.0723 Inf     0.559     0.843
 5      0.662 0.0722 Inf     0.521     0.804
 6      0.748 0.0722 Inf     0.606     0.889
 7      0.709 0.0723 Inf     0.567     0.851
 8      0.692 0.0722 Inf     0.551     0.834
 9      0.662 0.0722 Inf     0.521     0.804
 10     0.612 0.0722 Inf     0.471     0.754
 11     0.626 0.0722 Inf     0.484     0.767
 12     0.522 0.0722 Inf     0.381     0.664

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -9.00e-02 0.0379 Inf  -2.374  0.4238
 StepF1 - StepF3   -8.76e-02 0.0380 Inf  -2.303  0.4743
 StepF1 - StepF4   -2.07e-02 0.0380 Inf  -0.545  1.0000
 StepF1 - StepF5    1.79e-02 0.0379 Inf   0.474  1.0000
 StepF1 - StepF6   -6.75e-02 0.0378 Inf  -1.786  0.8261
 StepF1 - StepF7   -2.87e-02 0.0375 Inf  -0.764  0.9998
 StepF1 - StepF8   -1.19e-02 0.0378 Inf  -0.315  1.0000
 StepF1 - StepF9    1.79e-02 0.0377 Inf   0.475  1.0000
 StepF1 - StepF10   6.80e-02 0.0378 Inf   1.799  0.8192
 StepF1 - StepF11   5.44e-02 0.0377 Inf   1.443  0.9550
 StepF1 - StepF12   1.58e-01 0.0377 Inf   4.184  0.0017
 StepF2 - StepF3    2.36e-03 0.0375 Inf   0.063  1.0000
 StepF2 - StepF4    6.92e-02 0.0374 Inf   1.849  0.7907
 StepF2 - StepF5    1.08e-01 0.0374 Inf   2.882  0.1473
 StepF2 - StepF6    2.24e-02 0.0374 Inf   0.599  1.0000
 StepF2 - StepF7    6.13e-02 0.0376 Inf   1.631  0.8981
 StepF2 - StepF8    7.80e-02 0.0374 Inf   2.084  0.6344
 StepF2 - StepF9    1.08e-01 0.0375 Inf   2.879  0.1485
 StepF2 - StepF10   1.58e-01 0.0374 Inf   4.219  0.0015
 StepF2 - StepF11   1.44e-01 0.0375 Inf   3.854  0.0065
 StepF2 - StepF12   2.48e-01 0.0375 Inf   6.614  <.0001
 StepF3 - StepF4    6.69e-02 0.0374 Inf   1.786  0.8259
 StepF3 - StepF5    1.06e-01 0.0375 Inf   2.818  0.1722
 StepF3 - StepF6    2.01e-02 0.0375 Inf   0.536  1.0000
 StepF3 - StepF7    5.89e-02 0.0377 Inf   1.564  0.9219
 StepF3 - StepF8    7.57e-02 0.0375 Inf   2.020  0.6801
 StepF3 - StepF9    1.05e-01 0.0375 Inf   2.812  0.1745
 StepF3 - StepF10   1.56e-01 0.0375 Inf   4.154  0.0019
 StepF3 - StepF11   1.42e-01 0.0375 Inf   3.787  0.0084
 StepF3 - StepF12   2.45e-01 0.0375 Inf   6.544  <.0001
 StepF4 - StepF5    3.87e-02 0.0374 Inf   1.032  0.9970
 StepF4 - StepF6   -4.68e-02 0.0375 Inf  -1.250  0.9848
 StepF4 - StepF7   -7.95e-03 0.0377 Inf  -0.211  1.0000
 StepF4 - StepF8    8.80e-03 0.0375 Inf   0.235  1.0000
 StepF4 - StepF9    3.86e-02 0.0375 Inf   1.030  0.9971
 StepF4 - StepF10   8.88e-02 0.0375 Inf   2.369  0.4271
 StepF4 - StepF11   7.51e-02 0.0375 Inf   2.005  0.6905
 StepF4 - StepF12   1.79e-01 0.0375 Inf   4.762  0.0001
 StepF5 - StepF6   -8.55e-02 0.0374 Inf  -2.283  0.4889
 StepF5 - StepF7   -4.66e-02 0.0376 Inf  -1.240  0.9857
 StepF5 - StepF8   -2.99e-02 0.0374 Inf  -0.797  0.9997
 StepF5 - StepF9   -5.32e-05 0.0375 Inf  -0.001  1.0000
 StepF5 - StepF10   5.01e-02 0.0374 Inf   1.338  0.9742
 StepF5 - StepF11   3.65e-02 0.0375 Inf   0.974  0.9982
 StepF5 - StepF12   1.40e-01 0.0375 Inf   3.734  0.0103
 StepF6 - StepF7    3.89e-02 0.0375 Inf   1.035  0.9969
 StepF6 - StepF8    5.56e-02 0.0374 Inf   1.485  0.9449
 StepF6 - StepF9    8.54e-02 0.0375 Inf   2.281  0.4903
 StepF6 - StepF10   1.36e-01 0.0374 Inf   3.621  0.0155
 StepF6 - StepF11   1.22e-01 0.0374 Inf   3.257  0.0517
 StepF6 - StepF12   2.25e-01 0.0374 Inf   6.018  <.0001
 StepF7 - StepF8    1.68e-02 0.0375 Inf   0.446  1.0000
 StepF7 - StepF9    4.66e-02 0.0375 Inf   1.242  0.9856
 StepF7 - StepF10   9.67e-02 0.0376 Inf   2.575  0.2938
 StepF7 - StepF11   8.31e-02 0.0375 Inf   2.216  0.5378
 StepF7 - StepF12   1.86e-01 0.0375 Inf   4.973  <.0001
 StepF8 - StepF9    2.98e-02 0.0374 Inf   0.796  0.9997
 StepF8 - StepF10   7.99e-02 0.0374 Inf   2.135  0.5972
 StepF8 - StepF11   6.63e-02 0.0374 Inf   1.772  0.8336
 StepF8 - StepF12   1.70e-01 0.0374 Inf   4.533  0.0004
 StepF9 - StepF10   5.01e-02 0.0375 Inf   1.339  0.9741
 StepF9 - StepF11   3.65e-02 0.0374 Inf   0.976  0.9982
 StepF9 - StepF12   1.40e-01 0.0374 Inf   3.737  0.0101
 StepF10 - StepF11 -1.36e-02 0.0374 Inf  -0.363  1.0000
 StepF10 - StepF12  8.98e-02 0.0374 Inf   2.397  0.4076
 StepF11 - StepF12  1.03e-01 0.0374 Inf   2.761  0.1968

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -9.00e-02 0.0379 Inf  -2.374  0.4238
 StepF1 - StepF3   -8.76e-02 0.0380 Inf  -2.303  0.4743
 StepF1 - StepF4   -2.07e-02 0.0380 Inf  -0.545  1.0000
 StepF1 - StepF5    1.79e-02 0.0379 Inf   0.474  1.0000
 StepF1 - StepF6   -6.75e-02 0.0378 Inf  -1.786  0.8261
 StepF1 - StepF7   -2.87e-02 0.0375 Inf  -0.764  0.9998
 StepF1 - StepF8   -1.19e-02 0.0378 Inf  -0.315  1.0000
 StepF1 - StepF9    1.79e-02 0.0377 Inf   0.475  1.0000
 StepF1 - StepF10   6.80e-02 0.0378 Inf   1.799  0.8192
 StepF1 - StepF11   5.44e-02 0.0377 Inf   1.443  0.9550
 StepF1 - StepF12   1.58e-01 0.0377 Inf   4.184  0.0017
 StepF2 - StepF3    2.36e-03 0.0375 Inf   0.063  1.0000
 StepF2 - StepF4    6.92e-02 0.0374 Inf   1.849  0.7907
 StepF2 - StepF5    1.08e-01 0.0374 Inf   2.882  0.1473
 StepF2 - StepF6    2.24e-02 0.0374 Inf   0.599  1.0000
 StepF2 - StepF7    6.13e-02 0.0376 Inf   1.631  0.8981
 StepF2 - StepF8    7.80e-02 0.0374 Inf   2.084  0.6344
 StepF2 - StepF9    1.08e-01 0.0375 Inf   2.879  0.1485
 StepF2 - StepF10   1.58e-01 0.0374 Inf   4.219  0.0015
 StepF2 - StepF11   1.44e-01 0.0375 Inf   3.854  0.0065
 StepF2 - StepF12   2.48e-01 0.0375 Inf   6.614  <.0001
 StepF3 - StepF4    6.69e-02 0.0374 Inf   1.786  0.8259
 StepF3 - StepF5    1.06e-01 0.0375 Inf   2.818  0.1722
 StepF3 - StepF6    2.01e-02 0.0375 Inf   0.536  1.0000
 StepF3 - StepF7    5.89e-02 0.0377 Inf   1.564  0.9219
 StepF3 - StepF8    7.57e-02 0.0375 Inf   2.020  0.6801
 StepF3 - StepF9    1.05e-01 0.0375 Inf   2.812  0.1745
 StepF3 - StepF10   1.56e-01 0.0375 Inf   4.154  0.0019
 StepF3 - StepF11   1.42e-01 0.0375 Inf   3.787  0.0084
 StepF3 - StepF12   2.45e-01 0.0375 Inf   6.544  <.0001
 StepF4 - StepF5    3.87e-02 0.0374 Inf   1.032  0.9970
 StepF4 - StepF6   -4.68e-02 0.0375 Inf  -1.250  0.9848
 StepF4 - StepF7   -7.95e-03 0.0377 Inf  -0.211  1.0000
 StepF4 - StepF8    8.80e-03 0.0375 Inf   0.235  1.0000
 StepF4 - StepF9    3.86e-02 0.0375 Inf   1.030  0.9971
 StepF4 - StepF10   8.88e-02 0.0375 Inf   2.369  0.4271
 StepF4 - StepF11   7.51e-02 0.0375 Inf   2.005  0.6905
 StepF4 - StepF12   1.79e-01 0.0375 Inf   4.762  0.0001
 StepF5 - StepF6   -8.55e-02 0.0374 Inf  -2.283  0.4889
 StepF5 - StepF7   -4.66e-02 0.0376 Inf  -1.240  0.9857
 StepF5 - StepF8   -2.99e-02 0.0374 Inf  -0.797  0.9997
 StepF5 - StepF9   -5.32e-05 0.0375 Inf  -0.001  1.0000
 StepF5 - StepF10   5.01e-02 0.0374 Inf   1.338  0.9742
 StepF5 - StepF11   3.65e-02 0.0375 Inf   0.974  0.9982
 StepF5 - StepF12   1.40e-01 0.0375 Inf   3.734  0.0103
 StepF6 - StepF7    3.89e-02 0.0375 Inf   1.035  0.9969
 StepF6 - StepF8    5.56e-02 0.0374 Inf   1.485  0.9449
 StepF6 - StepF9    8.54e-02 0.0375 Inf   2.281  0.4903
 StepF6 - StepF10   1.36e-01 0.0374 Inf   3.621  0.0155
 StepF6 - StepF11   1.22e-01 0.0374 Inf   3.257  0.0517
 StepF6 - StepF12   2.25e-01 0.0374 Inf   6.018  <.0001
 StepF7 - StepF8    1.68e-02 0.0375 Inf   0.446  1.0000
 StepF7 - StepF9    4.66e-02 0.0375 Inf   1.242  0.9856
 StepF7 - StepF10   9.67e-02 0.0376 Inf   2.575  0.2938
 StepF7 - StepF11   8.31e-02 0.0375 Inf   2.216  0.5378
 StepF7 - StepF12   1.86e-01 0.0375 Inf   4.973  <.0001
 StepF8 - StepF9    2.98e-02 0.0374 Inf   0.796  0.9997
 StepF8 - StepF10   7.99e-02 0.0374 Inf   2.135  0.5972
 StepF8 - StepF11   6.63e-02 0.0374 Inf   1.772  0.8336
 StepF8 - StepF12   1.70e-01 0.0374 Inf   4.533  0.0004
 StepF9 - StepF10   5.01e-02 0.0375 Inf   1.339  0.9741
 StepF9 - StepF11   3.65e-02 0.0374 Inf   0.976  0.9982
 StepF9 - StepF12   1.40e-01 0.0374 Inf   3.737  0.0101
 StepF10 - StepF11 -1.36e-02 0.0374 Inf  -0.363  1.0000
 StepF10 - StepF12  8.98e-02 0.0374 Inf   2.397  0.4076
 StepF11 - StepF12  1.03e-01 0.0374 Inf   2.761  0.1968

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.08996 0.0379 Inf   2.374  0.1759
 StepF3 - StepF2   -0.00236 0.0375 Inf  -0.063  1.0000
 StepF4 - StepF3   -0.06688 0.0374 Inf  -1.786  0.5925
 StepF5 - StepF4   -0.03866 0.0374 Inf  -1.032  1.0000
 StepF6 - StepF5    0.08548 0.0374 Inf   2.283  0.2019
 StepF7 - StepF6   -0.03887 0.0375 Inf  -1.035  1.0000
 StepF8 - StepF7   -0.01675 0.0375 Inf  -0.446  1.0000
 StepF9 - StepF8   -0.02981 0.0374 Inf  -0.796  1.0000
 StepF10 - StepF9  -0.05014 0.0375 Inf  -1.339  1.0000
 StepF11 - StepF10  0.01360 0.0374 Inf   0.363  1.0000
 StepF12 - StepF11 -0.10338 0.0374 Inf  -2.761  0.0633

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.08996 0.0379 Inf   2.374  0.1759
 StepF3 - StepF2   -0.00236 0.0375 Inf  -0.063  1.0000
 StepF4 - StepF3   -0.06688 0.0374 Inf  -1.786  0.5925
 StepF5 - StepF4   -0.03866 0.0374 Inf  -1.032  1.0000
 StepF6 - StepF5    0.08548 0.0374 Inf   2.283  0.2019
 StepF7 - StepF6   -0.03887 0.0375 Inf  -1.035  1.0000
 StepF8 - StepF7   -0.01675 0.0375 Inf  -0.446  1.0000
 StepF9 - StepF8   -0.02981 0.0374 Inf  -0.796  1.0000
 StepF10 - StepF9  -0.05014 0.0375 Inf  -1.339  1.0000
 StepF11 - StepF10  0.01360 0.0374 Inf   0.363  1.0000
 StepF12 - StepF11 -0.10338 0.0374 Inf  -2.761  0.0633

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST (rt_ms) | Block 4 | 12 steps | Axis Y
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    111.7950 11     <2e-16 ***
Accuracy   0.3352  1     0.5626    
rt_ms      0.5232  1     0.4695    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.721 0.0909 Inf     0.543     0.900
 2      0.880 0.0907 Inf     0.702     1.057
 3      0.941 0.0907 Inf     0.763     1.119
 4      0.781 0.0907 Inf     0.603     0.958
 5      0.739 0.0907 Inf     0.561     0.917
 6      0.825 0.0907 Inf     0.648     1.003
 7      0.799 0.0908 Inf     0.621     0.977
 8      0.706 0.0907 Inf     0.528     0.884
 9      0.710 0.0907 Inf     0.532     0.887
 10     0.729 0.0907 Inf     0.551     0.906
 11     0.695 0.0907 Inf     0.517     0.873
 12     0.557 0.0907 Inf     0.379     0.735

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.697 0.0865 Inf     0.528     0.867
 2      0.856 0.0863 Inf     0.686     1.025
 3      0.917 0.0864 Inf     0.747     1.086
 4      0.757 0.0864 Inf     0.587     0.926
 5      0.715 0.0863 Inf     0.546     0.884
 6      0.801 0.0863 Inf     0.632     0.971
 7      0.775 0.0864 Inf     0.606     0.945
 8      0.682 0.0863 Inf     0.513     0.851
 9      0.686 0.0863 Inf     0.516     0.855
 10     0.704 0.0863 Inf     0.535     0.874
 11     0.671 0.0863 Inf     0.502     0.840
 12     0.533 0.0863 Inf     0.363     0.702

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.15828 0.0442 Inf  -3.584  0.0176
 StepF1 - StepF3   -0.21937 0.0443 Inf  -4.948  <.0001
 StepF1 - StepF4   -0.05930 0.0443 Inf  -1.339  0.9741
 StepF1 - StepF5   -0.01758 0.0441 Inf  -0.398  1.0000
 StepF1 - StepF6   -0.10412 0.0441 Inf  -2.362  0.4322
 StepF1 - StepF7   -0.07795 0.0437 Inf  -1.782  0.8281
 StepF1 - StepF8    0.01523 0.0440 Inf   0.346  1.0000
 StepF1 - StepF9    0.01175 0.0439 Inf   0.267  1.0000
 StepF1 - StepF10  -0.00716 0.0441 Inf  -0.162  1.0000
 StepF1 - StepF11   0.02639 0.0440 Inf   0.600  1.0000
 StepF1 - StepF12   0.16461 0.0440 Inf   3.744  0.0099
 StepF2 - StepF3   -0.06110 0.0437 Inf  -1.400  0.9639
 StepF2 - StepF4    0.09897 0.0436 Inf   2.267  0.5001
 StepF2 - StepF5    0.14069 0.0436 Inf   3.224  0.0572
 StepF2 - StepF6    0.05415 0.0436 Inf   1.241  0.9857
 StepF2 - StepF7    0.08033 0.0438 Inf   1.833  0.7997
 StepF2 - StepF8    0.17350 0.0436 Inf   3.975  0.0041
 StepF2 - StepF9    0.17002 0.0437 Inf   3.893  0.0056
 StepF2 - StepF10   0.15111 0.0436 Inf   3.462  0.0267
 StepF2 - StepF11   0.18467 0.0437 Inf   4.229  0.0014
 StepF2 - StepF12   0.32289 0.0437 Inf   7.395  <.0001
 StepF3 - StepF4    0.16007 0.0436 Inf   3.668  0.0131
 StepF3 - StepF5    0.20179 0.0437 Inf   4.622  0.0002
 StepF3 - StepF6    0.11525 0.0437 Inf   2.639  0.2577
 StepF3 - StepF7    0.14142 0.0439 Inf   3.220  0.0578
 StepF3 - StepF8    0.23460 0.0437 Inf   5.371  <.0001
 StepF3 - StepF9    0.23112 0.0437 Inf   5.286  <.0001
 StepF3 - StepF10   0.21221 0.0437 Inf   4.860  0.0001
 StepF3 - StepF11   0.24576 0.0437 Inf   5.622  <.0001
 StepF3 - StepF12   0.38399 0.0437 Inf   8.785  <.0001
 StepF4 - StepF5    0.04172 0.0437 Inf   0.956  0.9985
 StepF4 - StepF6   -0.04482 0.0437 Inf  -1.026  0.9971
 StepF4 - StepF7   -0.01864 0.0439 Inf  -0.425  1.0000
 StepF4 - StepF8    0.07453 0.0437 Inf   1.707  0.8657
 StepF4 - StepF9    0.07105 0.0437 Inf   1.626  0.9000
 StepF4 - StepF10   0.05214 0.0437 Inf   1.194  0.9895
 StepF4 - StepF11   0.08570 0.0437 Inf   1.961  0.7200
 StepF4 - StepF12   0.22392 0.0437 Inf   5.124  <.0001
 StepF5 - StepF6   -0.08654 0.0436 Inf  -1.983  0.7054
 StepF5 - StepF7   -0.06037 0.0438 Inf  -1.378  0.9678
 StepF5 - StepF8    0.03281 0.0436 Inf   0.752  0.9998
 StepF5 - StepF9    0.02933 0.0437 Inf   0.672  1.0000
 StepF5 - StepF10   0.01042 0.0436 Inf   0.239  1.0000
 StepF5 - StepF11   0.04397 0.0437 Inf   1.007  0.9976
 StepF5 - StepF12   0.18220 0.0437 Inf   4.173  0.0018
 StepF6 - StepF7    0.02617 0.0438 Inf   0.598  1.0000
 StepF6 - StepF8    0.11935 0.0436 Inf   2.735  0.2091
 StepF6 - StepF9    0.11587 0.0437 Inf   2.654  0.2495
 StepF6 - StepF10   0.09696 0.0436 Inf   2.222  0.5336
 StepF6 - StepF11   0.13051 0.0436 Inf   2.990  0.1113
 StepF6 - StepF12   0.26874 0.0436 Inf   6.157  <.0001
 StepF7 - StepF8    0.09318 0.0437 Inf   2.130  0.6010
 StepF7 - StepF9    0.08970 0.0437 Inf   2.053  0.6569
 StepF7 - StepF10   0.07079 0.0438 Inf   1.617  0.9032
 StepF7 - StepF11   0.10434 0.0437 Inf   2.387  0.4147
 StepF7 - StepF12   0.24256 0.0437 Inf   5.549  <.0001
 StepF8 - StepF9   -0.00348 0.0436 Inf  -0.080  1.0000
 StepF8 - StepF10  -0.02239 0.0436 Inf  -0.513  1.0000
 StepF8 - StepF11   0.01116 0.0436 Inf   0.256  1.0000
 StepF8 - StepF12   0.14939 0.0436 Inf   3.423  0.0305
 StepF9 - StepF10  -0.01891 0.0437 Inf  -0.433  1.0000
 StepF9 - StepF11   0.01464 0.0436 Inf   0.336  1.0000
 StepF9 - StepF12   0.15287 0.0436 Inf   3.503  0.0233
 StepF10 - StepF11  0.03355 0.0437 Inf   0.769  0.9998
 StepF10 - StepF12  0.17178 0.0437 Inf   3.935  0.0047
 StepF11 - StepF12  0.13822 0.0436 Inf   3.167  0.0677

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.15828 0.0442 Inf  -3.584  0.0176
 StepF1 - StepF3   -0.21937 0.0443 Inf  -4.948  <.0001
 StepF1 - StepF4   -0.05930 0.0443 Inf  -1.339  0.9741
 StepF1 - StepF5   -0.01758 0.0441 Inf  -0.398  1.0000
 StepF1 - StepF6   -0.10412 0.0441 Inf  -2.362  0.4322
 StepF1 - StepF7   -0.07795 0.0437 Inf  -1.782  0.8281
 StepF1 - StepF8    0.01523 0.0440 Inf   0.346  1.0000
 StepF1 - StepF9    0.01175 0.0439 Inf   0.267  1.0000
 StepF1 - StepF10  -0.00716 0.0441 Inf  -0.162  1.0000
 StepF1 - StepF11   0.02639 0.0440 Inf   0.600  1.0000
 StepF1 - StepF12   0.16461 0.0440 Inf   3.744  0.0099
 StepF2 - StepF3   -0.06110 0.0437 Inf  -1.400  0.9639
 StepF2 - StepF4    0.09897 0.0436 Inf   2.267  0.5001
 StepF2 - StepF5    0.14069 0.0436 Inf   3.224  0.0572
 StepF2 - StepF6    0.05415 0.0436 Inf   1.241  0.9857
 StepF2 - StepF7    0.08033 0.0438 Inf   1.833  0.7997
 StepF2 - StepF8    0.17350 0.0436 Inf   3.975  0.0041
 StepF2 - StepF9    0.17002 0.0437 Inf   3.893  0.0056
 StepF2 - StepF10   0.15111 0.0436 Inf   3.462  0.0267
 StepF2 - StepF11   0.18467 0.0437 Inf   4.229  0.0014
 StepF2 - StepF12   0.32289 0.0437 Inf   7.395  <.0001
 StepF3 - StepF4    0.16007 0.0436 Inf   3.668  0.0131
 StepF3 - StepF5    0.20179 0.0437 Inf   4.622  0.0002
 StepF3 - StepF6    0.11525 0.0437 Inf   2.639  0.2577
 StepF3 - StepF7    0.14142 0.0439 Inf   3.220  0.0578
 StepF3 - StepF8    0.23460 0.0437 Inf   5.371  <.0001
 StepF3 - StepF9    0.23112 0.0437 Inf   5.286  <.0001
 StepF3 - StepF10   0.21221 0.0437 Inf   4.860  0.0001
 StepF3 - StepF11   0.24576 0.0437 Inf   5.622  <.0001
 StepF3 - StepF12   0.38399 0.0437 Inf   8.785  <.0001
 StepF4 - StepF5    0.04172 0.0437 Inf   0.956  0.9985
 StepF4 - StepF6   -0.04482 0.0437 Inf  -1.026  0.9971
 StepF4 - StepF7   -0.01864 0.0439 Inf  -0.425  1.0000
 StepF4 - StepF8    0.07453 0.0437 Inf   1.707  0.8657
 StepF4 - StepF9    0.07105 0.0437 Inf   1.626  0.9000
 StepF4 - StepF10   0.05214 0.0437 Inf   1.194  0.9895
 StepF4 - StepF11   0.08570 0.0437 Inf   1.961  0.7200
 StepF4 - StepF12   0.22392 0.0437 Inf   5.124  <.0001
 StepF5 - StepF6   -0.08654 0.0436 Inf  -1.983  0.7054
 StepF5 - StepF7   -0.06037 0.0438 Inf  -1.378  0.9678
 StepF5 - StepF8    0.03281 0.0436 Inf   0.752  0.9998
 StepF5 - StepF9    0.02933 0.0437 Inf   0.672  1.0000
 StepF5 - StepF10   0.01042 0.0436 Inf   0.239  1.0000
 StepF5 - StepF11   0.04397 0.0437 Inf   1.007  0.9976
 StepF5 - StepF12   0.18220 0.0437 Inf   4.173  0.0018
 StepF6 - StepF7    0.02617 0.0438 Inf   0.598  1.0000
 StepF6 - StepF8    0.11935 0.0436 Inf   2.735  0.2091
 StepF6 - StepF9    0.11587 0.0437 Inf   2.654  0.2495
 StepF6 - StepF10   0.09696 0.0436 Inf   2.222  0.5336
 StepF6 - StepF11   0.13051 0.0436 Inf   2.990  0.1113
 StepF6 - StepF12   0.26874 0.0436 Inf   6.157  <.0001
 StepF7 - StepF8    0.09318 0.0437 Inf   2.130  0.6010
 StepF7 - StepF9    0.08970 0.0437 Inf   2.053  0.6569
 StepF7 - StepF10   0.07079 0.0438 Inf   1.617  0.9032
 StepF7 - StepF11   0.10434 0.0437 Inf   2.387  0.4147
 StepF7 - StepF12   0.24256 0.0437 Inf   5.549  <.0001
 StepF8 - StepF9   -0.00348 0.0436 Inf  -0.080  1.0000
 StepF8 - StepF10  -0.02239 0.0436 Inf  -0.513  1.0000
 StepF8 - StepF11   0.01116 0.0436 Inf   0.256  1.0000
 StepF8 - StepF12   0.14939 0.0436 Inf   3.423  0.0305
 StepF9 - StepF10  -0.01891 0.0437 Inf  -0.433  1.0000
 StepF9 - StepF11   0.01464 0.0436 Inf   0.336  1.0000
 StepF9 - StepF12   0.15287 0.0436 Inf   3.503  0.0233
 StepF10 - StepF11  0.03355 0.0437 Inf   0.769  0.9998
 StepF10 - StepF12  0.17178 0.0437 Inf   3.935  0.0047
 StepF11 - StepF12  0.13822 0.0436 Inf   3.167  0.0677

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.15828 0.0442 Inf   3.584  0.0034
 StepF3 - StepF2    0.06110 0.0437 Inf   1.400  0.9698
 StepF4 - StepF3   -0.16007 0.0436 Inf  -3.668  0.0027
 StepF5 - StepF4   -0.04172 0.0437 Inf  -0.956  1.0000
 StepF6 - StepF5    0.08654 0.0436 Inf   1.983  0.3317
 StepF7 - StepF6   -0.02617 0.0438 Inf  -0.598  1.0000
 StepF8 - StepF7   -0.09318 0.0437 Inf  -2.130  0.2654
 StepF9 - StepF8    0.00348 0.0436 Inf   0.080  1.0000
 StepF10 - StepF9   0.01891 0.0437 Inf   0.433  1.0000
 StepF11 - StepF10 -0.03355 0.0437 Inf  -0.769  1.0000
 StepF12 - StepF11 -0.13822 0.0436 Inf  -3.167  0.0139

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.15828 0.0442 Inf   3.584  0.0034
 StepF3 - StepF2    0.06110 0.0437 Inf   1.400  0.9698
 StepF4 - StepF3   -0.16007 0.0436 Inf  -3.668  0.0027
 StepF5 - StepF4   -0.04172 0.0437 Inf  -0.956  1.0000
 StepF6 - StepF5    0.08654 0.0436 Inf   1.983  0.3317
 StepF7 - StepF6   -0.02617 0.0438 Inf  -0.598  1.0000
 StepF8 - StepF7   -0.09318 0.0437 Inf  -2.130  0.2654
 StepF9 - StepF8    0.00348 0.0436 Inf   0.080  1.0000
 StepF10 - StepF9   0.01891 0.0437 Inf   0.433  1.0000
 StepF11 - StepF10 -0.03355 0.0437 Inf  -0.769  1.0000
 StepF12 - StepF11 -0.13822 0.0436 Inf  -3.167  0.0139

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST (rt_ms) | Block 4 | 12 steps | Axis Z
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    114.6293 11     <2e-16 ***
Accuracy   0.1693  1     0.6807    
rt_ms      0.0561  1     0.8128    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.45 0.162 Inf     1.137      1.77
 2       1.67 0.161 Inf     1.357      1.99
 3       1.70 0.161 Inf     1.384      2.02
 4       1.55 0.161 Inf     1.234      1.87
 5       1.41 0.161 Inf     1.089      1.72
 6       1.46 0.161 Inf     1.140      1.77
 7       1.50 0.161 Inf     1.182      1.81
 8       1.39 0.161 Inf     1.076      1.71
 9       1.28 0.161 Inf     0.959      1.59
 10      1.34 0.161 Inf     1.021      1.65
 11      1.34 0.161 Inf     1.023      1.66
 12      1.10 0.161 Inf     0.788      1.42

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.49 0.152 Inf     1.191      1.78
 2       1.71 0.151 Inf     1.411      2.00
 3       1.73 0.151 Inf     1.437      2.03
 4       1.58 0.151 Inf     1.287      1.88
 5       1.44 0.151 Inf     1.143      1.74
 6       1.49 0.151 Inf     1.194      1.79
 7       1.53 0.151 Inf     1.236      1.83
 8       1.43 0.151 Inf     1.130      1.72
 9       1.31 0.151 Inf     1.013      1.61
 10      1.37 0.151 Inf     1.074      1.67
 11      1.37 0.151 Inf     1.077      1.67
 12      1.14 0.151 Inf     0.842      1.44

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.21979 0.0733 Inf  -3.000  0.1083
 StepF1 - StepF3   -0.24635 0.0735 Inf  -3.350  0.0387
 StepF1 - StepF4   -0.09634 0.0735 Inf  -1.311  0.9779
 StepF1 - StepF5    0.04827 0.0732 Inf   0.659  1.0000
 StepF1 - StepF6   -0.00274 0.0731 Inf  -0.037  1.0000
 StepF1 - StepF7   -0.04477 0.0725 Inf  -0.617  1.0000
 StepF1 - StepF8    0.06103 0.0731 Inf   0.835  0.9996
 StepF1 - StepF9    0.17782 0.0729 Inf   2.439  0.3792
 StepF1 - StepF10   0.11655 0.0731 Inf   1.594  0.9119
 StepF1 - StepF11   0.11395 0.0729 Inf   1.563  0.9224
 StepF1 - StepF12   0.34931 0.0729 Inf   4.790  0.0001
 StepF2 - StepF3   -0.02656 0.0724 Inf  -0.367  1.0000
 StepF2 - StepF4    0.12345 0.0724 Inf   1.705  0.8663
 StepF2 - StepF5    0.26806 0.0724 Inf   3.703  0.0115
 StepF2 - StepF6    0.21705 0.0724 Inf   2.999  0.1088
 StepF2 - StepF7    0.17502 0.0727 Inf   2.409  0.4000
 StepF2 - StepF8    0.28083 0.0724 Inf   3.879  0.0059
 StepF2 - StepF9    0.39761 0.0724 Inf   5.490  <.0001
 StepF2 - StepF10   0.33634 0.0724 Inf   4.647  0.0002
 StepF2 - StepF11   0.33374 0.0724 Inf   4.608  0.0003
 StepF2 - StepF12   0.56910 0.0724 Inf   7.859  <.0001
 StepF3 - StepF4    0.15001 0.0724 Inf   2.073  0.6426
 StepF3 - StepF5    0.29462 0.0724 Inf   4.069  0.0028
 StepF3 - StepF6    0.24361 0.0724 Inf   3.363  0.0370
 StepF3 - StepF7    0.20158 0.0728 Inf   2.767  0.1940
 StepF3 - StepF8    0.30739 0.0724 Inf   4.243  0.0013
 StepF3 - StepF9    0.42417 0.0725 Inf   5.850  <.0001
 StepF3 - StepF10   0.36290 0.0724 Inf   5.011  <.0001
 StepF3 - StepF11   0.36030 0.0725 Inf   4.970  <.0001
 StepF3 - StepF12   0.59566 0.0725 Inf   8.217  <.0001
 StepF4 - StepF5    0.14461 0.0724 Inf   1.997  0.6954
 StepF4 - StepF6    0.09360 0.0724 Inf   1.293  0.9802
 StepF4 - StepF7    0.05157 0.0728 Inf   0.708  0.9999
 StepF4 - StepF8    0.15738 0.0724 Inf   2.173  0.5696
 StepF4 - StepF9    0.27416 0.0725 Inf   3.782  0.0086
 StepF4 - StepF10   0.21289 0.0724 Inf   2.940  0.1270
 StepF4 - StepF11   0.21029 0.0725 Inf   2.902  0.1401
 StepF4 - StepF12   0.44565 0.0725 Inf   6.149  <.0001
 StepF5 - StepF6   -0.05101 0.0724 Inf  -0.705  0.9999
 StepF5 - StepF7   -0.09304 0.0726 Inf  -1.281  0.9816
 StepF5 - StepF8    0.01277 0.0724 Inf   0.176  1.0000
 StepF5 - StepF9    0.12955 0.0724 Inf   1.789  0.8245
 StepF5 - StepF10   0.06828 0.0724 Inf   0.943  0.9987
 StepF5 - StepF11   0.06568 0.0724 Inf   0.907  0.9991
 StepF5 - StepF12   0.30104 0.0724 Inf   4.157  0.0019
 StepF6 - StepF7   -0.04203 0.0726 Inf  -0.579  1.0000
 StepF6 - StepF8    0.06378 0.0724 Inf   0.881  0.9993
 StepF6 - StepF9    0.18056 0.0724 Inf   2.494  0.3435
 StepF6 - StepF10   0.11929 0.0724 Inf   1.648  0.8911
 StepF6 - StepF11   0.11669 0.0724 Inf   1.612  0.9052
 StepF6 - StepF12   0.35205 0.0724 Inf   4.863  0.0001
 StepF7 - StepF8    0.10581 0.0726 Inf   1.458  0.9515
 StepF7 - StepF9    0.22259 0.0725 Inf   3.071  0.0892
 StepF7 - StepF10   0.16132 0.0726 Inf   2.222  0.5333
 StepF7 - StepF11   0.15872 0.0725 Inf   2.190  0.5573
 StepF7 - StepF12   0.39408 0.0725 Inf   5.436  <.0001
 StepF8 - StepF9    0.11678 0.0724 Inf   1.613  0.9047
 StepF8 - StepF10   0.05551 0.0724 Inf   0.767  0.9998
 StepF8 - StepF11   0.05292 0.0724 Inf   0.731  0.9999
 StepF8 - StepF12   0.28827 0.0724 Inf   3.982  0.0039
 StepF9 - StepF10  -0.06127 0.0724 Inf  -0.846  0.9995
 StepF9 - StepF11  -0.06387 0.0724 Inf  -0.882  0.9993
 StepF9 - StepF12   0.17149 0.0724 Inf   2.369  0.4272
 StepF10 - StepF11 -0.00260 0.0724 Inf  -0.036  1.0000
 StepF10 - StepF12  0.23276 0.0724 Inf   3.215  0.0587
 StepF11 - StepF12  0.23536 0.0724 Inf   3.252  0.0526

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.21979 0.0733 Inf  -3.000  0.1083
 StepF1 - StepF3   -0.24635 0.0735 Inf  -3.350  0.0387
 StepF1 - StepF4   -0.09634 0.0735 Inf  -1.311  0.9779
 StepF1 - StepF5    0.04827 0.0732 Inf   0.659  1.0000
 StepF1 - StepF6   -0.00274 0.0731 Inf  -0.037  1.0000
 StepF1 - StepF7   -0.04477 0.0725 Inf  -0.617  1.0000
 StepF1 - StepF8    0.06103 0.0731 Inf   0.835  0.9996
 StepF1 - StepF9    0.17782 0.0729 Inf   2.439  0.3792
 StepF1 - StepF10   0.11655 0.0731 Inf   1.594  0.9119
 StepF1 - StepF11   0.11395 0.0729 Inf   1.563  0.9224
 StepF1 - StepF12   0.34931 0.0729 Inf   4.790  0.0001
 StepF2 - StepF3   -0.02656 0.0724 Inf  -0.367  1.0000
 StepF2 - StepF4    0.12345 0.0724 Inf   1.705  0.8663
 StepF2 - StepF5    0.26806 0.0724 Inf   3.703  0.0115
 StepF2 - StepF6    0.21705 0.0724 Inf   2.999  0.1088
 StepF2 - StepF7    0.17502 0.0727 Inf   2.409  0.4000
 StepF2 - StepF8    0.28083 0.0724 Inf   3.879  0.0059
 StepF2 - StepF9    0.39761 0.0724 Inf   5.490  <.0001
 StepF2 - StepF10   0.33634 0.0724 Inf   4.647  0.0002
 StepF2 - StepF11   0.33374 0.0724 Inf   4.608  0.0003
 StepF2 - StepF12   0.56910 0.0724 Inf   7.859  <.0001
 StepF3 - StepF4    0.15001 0.0724 Inf   2.073  0.6426
 StepF3 - StepF5    0.29462 0.0724 Inf   4.069  0.0028
 StepF3 - StepF6    0.24361 0.0724 Inf   3.363  0.0370
 StepF3 - StepF7    0.20158 0.0728 Inf   2.767  0.1940
 StepF3 - StepF8    0.30739 0.0724 Inf   4.243  0.0013
 StepF3 - StepF9    0.42417 0.0725 Inf   5.850  <.0001
 StepF3 - StepF10   0.36290 0.0724 Inf   5.011  <.0001
 StepF3 - StepF11   0.36030 0.0725 Inf   4.970  <.0001
 StepF3 - StepF12   0.59566 0.0725 Inf   8.217  <.0001
 StepF4 - StepF5    0.14461 0.0724 Inf   1.997  0.6954
 StepF4 - StepF6    0.09360 0.0724 Inf   1.293  0.9802
 StepF4 - StepF7    0.05157 0.0728 Inf   0.708  0.9999
 StepF4 - StepF8    0.15738 0.0724 Inf   2.173  0.5696
 StepF4 - StepF9    0.27416 0.0725 Inf   3.782  0.0086
 StepF4 - StepF10   0.21289 0.0724 Inf   2.940  0.1270
 StepF4 - StepF11   0.21029 0.0725 Inf   2.902  0.1401
 StepF4 - StepF12   0.44565 0.0725 Inf   6.149  <.0001
 StepF5 - StepF6   -0.05101 0.0724 Inf  -0.705  0.9999
 StepF5 - StepF7   -0.09304 0.0726 Inf  -1.281  0.9816
 StepF5 - StepF8    0.01277 0.0724 Inf   0.176  1.0000
 StepF5 - StepF9    0.12955 0.0724 Inf   1.789  0.8245
 StepF5 - StepF10   0.06828 0.0724 Inf   0.943  0.9987
 StepF5 - StepF11   0.06568 0.0724 Inf   0.907  0.9991
 StepF5 - StepF12   0.30104 0.0724 Inf   4.157  0.0019
 StepF6 - StepF7   -0.04203 0.0726 Inf  -0.579  1.0000
 StepF6 - StepF8    0.06378 0.0724 Inf   0.881  0.9993
 StepF6 - StepF9    0.18056 0.0724 Inf   2.494  0.3435
 StepF6 - StepF10   0.11929 0.0724 Inf   1.648  0.8911
 StepF6 - StepF11   0.11669 0.0724 Inf   1.612  0.9052
 StepF6 - StepF12   0.35205 0.0724 Inf   4.863  0.0001
 StepF7 - StepF8    0.10581 0.0726 Inf   1.458  0.9515
 StepF7 - StepF9    0.22259 0.0725 Inf   3.071  0.0892
 StepF7 - StepF10   0.16132 0.0726 Inf   2.222  0.5333
 StepF7 - StepF11   0.15872 0.0725 Inf   2.190  0.5573
 StepF7 - StepF12   0.39408 0.0725 Inf   5.436  <.0001
 StepF8 - StepF9    0.11678 0.0724 Inf   1.613  0.9047
 StepF8 - StepF10   0.05551 0.0724 Inf   0.767  0.9998
 StepF8 - StepF11   0.05292 0.0724 Inf   0.731  0.9999
 StepF8 - StepF12   0.28827 0.0724 Inf   3.982  0.0039
 StepF9 - StepF10  -0.06127 0.0724 Inf  -0.846  0.9995
 StepF9 - StepF11  -0.06387 0.0724 Inf  -0.882  0.9993
 StepF9 - StepF12   0.17149 0.0724 Inf   2.369  0.4272
 StepF10 - StepF11 -0.00260 0.0724 Inf  -0.036  1.0000
 StepF10 - StepF12  0.23276 0.0724 Inf   3.215  0.0587
 StepF11 - StepF12  0.23536 0.0724 Inf   3.252  0.0526

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.2198 0.0733 Inf   3.000  0.0270
 StepF3 - StepF2     0.0266 0.0724 Inf   0.367  1.0000
 StepF4 - StepF3    -0.1500 0.0724 Inf  -2.073  0.3440
 StepF5 - StepF4    -0.1446 0.0724 Inf  -1.997  0.3662
 StepF6 - StepF5     0.0510 0.0724 Inf   0.705  1.0000
 StepF7 - StepF6     0.0420 0.0726 Inf   0.579  1.0000
 StepF8 - StepF7    -0.1058 0.0726 Inf  -1.458  0.8685
 StepF9 - StepF8    -0.1168 0.0724 Inf  -1.613  0.7468
 StepF10 - StepF9    0.0613 0.0724 Inf   0.846  1.0000
 StepF11 - StepF10   0.0026 0.0724 Inf   0.036  1.0000
 StepF12 - StepF11  -0.2354 0.0724 Inf  -3.252  0.0126

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.2198 0.0733 Inf   3.000  0.0270
 StepF3 - StepF2     0.0266 0.0724 Inf   0.367  1.0000
 StepF4 - StepF3    -0.1500 0.0724 Inf  -2.073  0.3440
 StepF5 - StepF4    -0.1446 0.0724 Inf  -1.997  0.3662
 StepF6 - StepF5     0.0510 0.0724 Inf   0.705  1.0000
 StepF7 - StepF6     0.0420 0.0726 Inf   0.579  1.0000
 StepF8 - StepF7    -0.1058 0.0726 Inf  -1.458  0.8685
 StepF9 - StepF8    -0.1168 0.0724 Inf  -1.613  0.7468
 StepF10 - StepF9    0.0613 0.0724 Inf   0.846  1.0000
 StepF11 - StepF10   0.0026 0.0724 Inf   0.036  1.0000
 StepF12 - StepF11  -0.2354 0.0724 Inf  -3.252  0.0126

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
.report_step_test_rtms(sw_b4_18_rt, "4", "18 steps")


==============================
TEST (rt_ms) | Block 4 | 18 steps | Axis X
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    138.8729 17    < 2e-16 ***
Accuracy   0.0433  1    0.83507    
rt_ms      2.8101  1    0.09367 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.699 0.0766 Inf     0.549     0.849
 2      0.797 0.0765 Inf     0.647     0.947
 3      0.768 0.0765 Inf     0.618     0.918
 4      0.761 0.0765 Inf     0.611     0.911
 5      0.699 0.0765 Inf     0.549     0.849
 6      0.814 0.0765 Inf     0.664     0.964
 7      0.686 0.0765 Inf     0.536     0.836
 8      0.674 0.0765 Inf     0.524     0.824
 9      0.743 0.0765 Inf     0.593     0.893
 10     0.659 0.0765 Inf     0.509     0.809
 11     0.693 0.0765 Inf     0.543     0.843
 12     0.598 0.0765 Inf     0.448     0.748
 13     0.654 0.0765 Inf     0.504     0.804
 14     0.655 0.0765 Inf     0.505     0.805
 15     0.690 0.0765 Inf     0.540     0.840
 16     0.645 0.0765 Inf     0.495     0.795
 17     0.526 0.0765 Inf     0.376     0.676
 18     0.533 0.0766 Inf     0.383     0.683

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.706 0.0734 Inf     0.562     0.850
 2      0.805 0.0733 Inf     0.661     0.948
 3      0.775 0.0733 Inf     0.631     0.919
 4      0.768 0.0733 Inf     0.624     0.912
 5      0.706 0.0733 Inf     0.562     0.850
 6      0.821 0.0733 Inf     0.678     0.965
 7      0.694 0.0733 Inf     0.550     0.837
 8      0.682 0.0733 Inf     0.538     0.825
 9      0.751 0.0733 Inf     0.607     0.894
 10     0.666 0.0733 Inf     0.522     0.810
 11     0.700 0.0733 Inf     0.556     0.844
 12     0.605 0.0733 Inf     0.462     0.749
 13     0.661 0.0733 Inf     0.518     0.805
 14     0.662 0.0733 Inf     0.518     0.806
 15     0.697 0.0733 Inf     0.553     0.841
 16     0.652 0.0733 Inf     0.509     0.796
 17     0.533 0.0733 Inf     0.390     0.677
 18     0.540 0.0733 Inf     0.396     0.684

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.098301 0.0393 Inf  -2.504  0.5274
 StepF1 - StepF3   -0.068741 0.0393 Inf  -1.750  0.9568
 StepF1 - StepF4   -0.061631 0.0392 Inf  -1.571  0.9850
 StepF1 - StepF5    0.000349 0.0392 Inf   0.009  1.0000
 StepF1 - StepF6   -0.115007 0.0392 Inf  -2.933  0.2339
 StepF1 - StepF7    0.012692 0.0391 Inf   0.325  1.0000
 StepF1 - StepF8    0.024574 0.0391 Inf   0.628  1.0000
 StepF1 - StepF9   -0.044322 0.0391 Inf  -1.134  0.9997
 StepF1 - StepF10   0.040175 0.0392 Inf   1.026  0.9999
 StepF1 - StepF11   0.006158 0.0392 Inf   0.157  1.0000
 StepF1 - StepF12   0.101007 0.0392 Inf   2.576  0.4716
 StepF1 - StepF13   0.044962 0.0391 Inf   1.150  0.9996
 StepF1 - StepF14   0.044310 0.0391 Inf   1.132  0.9997
 StepF1 - StepF15   0.009254 0.0392 Inf   0.236  1.0000
 StepF1 - StepF16   0.053938 0.0392 Inf   1.376  0.9965
 StepF1 - StepF17   0.172964 0.0392 Inf   4.412  0.0014
 StepF1 - StepF18   0.166314 0.0390 Inf   4.260  0.0027
 StepF2 - StepF3    0.029560 0.0390 Inf   0.758  1.0000
 StepF2 - StepF4    0.036670 0.0390 Inf   0.940  1.0000
 StepF2 - StepF5    0.098650 0.0390 Inf   2.528  0.5085
 StepF2 - StepF6   -0.016706 0.0390 Inf  -0.428  1.0000
 StepF2 - StepF7    0.110993 0.0391 Inf   2.842  0.2862
 StepF2 - StepF8    0.122876 0.0390 Inf   3.148  0.1372
 StepF2 - StepF9    0.053979 0.0391 Inf   1.381  0.9964
 StepF2 - StepF10   0.138476 0.0390 Inf   3.548  0.0412
 StepF2 - StepF11   0.104459 0.0390 Inf   2.677  0.3968
 StepF2 - StepF12   0.199308 0.0390 Inf   5.108  <.0001
 StepF2 - StepF13   0.143263 0.0391 Inf   3.667  0.0274
 StepF2 - StepF14   0.142611 0.0390 Inf   3.653  0.0289
 StepF2 - StepF15   0.107555 0.0390 Inf   2.757  0.3411
 StepF2 - StepF16   0.152239 0.0390 Inf   3.901  0.0117
 StepF2 - StepF17   0.271265 0.0390 Inf   6.952  <.0001
 StepF2 - StepF18   0.264615 0.0391 Inf   6.763  <.0001
 StepF3 - StepF4    0.007110 0.0390 Inf   0.182  1.0000
 StepF3 - StepF5    0.069090 0.0390 Inf   1.770  0.9520
 StepF3 - StepF6   -0.046266 0.0390 Inf  -1.186  0.9995
 StepF3 - StepF7    0.081433 0.0391 Inf   2.085  0.8255
 StepF3 - StepF8    0.093315 0.0390 Inf   2.390  0.6158
 StepF3 - StepF9    0.024419 0.0391 Inf   0.625  1.0000
 StepF3 - StepF10   0.108915 0.0390 Inf   2.790  0.3190
 StepF3 - StepF11   0.074898 0.0390 Inf   1.919  0.9051
 StepF3 - StepF12   0.169747 0.0390 Inf   4.350  0.0019
 StepF3 - StepF13   0.113702 0.0391 Inf   2.910  0.2468
 StepF3 - StepF14   0.113051 0.0390 Inf   2.895  0.2551
 StepF3 - StepF15   0.077995 0.0390 Inf   1.999  0.8704
 StepF3 - StepF16   0.122679 0.0390 Inf   3.144  0.1386
 StepF3 - StepF17   0.241704 0.0390 Inf   6.194  <.0001
 StepF3 - StepF18   0.235055 0.0391 Inf   6.005  <.0001
 StepF4 - StepF5    0.061980 0.0390 Inf   1.588  0.9831
 StepF4 - StepF6   -0.053376 0.0390 Inf  -1.368  0.9968
 StepF4 - StepF7    0.074323 0.0390 Inf   1.904  0.9110
 StepF4 - StepF8    0.086205 0.0390 Inf   2.209  0.7483
 StepF4 - StepF9    0.017309 0.0391 Inf   0.443  1.0000
 StepF4 - StepF10   0.101805 0.0390 Inf   2.609  0.4468
 StepF4 - StepF11   0.067788 0.0390 Inf   1.737  0.9596
 StepF4 - StepF12   0.162638 0.0390 Inf   4.168  0.0040
 StepF4 - StepF13   0.106592 0.0391 Inf   2.729  0.3597
 StepF4 - StepF14   0.105941 0.0390 Inf   2.714  0.3703
 StepF4 - StepF15   0.070885 0.0390 Inf   1.817  0.9397
 StepF4 - StepF16   0.115569 0.0390 Inf   2.962  0.2189
 StepF4 - StepF17   0.234594 0.0390 Inf   6.013  <.0001
 StepF4 - StepF18   0.227945 0.0391 Inf   5.828  <.0001
 StepF5 - StepF6   -0.115356 0.0390 Inf  -2.957  0.2216
 StepF5 - StepF7    0.012343 0.0390 Inf   0.316  1.0000
 StepF5 - StepF8    0.024226 0.0390 Inf   0.621  1.0000
 StepF5 - StepF9   -0.044671 0.0390 Inf  -1.144  0.9997
 StepF5 - StepF10   0.039826 0.0390 Inf   1.021  0.9999
 StepF5 - StepF11   0.005809 0.0390 Inf   0.149  1.0000
 StepF5 - StepF12   0.100658 0.0390 Inf   2.580  0.4687
 StepF5 - StepF13   0.044613 0.0390 Inf   1.143  0.9997
 StepF5 - StepF14   0.043961 0.0390 Inf   1.127  0.9997
 StepF5 - StepF15   0.008905 0.0390 Inf   0.228  1.0000
 StepF5 - StepF16   0.053589 0.0390 Inf   1.374  0.9966
 StepF5 - StepF17   0.172615 0.0390 Inf   4.424  0.0013
 StepF5 - StepF18   0.165965 0.0391 Inf   4.247  0.0029
 StepF6 - StepF7    0.127699 0.0390 Inf   3.272  0.0971
 StepF6 - StepF8    0.139581 0.0390 Inf   3.577  0.0374
 StepF6 - StepF9    0.070685 0.0391 Inf   1.810  0.9416
 StepF6 - StepF10   0.155182 0.0390 Inf   3.977  0.0087
 StepF6 - StepF11   0.121165 0.0390 Inf   3.105  0.1533
 StepF6 - StepF12   0.216014 0.0390 Inf   5.537  <.0001
 StepF6 - StepF13   0.159968 0.0390 Inf   4.097  0.0054
 StepF6 - StepF14   0.159317 0.0390 Inf   4.082  0.0057
 StepF6 - StepF15   0.124261 0.0390 Inf   3.185  0.1240
 StepF6 - StepF16   0.168945 0.0390 Inf   4.330  0.0020
 StepF6 - StepF17   0.287970 0.0390 Inf   7.381  <.0001
 StepF6 - StepF18   0.281321 0.0391 Inf   7.197  <.0001
 StepF7 - StepF8    0.011882 0.0390 Inf   0.305  1.0000
 StepF7 - StepF9   -0.057014 0.0390 Inf  -1.461  0.9931
 StepF7 - StepF10   0.027483 0.0390 Inf   0.704  1.0000
 StepF7 - StepF11  -0.006534 0.0390 Inf  -0.167  1.0000
 StepF7 - StepF12   0.088315 0.0390 Inf   2.263  0.7107
 StepF7 - StepF13   0.032269 0.0390 Inf   0.827  1.0000
 StepF7 - StepF14   0.031618 0.0390 Inf   0.810  1.0000
 StepF7 - StepF15  -0.003438 0.0390 Inf  -0.088  1.0000
 StepF7 - StepF16   0.041246 0.0390 Inf   1.057  0.9999
 StepF7 - StepF17   0.160272 0.0390 Inf   4.106  0.0052
 StepF7 - StepF18   0.153622 0.0390 Inf   3.935  0.0102
 StepF8 - StepF9   -0.068897 0.0390 Inf  -1.765  0.9532
 StepF8 - StepF10   0.015600 0.0390 Inf   0.400  1.0000
 StepF8 - StepF11  -0.018417 0.0390 Inf  -0.472  1.0000
 StepF8 - StepF12   0.076432 0.0390 Inf   1.959  0.8887
 StepF8 - StepF13   0.020387 0.0390 Inf   0.522  1.0000
 StepF8 - StepF14   0.019735 0.0390 Inf   0.506  1.0000
 StepF8 - StepF15  -0.015321 0.0390 Inf  -0.393  1.0000
 StepF8 - StepF16   0.029364 0.0390 Inf   0.752  1.0000
 StepF8 - StepF17   0.148389 0.0390 Inf   3.802  0.0169
 StepF8 - StepF18   0.141739 0.0390 Inf   3.630  0.0312
 StepF9 - StepF10   0.084497 0.0390 Inf   2.165  0.7772
 StepF9 - StepF11   0.050480 0.0390 Inf   1.293  0.9984
 StepF9 - StepF12   0.145329 0.0391 Inf   3.721  0.0227
 StepF9 - StepF13   0.089284 0.0390 Inf   2.288  0.6921
 StepF9 - StepF14   0.088632 0.0390 Inf   2.271  0.7045
 StepF9 - StepF15   0.053576 0.0391 Inf   1.372  0.9967
 StepF9 - StepF16   0.098260 0.0390 Inf   2.516  0.5175
 StepF9 - StepF17   0.217286 0.0391 Inf   5.564  <.0001
 StepF9 - StepF18   0.210636 0.0390 Inf   5.398  <.0001
 StepF10 - StepF11 -0.034017 0.0390 Inf  -0.872  1.0000
 StepF10 - StepF12  0.060832 0.0390 Inf   1.559  0.9861
 StepF10 - StepF13  0.004787 0.0390 Inf   0.123  1.0000
 StepF10 - StepF14  0.004135 0.0390 Inf   0.106  1.0000
 StepF10 - StepF15 -0.030921 0.0390 Inf  -0.792  1.0000
 StepF10 - StepF16  0.013763 0.0390 Inf   0.353  1.0000
 StepF10 - StepF17  0.132789 0.0390 Inf   3.403  0.0655
 StepF10 - StepF18  0.126139 0.0391 Inf   3.229  0.1096
 StepF11 - StepF12  0.094849 0.0390 Inf   2.431  0.5840
 StepF11 - StepF13  0.038804 0.0390 Inf   0.994  0.9999
 StepF11 - StepF14  0.038152 0.0390 Inf   0.978  1.0000
 StepF11 - StepF15  0.003096 0.0390 Inf   0.079  1.0000
 StepF11 - StepF16  0.047781 0.0390 Inf   1.225  0.9992
 StepF11 - StepF17  0.166806 0.0390 Inf   4.275  0.0026
 StepF11 - StepF18  0.160156 0.0391 Inf   4.099  0.0053
 StepF12 - StepF13 -0.056045 0.0390 Inf  -1.435  0.9943
 StepF12 - StepF14 -0.056697 0.0390 Inf  -1.453  0.9935
 StepF12 - StepF15 -0.091753 0.0390 Inf  -2.352  0.6450
 StepF12 - StepF16 -0.047069 0.0390 Inf  -1.206  0.9993
 StepF12 - StepF17  0.071957 0.0390 Inf   1.844  0.9314
 StepF12 - StepF18  0.065307 0.0391 Inf   1.671  0.9721
 StepF13 - StepF14 -0.000652 0.0390 Inf  -0.017  1.0000
 StepF13 - StepF15 -0.035708 0.0390 Inf  -0.914  1.0000
 StepF13 - StepF16  0.008977 0.0390 Inf   0.230  1.0000
 StepF13 - StepF17  0.128002 0.0390 Inf   3.279  0.0952
 StepF13 - StepF18  0.121352 0.0390 Inf   3.109  0.1518
 StepF14 - StepF15 -0.035056 0.0390 Inf  -0.898  1.0000
 StepF14 - StepF16  0.009628 0.0390 Inf   0.247  1.0000
 StepF14 - StepF17  0.128654 0.0390 Inf   3.297  0.0903
 StepF14 - StepF18  0.122004 0.0390 Inf   3.125  0.1458
 StepF15 - StepF16  0.044684 0.0390 Inf   1.145  0.9997
 StepF15 - StepF17  0.163710 0.0390 Inf   4.196  0.0036
 StepF15 - StepF18  0.157060 0.0391 Inf   4.017  0.0074
 StepF16 - StepF17  0.119025 0.0390 Inf   3.051  0.1764
 StepF16 - StepF18  0.112376 0.0391 Inf   2.875  0.2665
 StepF17 - StepF18 -0.006650 0.0391 Inf  -0.170  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.098301 0.0393 Inf  -2.504  0.5274
 StepF1 - StepF3   -0.068741 0.0393 Inf  -1.750  0.9568
 StepF1 - StepF4   -0.061631 0.0392 Inf  -1.571  0.9850
 StepF1 - StepF5    0.000349 0.0392 Inf   0.009  1.0000
 StepF1 - StepF6   -0.115007 0.0392 Inf  -2.933  0.2339
 StepF1 - StepF7    0.012692 0.0391 Inf   0.325  1.0000
 StepF1 - StepF8    0.024574 0.0391 Inf   0.628  1.0000
 StepF1 - StepF9   -0.044322 0.0391 Inf  -1.134  0.9997
 StepF1 - StepF10   0.040175 0.0392 Inf   1.026  0.9999
 StepF1 - StepF11   0.006158 0.0392 Inf   0.157  1.0000
 StepF1 - StepF12   0.101007 0.0392 Inf   2.576  0.4716
 StepF1 - StepF13   0.044962 0.0391 Inf   1.150  0.9996
 StepF1 - StepF14   0.044310 0.0391 Inf   1.132  0.9997
 StepF1 - StepF15   0.009254 0.0392 Inf   0.236  1.0000
 StepF1 - StepF16   0.053938 0.0392 Inf   1.376  0.9965
 StepF1 - StepF17   0.172964 0.0392 Inf   4.412  0.0014
 StepF1 - StepF18   0.166314 0.0390 Inf   4.260  0.0027
 StepF2 - StepF3    0.029560 0.0390 Inf   0.758  1.0000
 StepF2 - StepF4    0.036670 0.0390 Inf   0.940  1.0000
 StepF2 - StepF5    0.098650 0.0390 Inf   2.528  0.5085
 StepF2 - StepF6   -0.016706 0.0390 Inf  -0.428  1.0000
 StepF2 - StepF7    0.110993 0.0391 Inf   2.842  0.2862
 StepF2 - StepF8    0.122876 0.0390 Inf   3.148  0.1372
 StepF2 - StepF9    0.053979 0.0391 Inf   1.381  0.9964
 StepF2 - StepF10   0.138476 0.0390 Inf   3.548  0.0412
 StepF2 - StepF11   0.104459 0.0390 Inf   2.677  0.3968
 StepF2 - StepF12   0.199308 0.0390 Inf   5.108  <.0001
 StepF2 - StepF13   0.143263 0.0391 Inf   3.667  0.0274
 StepF2 - StepF14   0.142611 0.0390 Inf   3.653  0.0289
 StepF2 - StepF15   0.107555 0.0390 Inf   2.757  0.3411
 StepF2 - StepF16   0.152239 0.0390 Inf   3.901  0.0117
 StepF2 - StepF17   0.271265 0.0390 Inf   6.952  <.0001
 StepF2 - StepF18   0.264615 0.0391 Inf   6.763  <.0001
 StepF3 - StepF4    0.007110 0.0390 Inf   0.182  1.0000
 StepF3 - StepF5    0.069090 0.0390 Inf   1.770  0.9520
 StepF3 - StepF6   -0.046266 0.0390 Inf  -1.186  0.9995
 StepF3 - StepF7    0.081433 0.0391 Inf   2.085  0.8255
 StepF3 - StepF8    0.093315 0.0390 Inf   2.390  0.6158
 StepF3 - StepF9    0.024419 0.0391 Inf   0.625  1.0000
 StepF3 - StepF10   0.108915 0.0390 Inf   2.790  0.3190
 StepF3 - StepF11   0.074898 0.0390 Inf   1.919  0.9051
 StepF3 - StepF12   0.169747 0.0390 Inf   4.350  0.0019
 StepF3 - StepF13   0.113702 0.0391 Inf   2.910  0.2468
 StepF3 - StepF14   0.113051 0.0390 Inf   2.895  0.2551
 StepF3 - StepF15   0.077995 0.0390 Inf   1.999  0.8704
 StepF3 - StepF16   0.122679 0.0390 Inf   3.144  0.1386
 StepF3 - StepF17   0.241704 0.0390 Inf   6.194  <.0001
 StepF3 - StepF18   0.235055 0.0391 Inf   6.005  <.0001
 StepF4 - StepF5    0.061980 0.0390 Inf   1.588  0.9831
 StepF4 - StepF6   -0.053376 0.0390 Inf  -1.368  0.9968
 StepF4 - StepF7    0.074323 0.0390 Inf   1.904  0.9110
 StepF4 - StepF8    0.086205 0.0390 Inf   2.209  0.7483
 StepF4 - StepF9    0.017309 0.0391 Inf   0.443  1.0000
 StepF4 - StepF10   0.101805 0.0390 Inf   2.609  0.4468
 StepF4 - StepF11   0.067788 0.0390 Inf   1.737  0.9596
 StepF4 - StepF12   0.162638 0.0390 Inf   4.168  0.0040
 StepF4 - StepF13   0.106592 0.0391 Inf   2.729  0.3597
 StepF4 - StepF14   0.105941 0.0390 Inf   2.714  0.3703
 StepF4 - StepF15   0.070885 0.0390 Inf   1.817  0.9397
 StepF4 - StepF16   0.115569 0.0390 Inf   2.962  0.2189
 StepF4 - StepF17   0.234594 0.0390 Inf   6.013  <.0001
 StepF4 - StepF18   0.227945 0.0391 Inf   5.828  <.0001
 StepF5 - StepF6   -0.115356 0.0390 Inf  -2.957  0.2216
 StepF5 - StepF7    0.012343 0.0390 Inf   0.316  1.0000
 StepF5 - StepF8    0.024226 0.0390 Inf   0.621  1.0000
 StepF5 - StepF9   -0.044671 0.0390 Inf  -1.144  0.9997
 StepF5 - StepF10   0.039826 0.0390 Inf   1.021  0.9999
 StepF5 - StepF11   0.005809 0.0390 Inf   0.149  1.0000
 StepF5 - StepF12   0.100658 0.0390 Inf   2.580  0.4687
 StepF5 - StepF13   0.044613 0.0390 Inf   1.143  0.9997
 StepF5 - StepF14   0.043961 0.0390 Inf   1.127  0.9997
 StepF5 - StepF15   0.008905 0.0390 Inf   0.228  1.0000
 StepF5 - StepF16   0.053589 0.0390 Inf   1.374  0.9966
 StepF5 - StepF17   0.172615 0.0390 Inf   4.424  0.0013
 StepF5 - StepF18   0.165965 0.0391 Inf   4.247  0.0029
 StepF6 - StepF7    0.127699 0.0390 Inf   3.272  0.0971
 StepF6 - StepF8    0.139581 0.0390 Inf   3.577  0.0374
 StepF6 - StepF9    0.070685 0.0391 Inf   1.810  0.9416
 StepF6 - StepF10   0.155182 0.0390 Inf   3.977  0.0087
 StepF6 - StepF11   0.121165 0.0390 Inf   3.105  0.1533
 StepF6 - StepF12   0.216014 0.0390 Inf   5.537  <.0001
 StepF6 - StepF13   0.159968 0.0390 Inf   4.097  0.0054
 StepF6 - StepF14   0.159317 0.0390 Inf   4.082  0.0057
 StepF6 - StepF15   0.124261 0.0390 Inf   3.185  0.1240
 StepF6 - StepF16   0.168945 0.0390 Inf   4.330  0.0020
 StepF6 - StepF17   0.287970 0.0390 Inf   7.381  <.0001
 StepF6 - StepF18   0.281321 0.0391 Inf   7.197  <.0001
 StepF7 - StepF8    0.011882 0.0390 Inf   0.305  1.0000
 StepF7 - StepF9   -0.057014 0.0390 Inf  -1.461  0.9931
 StepF7 - StepF10   0.027483 0.0390 Inf   0.704  1.0000
 StepF7 - StepF11  -0.006534 0.0390 Inf  -0.167  1.0000
 StepF7 - StepF12   0.088315 0.0390 Inf   2.263  0.7107
 StepF7 - StepF13   0.032269 0.0390 Inf   0.827  1.0000
 StepF7 - StepF14   0.031618 0.0390 Inf   0.810  1.0000
 StepF7 - StepF15  -0.003438 0.0390 Inf  -0.088  1.0000
 StepF7 - StepF16   0.041246 0.0390 Inf   1.057  0.9999
 StepF7 - StepF17   0.160272 0.0390 Inf   4.106  0.0052
 StepF7 - StepF18   0.153622 0.0390 Inf   3.935  0.0102
 StepF8 - StepF9   -0.068897 0.0390 Inf  -1.765  0.9532
 StepF8 - StepF10   0.015600 0.0390 Inf   0.400  1.0000
 StepF8 - StepF11  -0.018417 0.0390 Inf  -0.472  1.0000
 StepF8 - StepF12   0.076432 0.0390 Inf   1.959  0.8887
 StepF8 - StepF13   0.020387 0.0390 Inf   0.522  1.0000
 StepF8 - StepF14   0.019735 0.0390 Inf   0.506  1.0000
 StepF8 - StepF15  -0.015321 0.0390 Inf  -0.393  1.0000
 StepF8 - StepF16   0.029364 0.0390 Inf   0.752  1.0000
 StepF8 - StepF17   0.148389 0.0390 Inf   3.802  0.0169
 StepF8 - StepF18   0.141739 0.0390 Inf   3.630  0.0312
 StepF9 - StepF10   0.084497 0.0390 Inf   2.165  0.7772
 StepF9 - StepF11   0.050480 0.0390 Inf   1.293  0.9984
 StepF9 - StepF12   0.145329 0.0391 Inf   3.721  0.0227
 StepF9 - StepF13   0.089284 0.0390 Inf   2.288  0.6921
 StepF9 - StepF14   0.088632 0.0390 Inf   2.271  0.7045
 StepF9 - StepF15   0.053576 0.0391 Inf   1.372  0.9967
 StepF9 - StepF16   0.098260 0.0390 Inf   2.516  0.5175
 StepF9 - StepF17   0.217286 0.0391 Inf   5.564  <.0001
 StepF9 - StepF18   0.210636 0.0390 Inf   5.398  <.0001
 StepF10 - StepF11 -0.034017 0.0390 Inf  -0.872  1.0000
 StepF10 - StepF12  0.060832 0.0390 Inf   1.559  0.9861
 StepF10 - StepF13  0.004787 0.0390 Inf   0.123  1.0000
 StepF10 - StepF14  0.004135 0.0390 Inf   0.106  1.0000
 StepF10 - StepF15 -0.030921 0.0390 Inf  -0.792  1.0000
 StepF10 - StepF16  0.013763 0.0390 Inf   0.353  1.0000
 StepF10 - StepF17  0.132789 0.0390 Inf   3.403  0.0655
 StepF10 - StepF18  0.126139 0.0391 Inf   3.229  0.1096
 StepF11 - StepF12  0.094849 0.0390 Inf   2.431  0.5840
 StepF11 - StepF13  0.038804 0.0390 Inf   0.994  0.9999
 StepF11 - StepF14  0.038152 0.0390 Inf   0.978  1.0000
 StepF11 - StepF15  0.003096 0.0390 Inf   0.079  1.0000
 StepF11 - StepF16  0.047781 0.0390 Inf   1.225  0.9992
 StepF11 - StepF17  0.166806 0.0390 Inf   4.275  0.0026
 StepF11 - StepF18  0.160156 0.0391 Inf   4.099  0.0053
 StepF12 - StepF13 -0.056045 0.0390 Inf  -1.435  0.9943
 StepF12 - StepF14 -0.056697 0.0390 Inf  -1.453  0.9935
 StepF12 - StepF15 -0.091753 0.0390 Inf  -2.352  0.6450
 StepF12 - StepF16 -0.047069 0.0390 Inf  -1.206  0.9993
 StepF12 - StepF17  0.071957 0.0390 Inf   1.844  0.9314
 StepF12 - StepF18  0.065307 0.0391 Inf   1.671  0.9721
 StepF13 - StepF14 -0.000652 0.0390 Inf  -0.017  1.0000
 StepF13 - StepF15 -0.035708 0.0390 Inf  -0.914  1.0000
 StepF13 - StepF16  0.008977 0.0390 Inf   0.230  1.0000
 StepF13 - StepF17  0.128002 0.0390 Inf   3.279  0.0952
 StepF13 - StepF18  0.121352 0.0390 Inf   3.109  0.1518
 StepF14 - StepF15 -0.035056 0.0390 Inf  -0.898  1.0000
 StepF14 - StepF16  0.009628 0.0390 Inf   0.247  1.0000
 StepF14 - StepF17  0.128654 0.0390 Inf   3.297  0.0903
 StepF14 - StepF18  0.122004 0.0390 Inf   3.125  0.1458
 StepF15 - StepF16  0.044684 0.0390 Inf   1.145  0.9997
 StepF15 - StepF17  0.163710 0.0390 Inf   4.196  0.0036
 StepF15 - StepF18  0.157060 0.0391 Inf   4.017  0.0074
 StepF16 - StepF17  0.119025 0.0390 Inf   3.051  0.1764
 StepF16 - StepF18  0.112376 0.0391 Inf   2.875  0.2665
 StepF17 - StepF18 -0.006650 0.0391 Inf  -0.170  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.098301 0.0393 Inf   2.504  0.1721
 StepF3 - StepF2   -0.029560 0.0390 Inf  -0.758  1.0000
 StepF4 - StepF3   -0.007110 0.0390 Inf  -0.182  1.0000
 StepF5 - StepF4   -0.061980 0.0390 Inf  -1.588  1.0000
 StepF6 - StepF5    0.115356 0.0390 Inf   2.957  0.0467
 StepF7 - StepF6   -0.127699 0.0390 Inf  -3.272  0.0182
 StepF8 - StepF7   -0.011882 0.0390 Inf  -0.305  1.0000
 StepF9 - StepF8    0.068897 0.0390 Inf   1.765  0.8525
 StepF10 - StepF9  -0.084497 0.0390 Inf  -2.165  0.3649
 StepF11 - StepF10  0.034017 0.0390 Inf   0.872  1.0000
 StepF12 - StepF11 -0.094849 0.0390 Inf  -2.431  0.1958
 StepF13 - StepF12  0.056045 0.0390 Inf   1.435  1.0000
 StepF14 - StepF13  0.000652 0.0390 Inf   0.017  1.0000
 StepF15 - StepF14  0.035056 0.0390 Inf   0.898  1.0000
 StepF16 - StepF15 -0.044684 0.0390 Inf  -1.145  1.0000
 StepF17 - StepF16 -0.119025 0.0390 Inf  -3.051  0.0365
 StepF18 - StepF17  0.006650 0.0391 Inf   0.170  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.098301 0.0393 Inf   2.504  0.1721
 StepF3 - StepF2   -0.029560 0.0390 Inf  -0.758  1.0000
 StepF4 - StepF3   -0.007110 0.0390 Inf  -0.182  1.0000
 StepF5 - StepF4   -0.061980 0.0390 Inf  -1.588  1.0000
 StepF6 - StepF5    0.115356 0.0390 Inf   2.957  0.0467
 StepF7 - StepF6   -0.127699 0.0390 Inf  -3.272  0.0182
 StepF8 - StepF7   -0.011882 0.0390 Inf  -0.305  1.0000
 StepF9 - StepF8    0.068897 0.0390 Inf   1.765  0.8525
 StepF10 - StepF9  -0.084497 0.0390 Inf  -2.165  0.3649
 StepF11 - StepF10  0.034017 0.0390 Inf   0.872  1.0000
 StepF12 - StepF11 -0.094849 0.0390 Inf  -2.431  0.1958
 StepF13 - StepF12  0.056045 0.0390 Inf   1.435  1.0000
 StepF14 - StepF13  0.000652 0.0390 Inf   0.017  1.0000
 StepF15 - StepF14  0.035056 0.0390 Inf   0.898  1.0000
 StepF16 - StepF15 -0.044684 0.0390 Inf  -1.145  1.0000
 StepF17 - StepF16 -0.119025 0.0390 Inf  -3.051  0.0365
 StepF18 - StepF17  0.006650 0.0391 Inf   0.170  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST (rt_ms) | Block 4 | 18 steps | Axis Y
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    177.5603 17     <2e-16 ***
Accuracy   0.4332  1     0.5104    
rt_ms      1.0472  1     0.3062    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.777 0.0893 Inf     0.602     0.952
 2      0.918 0.0892 Inf     0.743     1.093
 3      0.885 0.0892 Inf     0.711     1.060
 4      0.745 0.0892 Inf     0.570     0.919
 5      0.779 0.0892 Inf     0.604     0.954
 6      0.865 0.0892 Inf     0.690     1.040
 7      0.769 0.0892 Inf     0.594     0.944
 8      0.690 0.0892 Inf     0.515     0.865
 9      0.740 0.0892 Inf     0.565     0.915
 10     0.795 0.0892 Inf     0.620     0.969
 11     0.696 0.0892 Inf     0.521     0.871
 12     0.622 0.0892 Inf     0.447     0.797
 13     0.686 0.0892 Inf     0.511     0.861
 14     0.654 0.0892 Inf     0.479     0.829
 15     0.700 0.0892 Inf     0.526     0.875
 16     0.660 0.0892 Inf     0.486     0.835
 17     0.627 0.0892 Inf     0.452     0.802
 18     0.565 0.0892 Inf     0.390     0.740

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.803 0.0858 Inf     0.635     0.971
 2      0.944 0.0857 Inf     0.776     1.112
 3      0.911 0.0857 Inf     0.743     1.079
 4      0.770 0.0857 Inf     0.602     0.938
 5      0.805 0.0857 Inf     0.637     0.973
 6      0.891 0.0857 Inf     0.723     1.059
 7      0.795 0.0857 Inf     0.627     0.963
 8      0.716 0.0857 Inf     0.548     0.884
 9      0.766 0.0857 Inf     0.598     0.934
 10     0.820 0.0857 Inf     0.652     0.988
 11     0.722 0.0857 Inf     0.554     0.890
 12     0.648 0.0857 Inf     0.480     0.816
 13     0.712 0.0857 Inf     0.544     0.880
 14     0.680 0.0857 Inf     0.512     0.848
 15     0.726 0.0857 Inf     0.558     0.894
 16     0.686 0.0857 Inf     0.518     0.854
 17     0.653 0.0857 Inf     0.485     0.821
 18     0.591 0.0857 Inf     0.423     0.759

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.14071 0.0418 Inf  -3.363  0.0741
 StepF1 - StepF3   -0.10814 0.0419 Inf  -2.583  0.4663
 StepF1 - StepF4    0.03267 0.0418 Inf   0.781  1.0000
 StepF1 - StepF5   -0.00193 0.0418 Inf  -0.046  1.0000
 StepF1 - StepF6   -0.08754 0.0418 Inf  -2.095  0.8195
 StepF1 - StepF7    0.00827 0.0417 Inf   0.198  1.0000
 StepF1 - StepF8    0.08732 0.0417 Inf   2.094  0.8203
 StepF1 - StepF9    0.03688 0.0416 Inf   0.886  1.0000
 StepF1 - StepF10  -0.01730 0.0417 Inf  -0.415  1.0000
 StepF1 - StepF11   0.08106 0.0417 Inf   1.942  0.8959
 StepF1 - StepF12   0.15515 0.0418 Inf   3.713  0.0233
 StepF1 - StepF13   0.09093 0.0417 Inf   2.183  0.7655
 StepF1 - StepF14   0.12342 0.0417 Inf   2.960  0.2200
 StepF1 - StepF15   0.07686 0.0418 Inf   1.839  0.9332
 StepF1 - StepF16   0.11677 0.0418 Inf   2.795  0.3157
 StepF1 - StepF17   0.15009 0.0418 Inf   3.592  0.0355
 StepF1 - StepF18   0.21214 0.0416 Inf   5.099  0.0001
 StepF2 - StepF3    0.03257 0.0416 Inf   0.783  1.0000
 StepF2 - StepF4    0.17338 0.0416 Inf   4.170  0.0040
 StepF2 - StepF5    0.13878 0.0416 Inf   3.337  0.0800
 StepF2 - StepF6    0.05317 0.0416 Inf   1.279  0.9986
 StepF2 - StepF7    0.14898 0.0416 Inf   3.580  0.0370
 StepF2 - StepF8    0.22804 0.0416 Inf   5.481  <.0001
 StepF2 - StepF9    0.17759 0.0416 Inf   4.264  0.0027
 StepF2 - StepF10   0.12341 0.0416 Inf   2.967  0.2161
 StepF2 - StepF11   0.22177 0.0416 Inf   5.333  <.0001
 StepF2 - StepF12   0.29587 0.0416 Inf   7.115  <.0001
 StepF2 - StepF13   0.23164 0.0416 Inf   5.564  <.0001
 StepF2 - StepF14   0.26414 0.0416 Inf   6.349  <.0001
 StepF2 - StepF15   0.21757 0.0416 Inf   5.233  <.0001
 StepF2 - StepF16   0.25748 0.0416 Inf   6.192  <.0001
 StepF2 - StepF17   0.29081 0.0416 Inf   6.994  <.0001
 StepF2 - StepF18   0.35286 0.0417 Inf   8.463  <.0001
 StepF3 - StepF4    0.14081 0.0416 Inf   3.387  0.0690
 StepF3 - StepF5    0.10621 0.0416 Inf   2.554  0.4886
 StepF3 - StepF6    0.02060 0.0416 Inf   0.495  1.0000
 StepF3 - StepF7    0.11641 0.0416 Inf   2.797  0.3148
 StepF3 - StepF8    0.19547 0.0416 Inf   4.698  0.0004
 StepF3 - StepF9    0.14502 0.0417 Inf   3.481  0.0512
 StepF3 - StepF10   0.09084 0.0416 Inf   2.184  0.7648
 StepF3 - StepF11   0.18920 0.0416 Inf   4.549  0.0008
 StepF3 - StepF12   0.26329 0.0416 Inf   6.332  <.0001
 StepF3 - StepF13   0.19907 0.0416 Inf   4.781  0.0003
 StepF3 - StepF14   0.23156 0.0416 Inf   5.565  <.0001
 StepF3 - StepF15   0.18500 0.0416 Inf   4.449  0.0012
 StepF3 - StepF16   0.22491 0.0416 Inf   5.408  <.0001
 StepF3 - StepF17   0.25824 0.0416 Inf   6.210  <.0001
 StepF3 - StepF18   0.32029 0.0417 Inf   7.679  <.0001
 StepF4 - StepF5   -0.03460 0.0416 Inf  -0.832  1.0000
 StepF4 - StepF6   -0.12021 0.0416 Inf  -2.891  0.2573
 StepF4 - StepF7   -0.02440 0.0416 Inf  -0.587  1.0000
 StepF4 - StepF8    0.05465 0.0416 Inf   1.314  0.9980
 StepF4 - StepF9    0.00421 0.0416 Inf   0.101  1.0000
 StepF4 - StepF10  -0.04997 0.0416 Inf  -1.202  0.9993
 StepF4 - StepF11   0.04839 0.0416 Inf   1.164  0.9996
 StepF4 - StepF12   0.12248 0.0416 Inf   2.946  0.2273
 StepF4 - StepF13   0.05826 0.0416 Inf   1.400  0.9958
 StepF4 - StepF14   0.09075 0.0416 Inf   2.182  0.7662
 StepF4 - StepF15   0.04419 0.0416 Inf   1.063  0.9999
 StepF4 - StepF16   0.08409 0.0416 Inf   2.022  0.8588
 StepF4 - StepF17   0.11742 0.0416 Inf   2.824  0.2974
 StepF4 - StepF18   0.17947 0.0417 Inf   4.306  0.0022
 StepF5 - StepF6   -0.08561 0.0416 Inf  -2.059  0.8397
 StepF5 - StepF7    0.01020 0.0416 Inf   0.245  1.0000
 StepF5 - StepF8    0.08925 0.0416 Inf   2.146  0.7888
 StepF5 - StepF9    0.03881 0.0416 Inf   0.933  1.0000
 StepF5 - StepF10  -0.01537 0.0416 Inf  -0.370  1.0000
 StepF5 - StepF11   0.08299 0.0416 Inf   1.996  0.8718
 StepF5 - StepF12   0.15708 0.0416 Inf   3.778  0.0185
 StepF5 - StepF13   0.09286 0.0416 Inf   2.232  0.7320
 StepF5 - StepF14   0.12535 0.0416 Inf   3.014  0.1929
 StepF5 - StepF15   0.07879 0.0416 Inf   1.895  0.9142
 StepF5 - StepF16   0.11869 0.0416 Inf   2.855  0.2786
 StepF5 - StepF17   0.15202 0.0416 Inf   3.656  0.0285
 StepF5 - StepF18   0.21407 0.0416 Inf   5.141  <.0001
 StepF6 - StepF7    0.09581 0.0416 Inf   2.303  0.6810
 StepF6 - StepF8    0.17487 0.0416 Inf   4.205  0.0035
 StepF6 - StepF9    0.12442 0.0416 Inf   2.990  0.2048
 StepF6 - StepF10   0.07024 0.0416 Inf   1.689  0.9689
 StepF6 - StepF11   0.16860 0.0416 Inf   4.055  0.0064
 StepF6 - StepF12   0.24270 0.0416 Inf   5.837  <.0001
 StepF6 - StepF13   0.17847 0.0416 Inf   4.290  0.0024
 StepF6 - StepF14   0.21097 0.0416 Inf   5.073  0.0001
 StepF6 - StepF15   0.16440 0.0416 Inf   3.954  0.0095
 StepF6 - StepF16   0.20431 0.0416 Inf   4.914  0.0001
 StepF6 - StepF17   0.23764 0.0416 Inf   5.715  <.0001
 StepF6 - StepF18   0.29969 0.0417 Inf   7.195  <.0001
 StepF7 - StepF8    0.07906 0.0416 Inf   1.901  0.9118
 StepF7 - StepF9    0.02861 0.0416 Inf   0.688  1.0000
 StepF7 - StepF10  -0.02557 0.0416 Inf  -0.615  1.0000
 StepF7 - StepF11   0.07279 0.0416 Inf   1.750  0.9567
 StepF7 - StepF12   0.14689 0.0416 Inf   3.531  0.0435
 StepF7 - StepF13   0.08266 0.0416 Inf   1.988  0.8754
 StepF7 - StepF14   0.11516 0.0416 Inf   2.770  0.3325
 StepF7 - StepF15   0.06859 0.0416 Inf   1.649  0.9754
 StepF7 - StepF16   0.10850 0.0416 Inf   2.609  0.4469
 StepF7 - StepF17   0.14183 0.0416 Inf   3.410  0.0642
 StepF7 - StepF18   0.20388 0.0416 Inf   4.901  0.0001
 StepF8 - StepF9   -0.05044 0.0416 Inf  -1.213  0.9993
 StepF8 - StepF10  -0.10462 0.0416 Inf  -2.516  0.5176
 StepF8 - StepF11  -0.00626 0.0416 Inf  -0.151  1.0000
 StepF8 - StepF12   0.06783 0.0416 Inf   1.631  0.9779
 StepF8 - StepF13   0.00361 0.0416 Inf   0.087  1.0000
 StepF8 - StepF14   0.03610 0.0416 Inf   0.868  1.0000
 StepF8 - StepF15  -0.01046 0.0416 Inf  -0.252  1.0000
 StepF8 - StepF16   0.02944 0.0416 Inf   0.708  1.0000
 StepF8 - StepF17   0.06277 0.0416 Inf   1.509  0.9901
 StepF8 - StepF18   0.12482 0.0416 Inf   3.000  0.2000
 StepF9 - StepF10  -0.05418 0.0416 Inf  -1.303  0.9982
 StepF9 - StepF11   0.04418 0.0416 Inf   1.062  0.9999
 StepF9 - StepF12   0.11827 0.0416 Inf   2.842  0.2865
 StepF9 - StepF13   0.05405 0.0416 Inf   1.300  0.9982
 StepF9 - StepF14   0.08654 0.0416 Inf   2.081  0.8276
 StepF9 - StepF15   0.03998 0.0416 Inf   0.960  1.0000
 StepF9 - StepF16   0.07988 0.0416 Inf   1.920  0.9048
 StepF9 - StepF17   0.11321 0.0416 Inf   2.720  0.3659
 StepF9 - StepF18   0.17526 0.0416 Inf   4.215  0.0033
 StepF10 - StepF11  0.09836 0.0416 Inf   2.366  0.6343
 StepF10 - StepF12  0.17245 0.0416 Inf   4.147  0.0044
 StepF10 - StepF13  0.10823 0.0416 Inf   2.602  0.4516
 StepF10 - StepF14  0.14072 0.0416 Inf   3.384  0.0694
 StepF10 - StepF15  0.09416 0.0416 Inf   2.264  0.7095
 StepF10 - StepF16  0.13406 0.0416 Inf   3.224  0.1111
 StepF10 - StepF17  0.16739 0.0416 Inf   4.026  0.0072
 StepF10 - StepF18  0.22944 0.0416 Inf   5.512  <.0001
 StepF11 - StepF12  0.07409 0.0416 Inf   1.782  0.9491
 StepF11 - StepF13  0.00987 0.0416 Inf   0.237  1.0000
 StepF11 - StepF14  0.04236 0.0416 Inf   1.019  0.9999
 StepF11 - StepF15 -0.00420 0.0416 Inf  -0.101  1.0000
 StepF11 - StepF16  0.03571 0.0416 Inf   0.859  1.0000
 StepF11 - StepF17  0.06903 0.0416 Inf   1.660  0.9737
 StepF11 - StepF18  0.13109 0.0416 Inf   3.148  0.1368
 StepF12 - StepF13 -0.06422 0.0416 Inf  -1.544  0.9875
 StepF12 - StepF14 -0.03173 0.0416 Inf  -0.763  1.0000
 StepF12 - StepF15 -0.07829 0.0416 Inf  -1.883  0.9185
 StepF12 - StepF16 -0.03839 0.0416 Inf  -0.923  1.0000
 StepF12 - StepF17 -0.00506 0.0416 Inf  -0.122  1.0000
 StepF12 - StepF18  0.05699 0.0417 Inf   1.368  0.9968
 StepF13 - StepF14  0.03249 0.0416 Inf   0.781  1.0000
 StepF13 - StepF15 -0.01407 0.0416 Inf  -0.338  1.0000
 StepF13 - StepF16  0.02583 0.0416 Inf   0.621  1.0000
 StepF13 - StepF17  0.05916 0.0416 Inf   1.422  0.9949
 StepF13 - StepF18  0.12121 0.0416 Inf   2.914  0.2442
 StepF14 - StepF15 -0.04656 0.0416 Inf  -1.120  0.9997
 StepF14 - StepF16 -0.00666 0.0416 Inf  -0.160  1.0000
 StepF14 - StepF17  0.02667 0.0416 Inf   0.641  1.0000
 StepF14 - StepF18  0.08872 0.0416 Inf   2.132  0.7975
 StepF15 - StepF16  0.03991 0.0416 Inf   0.960  1.0000
 StepF15 - StepF17  0.07323 0.0416 Inf   1.761  0.9541
 StepF15 - StepF18  0.13529 0.0417 Inf   3.247  0.1043
 StepF16 - StepF17  0.03333 0.0416 Inf   0.802  1.0000
 StepF16 - StepF18  0.09538 0.0416 Inf   2.290  0.6909
 StepF17 - StepF18  0.06205 0.0417 Inf   1.490  0.9915

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.14071 0.0418 Inf  -3.363  0.0741
 StepF1 - StepF3   -0.10814 0.0419 Inf  -2.583  0.4663
 StepF1 - StepF4    0.03267 0.0418 Inf   0.781  1.0000
 StepF1 - StepF5   -0.00193 0.0418 Inf  -0.046  1.0000
 StepF1 - StepF6   -0.08754 0.0418 Inf  -2.095  0.8195
 StepF1 - StepF7    0.00827 0.0417 Inf   0.198  1.0000
 StepF1 - StepF8    0.08732 0.0417 Inf   2.094  0.8203
 StepF1 - StepF9    0.03688 0.0416 Inf   0.886  1.0000
 StepF1 - StepF10  -0.01730 0.0417 Inf  -0.415  1.0000
 StepF1 - StepF11   0.08106 0.0417 Inf   1.942  0.8959
 StepF1 - StepF12   0.15515 0.0418 Inf   3.713  0.0233
 StepF1 - StepF13   0.09093 0.0417 Inf   2.183  0.7655
 StepF1 - StepF14   0.12342 0.0417 Inf   2.960  0.2200
 StepF1 - StepF15   0.07686 0.0418 Inf   1.839  0.9332
 StepF1 - StepF16   0.11677 0.0418 Inf   2.795  0.3157
 StepF1 - StepF17   0.15009 0.0418 Inf   3.592  0.0355
 StepF1 - StepF18   0.21214 0.0416 Inf   5.099  0.0001
 StepF2 - StepF3    0.03257 0.0416 Inf   0.783  1.0000
 StepF2 - StepF4    0.17338 0.0416 Inf   4.170  0.0040
 StepF2 - StepF5    0.13878 0.0416 Inf   3.337  0.0800
 StepF2 - StepF6    0.05317 0.0416 Inf   1.279  0.9986
 StepF2 - StepF7    0.14898 0.0416 Inf   3.580  0.0370
 StepF2 - StepF8    0.22804 0.0416 Inf   5.481  <.0001
 StepF2 - StepF9    0.17759 0.0416 Inf   4.264  0.0027
 StepF2 - StepF10   0.12341 0.0416 Inf   2.967  0.2161
 StepF2 - StepF11   0.22177 0.0416 Inf   5.333  <.0001
 StepF2 - StepF12   0.29587 0.0416 Inf   7.115  <.0001
 StepF2 - StepF13   0.23164 0.0416 Inf   5.564  <.0001
 StepF2 - StepF14   0.26414 0.0416 Inf   6.349  <.0001
 StepF2 - StepF15   0.21757 0.0416 Inf   5.233  <.0001
 StepF2 - StepF16   0.25748 0.0416 Inf   6.192  <.0001
 StepF2 - StepF17   0.29081 0.0416 Inf   6.994  <.0001
 StepF2 - StepF18   0.35286 0.0417 Inf   8.463  <.0001
 StepF3 - StepF4    0.14081 0.0416 Inf   3.387  0.0690
 StepF3 - StepF5    0.10621 0.0416 Inf   2.554  0.4886
 StepF3 - StepF6    0.02060 0.0416 Inf   0.495  1.0000
 StepF3 - StepF7    0.11641 0.0416 Inf   2.797  0.3148
 StepF3 - StepF8    0.19547 0.0416 Inf   4.698  0.0004
 StepF3 - StepF9    0.14502 0.0417 Inf   3.481  0.0512
 StepF3 - StepF10   0.09084 0.0416 Inf   2.184  0.7648
 StepF3 - StepF11   0.18920 0.0416 Inf   4.549  0.0008
 StepF3 - StepF12   0.26329 0.0416 Inf   6.332  <.0001
 StepF3 - StepF13   0.19907 0.0416 Inf   4.781  0.0003
 StepF3 - StepF14   0.23156 0.0416 Inf   5.565  <.0001
 StepF3 - StepF15   0.18500 0.0416 Inf   4.449  0.0012
 StepF3 - StepF16   0.22491 0.0416 Inf   5.408  <.0001
 StepF3 - StepF17   0.25824 0.0416 Inf   6.210  <.0001
 StepF3 - StepF18   0.32029 0.0417 Inf   7.679  <.0001
 StepF4 - StepF5   -0.03460 0.0416 Inf  -0.832  1.0000
 StepF4 - StepF6   -0.12021 0.0416 Inf  -2.891  0.2573
 StepF4 - StepF7   -0.02440 0.0416 Inf  -0.587  1.0000
 StepF4 - StepF8    0.05465 0.0416 Inf   1.314  0.9980
 StepF4 - StepF9    0.00421 0.0416 Inf   0.101  1.0000
 StepF4 - StepF10  -0.04997 0.0416 Inf  -1.202  0.9993
 StepF4 - StepF11   0.04839 0.0416 Inf   1.164  0.9996
 StepF4 - StepF12   0.12248 0.0416 Inf   2.946  0.2273
 StepF4 - StepF13   0.05826 0.0416 Inf   1.400  0.9958
 StepF4 - StepF14   0.09075 0.0416 Inf   2.182  0.7662
 StepF4 - StepF15   0.04419 0.0416 Inf   1.063  0.9999
 StepF4 - StepF16   0.08409 0.0416 Inf   2.022  0.8588
 StepF4 - StepF17   0.11742 0.0416 Inf   2.824  0.2974
 StepF4 - StepF18   0.17947 0.0417 Inf   4.306  0.0022
 StepF5 - StepF6   -0.08561 0.0416 Inf  -2.059  0.8397
 StepF5 - StepF7    0.01020 0.0416 Inf   0.245  1.0000
 StepF5 - StepF8    0.08925 0.0416 Inf   2.146  0.7888
 StepF5 - StepF9    0.03881 0.0416 Inf   0.933  1.0000
 StepF5 - StepF10  -0.01537 0.0416 Inf  -0.370  1.0000
 StepF5 - StepF11   0.08299 0.0416 Inf   1.996  0.8718
 StepF5 - StepF12   0.15708 0.0416 Inf   3.778  0.0185
 StepF5 - StepF13   0.09286 0.0416 Inf   2.232  0.7320
 StepF5 - StepF14   0.12535 0.0416 Inf   3.014  0.1929
 StepF5 - StepF15   0.07879 0.0416 Inf   1.895  0.9142
 StepF5 - StepF16   0.11869 0.0416 Inf   2.855  0.2786
 StepF5 - StepF17   0.15202 0.0416 Inf   3.656  0.0285
 StepF5 - StepF18   0.21407 0.0416 Inf   5.141  <.0001
 StepF6 - StepF7    0.09581 0.0416 Inf   2.303  0.6810
 StepF6 - StepF8    0.17487 0.0416 Inf   4.205  0.0035
 StepF6 - StepF9    0.12442 0.0416 Inf   2.990  0.2048
 StepF6 - StepF10   0.07024 0.0416 Inf   1.689  0.9689
 StepF6 - StepF11   0.16860 0.0416 Inf   4.055  0.0064
 StepF6 - StepF12   0.24270 0.0416 Inf   5.837  <.0001
 StepF6 - StepF13   0.17847 0.0416 Inf   4.290  0.0024
 StepF6 - StepF14   0.21097 0.0416 Inf   5.073  0.0001
 StepF6 - StepF15   0.16440 0.0416 Inf   3.954  0.0095
 StepF6 - StepF16   0.20431 0.0416 Inf   4.914  0.0001
 StepF6 - StepF17   0.23764 0.0416 Inf   5.715  <.0001
 StepF6 - StepF18   0.29969 0.0417 Inf   7.195  <.0001
 StepF7 - StepF8    0.07906 0.0416 Inf   1.901  0.9118
 StepF7 - StepF9    0.02861 0.0416 Inf   0.688  1.0000
 StepF7 - StepF10  -0.02557 0.0416 Inf  -0.615  1.0000
 StepF7 - StepF11   0.07279 0.0416 Inf   1.750  0.9567
 StepF7 - StepF12   0.14689 0.0416 Inf   3.531  0.0435
 StepF7 - StepF13   0.08266 0.0416 Inf   1.988  0.8754
 StepF7 - StepF14   0.11516 0.0416 Inf   2.770  0.3325
 StepF7 - StepF15   0.06859 0.0416 Inf   1.649  0.9754
 StepF7 - StepF16   0.10850 0.0416 Inf   2.609  0.4469
 StepF7 - StepF17   0.14183 0.0416 Inf   3.410  0.0642
 StepF7 - StepF18   0.20388 0.0416 Inf   4.901  0.0001
 StepF8 - StepF9   -0.05044 0.0416 Inf  -1.213  0.9993
 StepF8 - StepF10  -0.10462 0.0416 Inf  -2.516  0.5176
 StepF8 - StepF11  -0.00626 0.0416 Inf  -0.151  1.0000
 StepF8 - StepF12   0.06783 0.0416 Inf   1.631  0.9779
 StepF8 - StepF13   0.00361 0.0416 Inf   0.087  1.0000
 StepF8 - StepF14   0.03610 0.0416 Inf   0.868  1.0000
 StepF8 - StepF15  -0.01046 0.0416 Inf  -0.252  1.0000
 StepF8 - StepF16   0.02944 0.0416 Inf   0.708  1.0000
 StepF8 - StepF17   0.06277 0.0416 Inf   1.509  0.9901
 StepF8 - StepF18   0.12482 0.0416 Inf   3.000  0.2000
 StepF9 - StepF10  -0.05418 0.0416 Inf  -1.303  0.9982
 StepF9 - StepF11   0.04418 0.0416 Inf   1.062  0.9999
 StepF9 - StepF12   0.11827 0.0416 Inf   2.842  0.2865
 StepF9 - StepF13   0.05405 0.0416 Inf   1.300  0.9982
 StepF9 - StepF14   0.08654 0.0416 Inf   2.081  0.8276
 StepF9 - StepF15   0.03998 0.0416 Inf   0.960  1.0000
 StepF9 - StepF16   0.07988 0.0416 Inf   1.920  0.9048
 StepF9 - StepF17   0.11321 0.0416 Inf   2.720  0.3659
 StepF9 - StepF18   0.17526 0.0416 Inf   4.215  0.0033
 StepF10 - StepF11  0.09836 0.0416 Inf   2.366  0.6343
 StepF10 - StepF12  0.17245 0.0416 Inf   4.147  0.0044
 StepF10 - StepF13  0.10823 0.0416 Inf   2.602  0.4516
 StepF10 - StepF14  0.14072 0.0416 Inf   3.384  0.0694
 StepF10 - StepF15  0.09416 0.0416 Inf   2.264  0.7095
 StepF10 - StepF16  0.13406 0.0416 Inf   3.224  0.1111
 StepF10 - StepF17  0.16739 0.0416 Inf   4.026  0.0072
 StepF10 - StepF18  0.22944 0.0416 Inf   5.512  <.0001
 StepF11 - StepF12  0.07409 0.0416 Inf   1.782  0.9491
 StepF11 - StepF13  0.00987 0.0416 Inf   0.237  1.0000
 StepF11 - StepF14  0.04236 0.0416 Inf   1.019  0.9999
 StepF11 - StepF15 -0.00420 0.0416 Inf  -0.101  1.0000
 StepF11 - StepF16  0.03571 0.0416 Inf   0.859  1.0000
 StepF11 - StepF17  0.06903 0.0416 Inf   1.660  0.9737
 StepF11 - StepF18  0.13109 0.0416 Inf   3.148  0.1368
 StepF12 - StepF13 -0.06422 0.0416 Inf  -1.544  0.9875
 StepF12 - StepF14 -0.03173 0.0416 Inf  -0.763  1.0000
 StepF12 - StepF15 -0.07829 0.0416 Inf  -1.883  0.9185
 StepF12 - StepF16 -0.03839 0.0416 Inf  -0.923  1.0000
 StepF12 - StepF17 -0.00506 0.0416 Inf  -0.122  1.0000
 StepF12 - StepF18  0.05699 0.0417 Inf   1.368  0.9968
 StepF13 - StepF14  0.03249 0.0416 Inf   0.781  1.0000
 StepF13 - StepF15 -0.01407 0.0416 Inf  -0.338  1.0000
 StepF13 - StepF16  0.02583 0.0416 Inf   0.621  1.0000
 StepF13 - StepF17  0.05916 0.0416 Inf   1.422  0.9949
 StepF13 - StepF18  0.12121 0.0416 Inf   2.914  0.2442
 StepF14 - StepF15 -0.04656 0.0416 Inf  -1.120  0.9997
 StepF14 - StepF16 -0.00666 0.0416 Inf  -0.160  1.0000
 StepF14 - StepF17  0.02667 0.0416 Inf   0.641  1.0000
 StepF14 - StepF18  0.08872 0.0416 Inf   2.132  0.7975
 StepF15 - StepF16  0.03991 0.0416 Inf   0.960  1.0000
 StepF15 - StepF17  0.07323 0.0416 Inf   1.761  0.9541
 StepF15 - StepF18  0.13529 0.0417 Inf   3.247  0.1043
 StepF16 - StepF17  0.03333 0.0416 Inf   0.802  1.0000
 StepF16 - StepF18  0.09538 0.0416 Inf   2.290  0.6909
 StepF17 - StepF18  0.06205 0.0417 Inf   1.490  0.9915

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.1407 0.0418 Inf   3.363  0.0123
 StepF3 - StepF2    -0.0326 0.0416 Inf  -0.783  1.0000
 StepF4 - StepF3    -0.1408 0.0416 Inf  -3.387  0.0120
 StepF5 - StepF4     0.0346 0.0416 Inf   0.832  1.0000
 StepF6 - StepF5     0.0856 0.0416 Inf   2.059  0.5133
 StepF7 - StepF6    -0.0958 0.0416 Inf  -2.303  0.2976
 StepF8 - StepF7    -0.0791 0.0416 Inf  -1.901  0.6871
 StepF9 - StepF8     0.0504 0.0416 Inf   1.213  1.0000
 StepF10 - StepF9    0.0542 0.0416 Inf   1.303  1.0000
 StepF11 - StepF10  -0.0984 0.0416 Inf  -2.366  0.2700
 StepF12 - StepF11  -0.0741 0.0416 Inf  -1.782  0.8223
 StepF13 - StepF12   0.0642 0.0416 Inf   1.544  1.0000
 StepF14 - StepF13  -0.0325 0.0416 Inf  -0.781  1.0000
 StepF15 - StepF14   0.0466 0.0416 Inf   1.120  1.0000
 StepF16 - StepF15  -0.0399 0.0416 Inf  -0.960  1.0000
 StepF17 - StepF16  -0.0333 0.0416 Inf  -0.802  1.0000
 StepF18 - StepF17  -0.0621 0.0417 Inf  -1.490  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.1407 0.0418 Inf   3.363  0.0123
 StepF3 - StepF2    -0.0326 0.0416 Inf  -0.783  1.0000
 StepF4 - StepF3    -0.1408 0.0416 Inf  -3.387  0.0120
 StepF5 - StepF4     0.0346 0.0416 Inf   0.832  1.0000
 StepF6 - StepF5     0.0856 0.0416 Inf   2.059  0.5133
 StepF7 - StepF6    -0.0958 0.0416 Inf  -2.303  0.2976
 StepF8 - StepF7    -0.0791 0.0416 Inf  -1.901  0.6871
 StepF9 - StepF8     0.0504 0.0416 Inf   1.213  1.0000
 StepF10 - StepF9    0.0542 0.0416 Inf   1.303  1.0000
 StepF11 - StepF10  -0.0984 0.0416 Inf  -2.366  0.2700
 StepF12 - StepF11  -0.0741 0.0416 Inf  -1.782  0.8223
 StepF13 - StepF12   0.0642 0.0416 Inf   1.544  1.0000
 StepF14 - StepF13  -0.0325 0.0416 Inf  -0.781  1.0000
 StepF15 - StepF14   0.0466 0.0416 Inf   1.120  1.0000
 StepF16 - StepF15  -0.0399 0.0416 Inf  -0.960  1.0000
 StepF17 - StepF16  -0.0333 0.0416 Inf  -0.802  1.0000
 StepF18 - StepF17  -0.0621 0.0417 Inf  -1.490  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST (rt_ms) | Block 4 | 18 steps | Axis Z
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    199.0504 17     <2e-16 ***
Accuracy   0.6371  1     0.4248    
rt_ms      0.1227  1     0.7261    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      1.576 0.164 Inf     1.255      1.90
 2      1.743 0.163 Inf     1.423      2.06
 3      1.674 0.163 Inf     1.353      1.99
 4      1.560 0.163 Inf     1.239      1.88
 5      1.455 0.163 Inf     1.135      1.78
 6      1.535 0.163 Inf     1.215      1.86
 7      1.460 0.163 Inf     1.139      1.78
 8      1.487 0.163 Inf     1.167      1.81
 9      1.437 0.163 Inf     1.117      1.76
 10     1.482 0.163 Inf     1.162      1.80
 11     1.496 0.163 Inf     1.175      1.82
 12     1.293 0.163 Inf     0.973      1.61
 13     1.342 0.163 Inf     1.022      1.66
 14     1.435 0.163 Inf     1.114      1.76
 15     1.430 0.163 Inf     1.110      1.75
 16     1.204 0.163 Inf     0.884      1.52
 17     1.196 0.163 Inf     0.875      1.52
 18     0.975 0.164 Inf     0.654      1.30

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      1.637 0.156 Inf     1.330      1.94
 2      1.804 0.156 Inf     1.498      2.11
 3      1.734 0.156 Inf     1.428      2.04
 4      1.620 0.156 Inf     1.314      1.93
 5      1.516 0.156 Inf     1.210      1.82
 6      1.596 0.156 Inf     1.290      1.90
 7      1.520 0.156 Inf     1.214      1.83
 8      1.548 0.156 Inf     1.242      1.85
 9      1.498 0.156 Inf     1.192      1.80
 10     1.543 0.156 Inf     1.237      1.85
 11     1.556 0.156 Inf     1.250      1.86
 12     1.354 0.156 Inf     1.048      1.66
 13     1.403 0.156 Inf     1.097      1.71
 14     1.496 0.156 Inf     1.190      1.80
 15     1.491 0.156 Inf     1.185      1.80
 16     1.265 0.156 Inf     0.959      1.57
 17     1.257 0.156 Inf     0.950      1.56
 18     1.036 0.156 Inf     0.730      1.34

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.16757 0.0753 Inf  -2.227  0.7360
 StepF1 - StepF3   -0.09783 0.0753 Inf  -1.299  0.9983
 StepF1 - StepF4    0.01616 0.0752 Inf   0.215  1.0000
 StepF1 - StepF5    0.12063 0.0751 Inf   1.606  0.9811
 StepF1 - StepF6    0.04075 0.0752 Inf   0.542  1.0000
 StepF1 - StepF7    0.11618 0.0750 Inf   1.550  0.9869
 StepF1 - StepF8    0.08853 0.0750 Inf   1.180  0.9995
 StepF1 - StepF9    0.13879 0.0749 Inf   1.853  0.9286
 StepF1 - StepF10   0.09323 0.0751 Inf   1.242  0.9990
 StepF1 - StepF11   0.08016 0.0751 Inf   1.068  0.9999
 StepF1 - StepF12   0.28281 0.0752 Inf   3.763  0.0195
 StepF1 - StepF13   0.23356 0.0749 Inf   3.117  0.1488
 StepF1 - StepF14   0.14091 0.0750 Inf   1.879  0.9201
 StepF1 - StepF15   0.14547 0.0752 Inf   1.935  0.8988
 StepF1 - StepF16   0.37120 0.0751 Inf   4.940  0.0001
 StepF1 - StepF17   0.37995 0.0752 Inf   5.056  0.0001
 StepF1 - StepF18   0.60090 0.0748 Inf   8.029  <.0001
 StepF2 - StepF3    0.06974 0.0748 Inf   0.933  1.0000
 StepF2 - StepF4    0.18373 0.0748 Inf   2.457  0.5639
 StepF2 - StepF5    0.28820 0.0748 Inf   3.853  0.0140
 StepF2 - StepF6    0.20832 0.0748 Inf   2.785  0.3221
 StepF2 - StepF7    0.28375 0.0749 Inf   3.791  0.0176
 StepF2 - StepF8    0.25610 0.0748 Inf   3.423  0.0617
 StepF2 - StepF9    0.30637 0.0749 Inf   4.090  0.0056
 StepF2 - StepF10   0.26080 0.0748 Inf   3.486  0.0504
 StepF2 - StepF11   0.24773 0.0748 Inf   3.312  0.0864
 StepF2 - StepF12   0.45038 0.0748 Inf   6.022  <.0001
 StepF2 - StepF13   0.40113 0.0749 Inf   5.357  <.0001
 StepF2 - StepF14   0.30848 0.0748 Inf   4.122  0.0049
 StepF2 - StepF15   0.31304 0.0748 Inf   4.186  0.0037
 StepF2 - StepF16   0.53877 0.0748 Inf   7.203  <.0001
 StepF2 - StepF17   0.54752 0.0748 Inf   7.321  <.0001
 StepF2 - StepF18   0.76847 0.0750 Inf  10.247  <.0001
 StepF3 - StepF4    0.11399 0.0748 Inf   1.524  0.9891
 StepF3 - StepF5    0.21846 0.0748 Inf   2.920  0.2410
 StepF3 - StepF6    0.13857 0.0748 Inf   1.853  0.9288
 StepF3 - StepF7    0.21401 0.0749 Inf   2.858  0.2765
 StepF3 - StepF8    0.18636 0.0748 Inf   2.490  0.5380
 StepF3 - StepF9    0.23662 0.0749 Inf   3.158  0.1334
 StepF3 - StepF10   0.19106 0.0748 Inf   2.553  0.4888
 StepF3 - StepF11   0.17799 0.0748 Inf   2.379  0.6241
 StepF3 - StepF12   0.38063 0.0748 Inf   5.089  0.0001
 StepF3 - StepF13   0.33139 0.0749 Inf   4.424  0.0013
 StepF3 - StepF14   0.23873 0.0748 Inf   3.190  0.1224
 StepF3 - StepF15   0.24330 0.0748 Inf   3.253  0.1025
 StepF3 - StepF16   0.46903 0.0748 Inf   6.270  <.0001
 StepF3 - StepF17   0.47778 0.0748 Inf   6.388  <.0001
 StepF3 - StepF18   0.69873 0.0750 Inf   9.313  <.0001
 StepF4 - StepF5    0.10447 0.0748 Inf   1.397  0.9959
 StepF4 - StepF6    0.02459 0.0748 Inf   0.329  1.0000
 StepF4 - StepF7    0.10002 0.0748 Inf   1.337  0.9975
 StepF4 - StepF8    0.07237 0.0748 Inf   0.967  1.0000
 StepF4 - StepF9    0.12263 0.0749 Inf   1.638  0.9770
 StepF4 - StepF10   0.07707 0.0748 Inf   1.030  0.9999
 StepF4 - StepF11   0.06400 0.0748 Inf   0.856  1.0000
 StepF4 - StepF12   0.26665 0.0748 Inf   3.565  0.0389
 StepF4 - StepF13   0.21740 0.0749 Inf   2.904  0.2499
 StepF4 - StepF14   0.12475 0.0748 Inf   1.667  0.9726
 StepF4 - StepF15   0.12931 0.0748 Inf   1.729  0.9613
 StepF4 - StepF16   0.35504 0.0748 Inf   4.747  0.0003
 StepF4 - StepF17   0.36379 0.0748 Inf   4.864  0.0002
 StepF4 - StepF18   0.58474 0.0750 Inf   7.800  <.0001
 StepF5 - StepF6   -0.07988 0.0748 Inf  -1.068  0.9999
 StepF5 - StepF7   -0.00445 0.0748 Inf  -0.059  1.0000
 StepF5 - StepF8   -0.03210 0.0748 Inf  -0.429  1.0000
 StepF5 - StepF9    0.01816 0.0748 Inf   0.243  1.0000
 StepF5 - StepF10  -0.02740 0.0748 Inf  -0.366  1.0000
 StepF5 - StepF11  -0.04047 0.0748 Inf  -0.541  1.0000
 StepF5 - StepF12   0.16218 0.0748 Inf   2.169  0.7747
 StepF5 - StepF13   0.11293 0.0748 Inf   1.509  0.9901
 StepF5 - StepF14   0.02027 0.0748 Inf   0.271  1.0000
 StepF5 - StepF15   0.02484 0.0748 Inf   0.332  1.0000
 StepF5 - StepF16   0.25057 0.0748 Inf   3.351  0.0769
 StepF5 - StepF17   0.25932 0.0748 Inf   3.467  0.0535
 StepF5 - StepF18   0.48027 0.0749 Inf   6.412  <.0001
 StepF6 - StepF7    0.07544 0.0748 Inf   1.008  0.9999
 StepF6 - StepF8    0.04778 0.0748 Inf   0.639  1.0000
 StepF6 - StepF9    0.09805 0.0749 Inf   1.310  0.9981
 StepF6 - StepF10   0.05249 0.0748 Inf   0.702  1.0000
 StepF6 - StepF11   0.03941 0.0748 Inf   0.527  1.0000
 StepF6 - StepF12   0.24206 0.0748 Inf   3.237  0.1073
 StepF6 - StepF13   0.19282 0.0748 Inf   2.577  0.4711
 StepF6 - StepF14   0.10016 0.0748 Inf   1.339  0.9975
 StepF6 - StepF15   0.10473 0.0748 Inf   1.400  0.9957
 StepF6 - StepF16   0.33046 0.0748 Inf   4.419  0.0014
 StepF6 - StepF17   0.33920 0.0748 Inf   4.536  0.0008
 StepF6 - StepF18   0.56015 0.0749 Inf   7.476  <.0001
 StepF7 - StepF8   -0.02765 0.0748 Inf  -0.370  1.0000
 StepF7 - StepF9    0.02261 0.0748 Inf   0.302  1.0000
 StepF7 - StepF10  -0.02295 0.0748 Inf  -0.307  1.0000
 StepF7 - StepF11  -0.03602 0.0748 Inf  -0.482  1.0000
 StepF7 - StepF12   0.16663 0.0748 Inf   2.227  0.7356
 StepF7 - StepF13   0.11738 0.0748 Inf   1.570  0.9851
 StepF7 - StepF14   0.02472 0.0748 Inf   0.331  1.0000
 StepF7 - StepF15   0.02929 0.0748 Inf   0.391  1.0000
 StepF7 - StepF16   0.25502 0.0748 Inf   3.409  0.0644
 StepF7 - StepF17   0.26377 0.0748 Inf   3.526  0.0443
 StepF7 - StepF18   0.48472 0.0748 Inf   6.478  <.0001
 StepF8 - StepF9    0.05026 0.0748 Inf   0.672  1.0000
 StepF8 - StepF10   0.00470 0.0748 Inf   0.063  1.0000
 StepF8 - StepF11  -0.00837 0.0748 Inf  -0.112  1.0000
 StepF8 - StepF12   0.19428 0.0748 Inf   2.597  0.4555
 StepF8 - StepF13   0.14503 0.0748 Inf   1.939  0.8970
 StepF8 - StepF14   0.05238 0.0748 Inf   0.700  1.0000
 StepF8 - StepF15   0.05694 0.0748 Inf   0.761  1.0000
 StepF8 - StepF16   0.28267 0.0748 Inf   3.779  0.0184
 StepF8 - StepF17   0.29142 0.0748 Inf   3.896  0.0119
 StepF8 - StepF18   0.51237 0.0748 Inf   6.846  <.0001
 StepF9 - StepF10  -0.04556 0.0748 Inf  -0.609  1.0000
 StepF9 - StepF11  -0.05863 0.0748 Inf  -0.784  1.0000
 StepF9 - StepF12   0.14401 0.0749 Inf   1.924  0.9032
 StepF9 - StepF13   0.09477 0.0748 Inf   1.267  0.9987
 StepF9 - StepF14   0.00211 0.0748 Inf   0.028  1.0000
 StepF9 - StepF15   0.00668 0.0749 Inf   0.089  1.0000
 StepF9 - StepF16   0.23241 0.0748 Inf   3.105  0.1535
 StepF9 - StepF17   0.24116 0.0749 Inf   3.222  0.1120
 StepF9 - StepF18   0.46211 0.0748 Inf   6.178  <.0001
 StepF10 - StepF11 -0.01307 0.0748 Inf  -0.175  1.0000
 StepF10 - StepF12  0.18957 0.0748 Inf   2.535  0.5033
 StepF10 - StepF13  0.14033 0.0748 Inf   1.876  0.9210
 StepF10 - StepF14  0.04767 0.0748 Inf   0.637  1.0000
 StepF10 - StepF15  0.05224 0.0748 Inf   0.698  1.0000
 StepF10 - StepF16  0.27797 0.0748 Inf   3.717  0.0231
 StepF10 - StepF17  0.28672 0.0748 Inf   3.834  0.0151
 StepF10 - StepF18  0.50767 0.0749 Inf   6.781  <.0001
 StepF11 - StepF12  0.20265 0.0748 Inf   2.710  0.3734
 StepF11 - StepF13  0.15340 0.0748 Inf   2.050  0.8443
 StepF11 - StepF14  0.06075 0.0748 Inf   0.812  1.0000
 StepF11 - StepF15  0.06531 0.0748 Inf   0.873  1.0000
 StepF11 - StepF16  0.29104 0.0748 Inf   3.892  0.0121
 StepF11 - StepF17  0.29979 0.0748 Inf   4.009  0.0077
 StepF11 - StepF18  0.52074 0.0749 Inf   6.954  <.0001
 StepF12 - StepF13 -0.04924 0.0748 Inf  -0.658  1.0000
 StepF12 - StepF14 -0.14190 0.0748 Inf  -1.897  0.9135
 StepF12 - StepF15 -0.13733 0.0748 Inf  -1.836  0.9339
 StepF12 - StepF16  0.08839 0.0748 Inf   1.182  0.9995
 StepF12 - StepF17  0.09714 0.0748 Inf   1.299  0.9983
 StepF12 - StepF18  0.31809 0.0749 Inf   4.245  0.0029
 StepF13 - StepF14 -0.09266 0.0748 Inf  -1.239  0.9990
 StepF13 - StepF15 -0.08809 0.0748 Inf  -1.177  0.9995
 StepF13 - StepF16  0.13764 0.0748 Inf   1.839  0.9330
 StepF13 - StepF17  0.14639 0.0748 Inf   1.956  0.8898
 StepF13 - StepF18  0.36734 0.0748 Inf   4.910  0.0001
 StepF14 - StepF15  0.00457 0.0748 Inf   0.061  1.0000
 StepF14 - StepF16  0.23030 0.0748 Inf   3.079  0.1642
 StepF14 - StepF17  0.23904 0.0748 Inf   3.196  0.1204
 StepF14 - StepF18  0.45999 0.0748 Inf   6.146  <.0001
 StepF15 - StepF16  0.22573 0.0748 Inf   3.018  0.1911
 StepF15 - StepF17  0.23448 0.0748 Inf   3.135  0.1417
 StepF15 - StepF18  0.45543 0.0749 Inf   6.077  <.0001
 StepF16 - StepF17  0.00875 0.0748 Inf   0.117  1.0000
 StepF16 - StepF18  0.22970 0.0749 Inf   3.066  0.1696
 StepF17 - StepF18  0.22095 0.0749 Inf   2.949  0.2256

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.16757 0.0753 Inf  -2.227  0.7360
 StepF1 - StepF3   -0.09783 0.0753 Inf  -1.299  0.9983
 StepF1 - StepF4    0.01616 0.0752 Inf   0.215  1.0000
 StepF1 - StepF5    0.12063 0.0751 Inf   1.606  0.9811
 StepF1 - StepF6    0.04075 0.0752 Inf   0.542  1.0000
 StepF1 - StepF7    0.11618 0.0750 Inf   1.550  0.9869
 StepF1 - StepF8    0.08853 0.0750 Inf   1.180  0.9995
 StepF1 - StepF9    0.13879 0.0749 Inf   1.853  0.9286
 StepF1 - StepF10   0.09323 0.0751 Inf   1.242  0.9990
 StepF1 - StepF11   0.08016 0.0751 Inf   1.068  0.9999
 StepF1 - StepF12   0.28281 0.0752 Inf   3.763  0.0195
 StepF1 - StepF13   0.23356 0.0749 Inf   3.117  0.1488
 StepF1 - StepF14   0.14091 0.0750 Inf   1.879  0.9201
 StepF1 - StepF15   0.14547 0.0752 Inf   1.935  0.8988
 StepF1 - StepF16   0.37120 0.0751 Inf   4.940  0.0001
 StepF1 - StepF17   0.37995 0.0752 Inf   5.056  0.0001
 StepF1 - StepF18   0.60090 0.0748 Inf   8.029  <.0001
 StepF2 - StepF3    0.06974 0.0748 Inf   0.933  1.0000
 StepF2 - StepF4    0.18373 0.0748 Inf   2.457  0.5639
 StepF2 - StepF5    0.28820 0.0748 Inf   3.853  0.0140
 StepF2 - StepF6    0.20832 0.0748 Inf   2.785  0.3221
 StepF2 - StepF7    0.28375 0.0749 Inf   3.791  0.0176
 StepF2 - StepF8    0.25610 0.0748 Inf   3.423  0.0617
 StepF2 - StepF9    0.30637 0.0749 Inf   4.090  0.0056
 StepF2 - StepF10   0.26080 0.0748 Inf   3.486  0.0504
 StepF2 - StepF11   0.24773 0.0748 Inf   3.312  0.0864
 StepF2 - StepF12   0.45038 0.0748 Inf   6.022  <.0001
 StepF2 - StepF13   0.40113 0.0749 Inf   5.357  <.0001
 StepF2 - StepF14   0.30848 0.0748 Inf   4.122  0.0049
 StepF2 - StepF15   0.31304 0.0748 Inf   4.186  0.0037
 StepF2 - StepF16   0.53877 0.0748 Inf   7.203  <.0001
 StepF2 - StepF17   0.54752 0.0748 Inf   7.321  <.0001
 StepF2 - StepF18   0.76847 0.0750 Inf  10.247  <.0001
 StepF3 - StepF4    0.11399 0.0748 Inf   1.524  0.9891
 StepF3 - StepF5    0.21846 0.0748 Inf   2.920  0.2410
 StepF3 - StepF6    0.13857 0.0748 Inf   1.853  0.9288
 StepF3 - StepF7    0.21401 0.0749 Inf   2.858  0.2765
 StepF3 - StepF8    0.18636 0.0748 Inf   2.490  0.5380
 StepF3 - StepF9    0.23662 0.0749 Inf   3.158  0.1334
 StepF3 - StepF10   0.19106 0.0748 Inf   2.553  0.4888
 StepF3 - StepF11   0.17799 0.0748 Inf   2.379  0.6241
 StepF3 - StepF12   0.38063 0.0748 Inf   5.089  0.0001
 StepF3 - StepF13   0.33139 0.0749 Inf   4.424  0.0013
 StepF3 - StepF14   0.23873 0.0748 Inf   3.190  0.1224
 StepF3 - StepF15   0.24330 0.0748 Inf   3.253  0.1025
 StepF3 - StepF16   0.46903 0.0748 Inf   6.270  <.0001
 StepF3 - StepF17   0.47778 0.0748 Inf   6.388  <.0001
 StepF3 - StepF18   0.69873 0.0750 Inf   9.313  <.0001
 StepF4 - StepF5    0.10447 0.0748 Inf   1.397  0.9959
 StepF4 - StepF6    0.02459 0.0748 Inf   0.329  1.0000
 StepF4 - StepF7    0.10002 0.0748 Inf   1.337  0.9975
 StepF4 - StepF8    0.07237 0.0748 Inf   0.967  1.0000
 StepF4 - StepF9    0.12263 0.0749 Inf   1.638  0.9770
 StepF4 - StepF10   0.07707 0.0748 Inf   1.030  0.9999
 StepF4 - StepF11   0.06400 0.0748 Inf   0.856  1.0000
 StepF4 - StepF12   0.26665 0.0748 Inf   3.565  0.0389
 StepF4 - StepF13   0.21740 0.0749 Inf   2.904  0.2499
 StepF4 - StepF14   0.12475 0.0748 Inf   1.667  0.9726
 StepF4 - StepF15   0.12931 0.0748 Inf   1.729  0.9613
 StepF4 - StepF16   0.35504 0.0748 Inf   4.747  0.0003
 StepF4 - StepF17   0.36379 0.0748 Inf   4.864  0.0002
 StepF4 - StepF18   0.58474 0.0750 Inf   7.800  <.0001
 StepF5 - StepF6   -0.07988 0.0748 Inf  -1.068  0.9999
 StepF5 - StepF7   -0.00445 0.0748 Inf  -0.059  1.0000
 StepF5 - StepF8   -0.03210 0.0748 Inf  -0.429  1.0000
 StepF5 - StepF9    0.01816 0.0748 Inf   0.243  1.0000
 StepF5 - StepF10  -0.02740 0.0748 Inf  -0.366  1.0000
 StepF5 - StepF11  -0.04047 0.0748 Inf  -0.541  1.0000
 StepF5 - StepF12   0.16218 0.0748 Inf   2.169  0.7747
 StepF5 - StepF13   0.11293 0.0748 Inf   1.509  0.9901
 StepF5 - StepF14   0.02027 0.0748 Inf   0.271  1.0000
 StepF5 - StepF15   0.02484 0.0748 Inf   0.332  1.0000
 StepF5 - StepF16   0.25057 0.0748 Inf   3.351  0.0769
 StepF5 - StepF17   0.25932 0.0748 Inf   3.467  0.0535
 StepF5 - StepF18   0.48027 0.0749 Inf   6.412  <.0001
 StepF6 - StepF7    0.07544 0.0748 Inf   1.008  0.9999
 StepF6 - StepF8    0.04778 0.0748 Inf   0.639  1.0000
 StepF6 - StepF9    0.09805 0.0749 Inf   1.310  0.9981
 StepF6 - StepF10   0.05249 0.0748 Inf   0.702  1.0000
 StepF6 - StepF11   0.03941 0.0748 Inf   0.527  1.0000
 StepF6 - StepF12   0.24206 0.0748 Inf   3.237  0.1073
 StepF6 - StepF13   0.19282 0.0748 Inf   2.577  0.4711
 StepF6 - StepF14   0.10016 0.0748 Inf   1.339  0.9975
 StepF6 - StepF15   0.10473 0.0748 Inf   1.400  0.9957
 StepF6 - StepF16   0.33046 0.0748 Inf   4.419  0.0014
 StepF6 - StepF17   0.33920 0.0748 Inf   4.536  0.0008
 StepF6 - StepF18   0.56015 0.0749 Inf   7.476  <.0001
 StepF7 - StepF8   -0.02765 0.0748 Inf  -0.370  1.0000
 StepF7 - StepF9    0.02261 0.0748 Inf   0.302  1.0000
 StepF7 - StepF10  -0.02295 0.0748 Inf  -0.307  1.0000
 StepF7 - StepF11  -0.03602 0.0748 Inf  -0.482  1.0000
 StepF7 - StepF12   0.16663 0.0748 Inf   2.227  0.7356
 StepF7 - StepF13   0.11738 0.0748 Inf   1.570  0.9851
 StepF7 - StepF14   0.02472 0.0748 Inf   0.331  1.0000
 StepF7 - StepF15   0.02929 0.0748 Inf   0.391  1.0000
 StepF7 - StepF16   0.25502 0.0748 Inf   3.409  0.0644
 StepF7 - StepF17   0.26377 0.0748 Inf   3.526  0.0443
 StepF7 - StepF18   0.48472 0.0748 Inf   6.478  <.0001
 StepF8 - StepF9    0.05026 0.0748 Inf   0.672  1.0000
 StepF8 - StepF10   0.00470 0.0748 Inf   0.063  1.0000
 StepF8 - StepF11  -0.00837 0.0748 Inf  -0.112  1.0000
 StepF8 - StepF12   0.19428 0.0748 Inf   2.597  0.4555
 StepF8 - StepF13   0.14503 0.0748 Inf   1.939  0.8970
 StepF8 - StepF14   0.05238 0.0748 Inf   0.700  1.0000
 StepF8 - StepF15   0.05694 0.0748 Inf   0.761  1.0000
 StepF8 - StepF16   0.28267 0.0748 Inf   3.779  0.0184
 StepF8 - StepF17   0.29142 0.0748 Inf   3.896  0.0119
 StepF8 - StepF18   0.51237 0.0748 Inf   6.846  <.0001
 StepF9 - StepF10  -0.04556 0.0748 Inf  -0.609  1.0000
 StepF9 - StepF11  -0.05863 0.0748 Inf  -0.784  1.0000
 StepF9 - StepF12   0.14401 0.0749 Inf   1.924  0.9032
 StepF9 - StepF13   0.09477 0.0748 Inf   1.267  0.9987
 StepF9 - StepF14   0.00211 0.0748 Inf   0.028  1.0000
 StepF9 - StepF15   0.00668 0.0749 Inf   0.089  1.0000
 StepF9 - StepF16   0.23241 0.0748 Inf   3.105  0.1535
 StepF9 - StepF17   0.24116 0.0749 Inf   3.222  0.1120
 StepF9 - StepF18   0.46211 0.0748 Inf   6.178  <.0001
 StepF10 - StepF11 -0.01307 0.0748 Inf  -0.175  1.0000
 StepF10 - StepF12  0.18957 0.0748 Inf   2.535  0.5033
 StepF10 - StepF13  0.14033 0.0748 Inf   1.876  0.9210
 StepF10 - StepF14  0.04767 0.0748 Inf   0.637  1.0000
 StepF10 - StepF15  0.05224 0.0748 Inf   0.698  1.0000
 StepF10 - StepF16  0.27797 0.0748 Inf   3.717  0.0231
 StepF10 - StepF17  0.28672 0.0748 Inf   3.834  0.0151
 StepF10 - StepF18  0.50767 0.0749 Inf   6.781  <.0001
 StepF11 - StepF12  0.20265 0.0748 Inf   2.710  0.3734
 StepF11 - StepF13  0.15340 0.0748 Inf   2.050  0.8443
 StepF11 - StepF14  0.06075 0.0748 Inf   0.812  1.0000
 StepF11 - StepF15  0.06531 0.0748 Inf   0.873  1.0000
 StepF11 - StepF16  0.29104 0.0748 Inf   3.892  0.0121
 StepF11 - StepF17  0.29979 0.0748 Inf   4.009  0.0077
 StepF11 - StepF18  0.52074 0.0749 Inf   6.954  <.0001
 StepF12 - StepF13 -0.04924 0.0748 Inf  -0.658  1.0000
 StepF12 - StepF14 -0.14190 0.0748 Inf  -1.897  0.9135
 StepF12 - StepF15 -0.13733 0.0748 Inf  -1.836  0.9339
 StepF12 - StepF16  0.08839 0.0748 Inf   1.182  0.9995
 StepF12 - StepF17  0.09714 0.0748 Inf   1.299  0.9983
 StepF12 - StepF18  0.31809 0.0749 Inf   4.245  0.0029
 StepF13 - StepF14 -0.09266 0.0748 Inf  -1.239  0.9990
 StepF13 - StepF15 -0.08809 0.0748 Inf  -1.177  0.9995
 StepF13 - StepF16  0.13764 0.0748 Inf   1.839  0.9330
 StepF13 - StepF17  0.14639 0.0748 Inf   1.956  0.8898
 StepF13 - StepF18  0.36734 0.0748 Inf   4.910  0.0001
 StepF14 - StepF15  0.00457 0.0748 Inf   0.061  1.0000
 StepF14 - StepF16  0.23030 0.0748 Inf   3.079  0.1642
 StepF14 - StepF17  0.23904 0.0748 Inf   3.196  0.1204
 StepF14 - StepF18  0.45999 0.0748 Inf   6.146  <.0001
 StepF15 - StepF16  0.22573 0.0748 Inf   3.018  0.1911
 StepF15 - StepF17  0.23448 0.0748 Inf   3.135  0.1417
 StepF15 - StepF18  0.45543 0.0749 Inf   6.077  <.0001
 StepF16 - StepF17  0.00875 0.0748 Inf   0.117  1.0000
 StepF16 - StepF18  0.22970 0.0749 Inf   3.066  0.1696
 StepF17 - StepF18  0.22095 0.0749 Inf   2.949  0.2256

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.16757 0.0753 Inf   2.227  0.3637
 StepF3 - StepF2   -0.06974 0.0748 Inf  -0.933  1.0000
 StepF4 - StepF3   -0.11399 0.0748 Inf  -1.524  1.0000
 StepF5 - StepF4   -0.10447 0.0748 Inf  -1.397  1.0000
 StepF6 - StepF5    0.07988 0.0748 Inf   1.068  1.0000
 StepF7 - StepF6   -0.07544 0.0748 Inf  -1.008  1.0000
 StepF8 - StepF7    0.02765 0.0748 Inf   0.370  1.0000
 StepF9 - StepF8   -0.05026 0.0748 Inf  -0.672  1.0000
 StepF10 - StepF9   0.04556 0.0748 Inf   0.609  1.0000
 StepF11 - StepF10  0.01307 0.0748 Inf   0.175  1.0000
 StepF12 - StepF11 -0.20265 0.0748 Inf  -2.710  0.1010
 StepF13 - StepF12  0.04925 0.0748 Inf   0.658  1.0000
 StepF14 - StepF13  0.09266 0.0748 Inf   1.239  1.0000
 StepF15 - StepF14 -0.00457 0.0748 Inf  -0.061  1.0000
 StepF16 - StepF15 -0.22573 0.0748 Inf  -3.018  0.0432
 StepF17 - StepF16 -0.00875 0.0748 Inf  -0.117  1.0000
 StepF18 - StepF17 -0.22095 0.0749 Inf  -2.949  0.0510

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.16757 0.0753 Inf   2.227  0.3637
 StepF3 - StepF2   -0.06974 0.0748 Inf  -0.933  1.0000
 StepF4 - StepF3   -0.11399 0.0748 Inf  -1.524  1.0000
 StepF5 - StepF4   -0.10447 0.0748 Inf  -1.397  1.0000
 StepF6 - StepF5    0.07988 0.0748 Inf   1.068  1.0000
 StepF7 - StepF6   -0.07544 0.0748 Inf  -1.008  1.0000
 StepF8 - StepF7    0.02765 0.0748 Inf   0.370  1.0000
 StepF9 - StepF8   -0.05026 0.0748 Inf  -0.672  1.0000
 StepF10 - StepF9   0.04556 0.0748 Inf   0.609  1.0000
 StepF11 - StepF10  0.01307 0.0748 Inf   0.175  1.0000
 StepF12 - StepF11 -0.20265 0.0748 Inf  -2.710  0.1010
 StepF13 - StepF12  0.04925 0.0748 Inf   0.658  1.0000
 StepF14 - StepF13  0.09266 0.0748 Inf   1.239  1.0000
 StepF15 - StepF14 -0.00457 0.0748 Inf  -0.061  1.0000
 StepF16 - StepF15 -0.22573 0.0748 Inf  -3.018  0.0432
 StepF17 - StepF16 -0.00875 0.0748 Inf  -0.117  1.0000
 StepF18 - StepF17 -0.22095 0.0749 Inf  -2.949  0.0510

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 
# Block 5
.report_step_test_rtms(sw_b5_6_rt,  "5", "6 steps")


==============================
TEST (rt_ms) | Block 5 | 6 steps | Axis X
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)  
StepF    12.8240  5    0.02509 *
Accuracy  1.4901  1    0.22220  
rt_ms     1.6018  1    0.20565  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.654 0.0491 Inf     0.557     0.750
 2      0.604 0.0486 Inf     0.509     0.700
 3      0.637 0.0486 Inf     0.542     0.733
 4      0.616 0.0486 Inf     0.521     0.711
 5      0.574 0.0486 Inf     0.479     0.669
 6      0.563 0.0486 Inf     0.467     0.658

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.616 0.0487 Inf     0.521     0.712
 2      0.567 0.0486 Inf     0.472     0.662
 3      0.600 0.0486 Inf     0.505     0.695
 4      0.579 0.0486 Inf     0.484     0.674
 5      0.537 0.0485 Inf     0.442     0.632
 6      0.525 0.0485 Inf     0.430     0.620

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2   0.0493 0.0319 Inf   1.546  0.6345
 StepF1 - StepF3   0.0163 0.0318 Inf   0.512  0.9957
 StepF1 - StepF4   0.0376 0.0319 Inf   1.179  0.8473
 StepF1 - StepF5   0.0797 0.0315 Inf   2.532  0.1147
 StepF1 - StepF6   0.0910 0.0316 Inf   2.881  0.0457
 StepF2 - StepF3  -0.0330 0.0309 Inf  -1.068  0.8941
 StepF2 - StepF4  -0.0117 0.0309 Inf  -0.379  0.9990
 StepF2 - StepF5   0.0304 0.0310 Inf   0.982  0.9239
 StepF2 - StepF6   0.0417 0.0309 Inf   1.349  0.7572
 StepF3 - StepF4   0.0213 0.0309 Inf   0.689  0.9832
 StepF3 - StepF5   0.0634 0.0309 Inf   2.050  0.3141
 StepF3 - StepF6   0.0747 0.0309 Inf   2.418  0.1499
 StepF4 - StepF5   0.0421 0.0310 Inf   1.360  0.7511
 StepF4 - StepF6   0.0534 0.0309 Inf   1.728  0.5132
 StepF5 - StepF6   0.0113 0.0309 Inf   0.367  0.9991

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2   0.0493 0.0319 Inf   1.546  0.6345
 StepF1 - StepF3   0.0163 0.0318 Inf   0.512  0.9957
 StepF1 - StepF4   0.0376 0.0319 Inf   1.179  0.8473
 StepF1 - StepF5   0.0797 0.0315 Inf   2.532  0.1147
 StepF1 - StepF6   0.0910 0.0316 Inf   2.881  0.0457
 StepF2 - StepF3  -0.0330 0.0309 Inf  -1.068  0.8941
 StepF2 - StepF4  -0.0117 0.0309 Inf  -0.379  0.9990
 StepF2 - StepF5   0.0304 0.0310 Inf   0.982  0.9239
 StepF2 - StepF6   0.0417 0.0309 Inf   1.349  0.7572
 StepF3 - StepF4   0.0213 0.0309 Inf   0.689  0.9832
 StepF3 - StepF5   0.0634 0.0309 Inf   2.050  0.3141
 StepF3 - StepF6   0.0747 0.0309 Inf   2.418  0.1499
 StepF4 - StepF5   0.0421 0.0310 Inf   1.360  0.7511
 StepF4 - StepF6   0.0534 0.0309 Inf   1.728  0.5132
 StepF5 - StepF6   0.0113 0.0309 Inf   0.367  0.9991

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  -0.0493 0.0319 Inf  -1.546  0.6109
 StepF3 - StepF2   0.0330 0.0309 Inf   1.068  0.8566
 StepF4 - StepF3  -0.0213 0.0309 Inf  -0.689  0.9813
 StepF5 - StepF4  -0.0421 0.0310 Inf  -1.360  0.6955
 StepF6 - StepF5  -0.0113 0.0309 Inf  -0.367  0.9813

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1  -0.0493 0.0319 Inf  -1.546  0.6109
 StepF3 - StepF2   0.0330 0.0309 Inf   1.068  0.8566
 StepF4 - StepF3  -0.0213 0.0309 Inf  -0.689  0.9813
 StepF5 - StepF4  -0.0421 0.0310 Inf  -1.360  0.6955
 StepF6 - StepF5  -0.0113 0.0309 Inf  -0.367  0.9813

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST (rt_ms) | Block 5 | 6 steps | Axis Y
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    30.1689  5  1.366e-05 ***
Accuracy  3.1395  1    0.07642 .  
rt_ms     3.6615  1    0.05568 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.655 0.0587 Inf     0.540     0.770
 2      0.756 0.0582 Inf     0.642     0.870
 3      0.671 0.0582 Inf     0.557     0.785
 4      0.685 0.0582 Inf     0.571     0.800
 5      0.613 0.0582 Inf     0.499     0.727
 6      0.592 0.0582 Inf     0.478     0.706

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.600 0.0583 Inf     0.485     0.714
 2      0.700 0.0582 Inf     0.586     0.814
 3      0.616 0.0581 Inf     0.502     0.730
 4      0.630 0.0582 Inf     0.516     0.744
 5      0.557 0.0581 Inf     0.443     0.671
 6      0.537 0.0581 Inf     0.423     0.650

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.1007 0.0343 Inf  -2.933  0.0394
 StepF1 - StepF3  -0.0161 0.0342 Inf  -0.471  0.9971
 StepF1 - StepF4  -0.0302 0.0343 Inf  -0.879  0.9515
 StepF1 - StepF5   0.0425 0.0339 Inf   1.254  0.8100
 StepF1 - StepF6   0.0631 0.0340 Inf   1.856  0.4299
 StepF2 - StepF3   0.0846 0.0333 Inf   2.541  0.1124
 StepF2 - StepF4   0.0705 0.0333 Inf   2.118  0.2777
 StepF2 - StepF5   0.1431 0.0333 Inf   4.294  0.0003
 StepF2 - StepF6   0.1638 0.0333 Inf   4.918  <.0001
 StepF3 - StepF4  -0.0141 0.0333 Inf  -0.423  0.9983
 StepF3 - StepF5   0.0586 0.0333 Inf   1.759  0.4926
 StepF3 - StepF6   0.0792 0.0333 Inf   2.380  0.1631
 StepF4 - StepF5   0.0727 0.0333 Inf   2.180  0.2472
 StepF4 - StepF6   0.0933 0.0333 Inf   2.801  0.0572
 StepF5 - StepF6   0.0206 0.0333 Inf   0.620  0.9896

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.1007 0.0343 Inf  -2.933  0.0394
 StepF1 - StepF3  -0.0161 0.0342 Inf  -0.471  0.9971
 StepF1 - StepF4  -0.0302 0.0343 Inf  -0.879  0.9515
 StepF1 - StepF5   0.0425 0.0339 Inf   1.254  0.8100
 StepF1 - StepF6   0.0631 0.0340 Inf   1.856  0.4299
 StepF2 - StepF3   0.0846 0.0333 Inf   2.541  0.1124
 StepF2 - StepF4   0.0705 0.0333 Inf   2.118  0.2777
 StepF2 - StepF5   0.1431 0.0333 Inf   4.294  0.0003
 StepF2 - StepF6   0.1638 0.0333 Inf   4.918  <.0001
 StepF3 - StepF4  -0.0141 0.0333 Inf  -0.423  0.9983
 StepF3 - StepF5   0.0586 0.0333 Inf   1.759  0.4926
 StepF3 - StepF6   0.0792 0.0333 Inf   2.380  0.1631
 StepF4 - StepF5   0.0727 0.0333 Inf   2.180  0.2472
 StepF4 - StepF6   0.0933 0.0333 Inf   2.801  0.0572
 StepF5 - StepF6   0.0206 0.0333 Inf   0.620  0.9896

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1007 0.0343 Inf   2.933  0.0168
 StepF3 - StepF2  -0.0846 0.0333 Inf  -2.541  0.0442
 StepF4 - StepF3   0.0141 0.0333 Inf   0.423  1.0000
 StepF5 - StepF4  -0.0727 0.0333 Inf  -2.180  0.0879
 StepF6 - StepF5  -0.0206 0.0333 Inf  -0.620  1.0000

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1007 0.0343 Inf   2.933  0.0168
 StepF3 - StepF2  -0.0846 0.0333 Inf  -2.541  0.0442
 StepF4 - StepF3   0.0141 0.0333 Inf   0.423  1.0000
 StepF5 - StepF4  -0.0727 0.0333 Inf  -2.180  0.0879
 StepF6 - StepF5  -0.0206 0.0333 Inf  -0.620  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST (rt_ms) | Block 5 | 6 steps | Axis Z
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    24.0992  5  0.0002078 ***
Accuracy  3.0682  1  0.0798396 .  
rt_ms     0.0013  1  0.9707594    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.33 0.130 Inf     1.074      1.58
 2       1.51 0.129 Inf     1.258      1.76
 3       1.45 0.129 Inf     1.196      1.70
 4       1.38 0.129 Inf     1.130      1.63
 5       1.29 0.129 Inf     1.034      1.54
 6       1.23 0.129 Inf     0.979      1.48

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.19 0.129 Inf     0.941      1.45
 2       1.37 0.128 Inf     1.123      1.63
 3       1.31 0.128 Inf     1.061      1.56
 4       1.25 0.128 Inf     0.995      1.50
 5       1.15 0.128 Inf     0.900      1.40
 6       1.10 0.128 Inf     0.845      1.35

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.1816 0.0684 Inf  -2.654  0.0847
 StepF1 - StepF3  -0.1197 0.0682 Inf  -1.756  0.4948
 StepF1 - StepF4  -0.0540 0.0684 Inf  -0.789  0.9694
 StepF1 - StepF5   0.0418 0.0675 Inf   0.620  0.9896
 StepF1 - StepF6   0.0968 0.0678 Inf   1.428  0.7097
 StepF2 - StepF3   0.0620 0.0663 Inf   0.935  0.9374
 StepF2 - StepF4   0.1276 0.0663 Inf   1.926  0.3859
 StepF2 - StepF5   0.2235 0.0664 Inf   3.366  0.0099
 StepF2 - StepF6   0.2785 0.0663 Inf   4.199  0.0004
 StepF3 - StepF4   0.0657 0.0663 Inf   0.991  0.9211
 StepF3 - StepF5   0.1615 0.0663 Inf   2.434  0.1444
 StepF3 - StepF6   0.2165 0.0663 Inf   3.266  0.0139
 StepF4 - StepF5   0.0958 0.0664 Inf   1.443  0.7004
 StepF4 - StepF6   0.1508 0.0663 Inf   2.274  0.2046
 StepF5 - StepF6   0.0550 0.0663 Inf   0.830  0.9621

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.1816 0.0684 Inf  -2.654  0.0847
 StepF1 - StepF3  -0.1197 0.0682 Inf  -1.756  0.4948
 StepF1 - StepF4  -0.0540 0.0684 Inf  -0.789  0.9694
 StepF1 - StepF5   0.0418 0.0675 Inf   0.620  0.9896
 StepF1 - StepF6   0.0968 0.0678 Inf   1.428  0.7097
 StepF2 - StepF3   0.0620 0.0663 Inf   0.935  0.9374
 StepF2 - StepF4   0.1276 0.0663 Inf   1.926  0.3859
 StepF2 - StepF5   0.2235 0.0664 Inf   3.366  0.0099
 StepF2 - StepF6   0.2785 0.0663 Inf   4.199  0.0004
 StepF3 - StepF4   0.0657 0.0663 Inf   0.991  0.9211
 StepF3 - StepF5   0.1615 0.0663 Inf   2.434  0.1444
 StepF3 - StepF6   0.2165 0.0663 Inf   3.266  0.0139
 StepF4 - StepF5   0.0958 0.0664 Inf   1.443  0.7004
 StepF4 - StepF6   0.1508 0.0663 Inf   2.274  0.2046
 StepF5 - StepF6   0.0550 0.0663 Inf   0.830  0.9621

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1816 0.0684 Inf   2.654  0.0397
 StepF3 - StepF2  -0.0620 0.0663 Inf  -0.935  0.9656
 StepF4 - StepF3  -0.0657 0.0663 Inf  -0.991  0.9656
 StepF5 - StepF4  -0.0958 0.0664 Inf  -1.443  0.5957
 StepF6 - StepF5  -0.0550 0.0663 Inf  -0.830  0.9656

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1816 0.0684 Inf   2.654  0.0397
 StepF3 - StepF2  -0.0620 0.0663 Inf  -0.935  0.9656
 StepF4 - StepF3  -0.0657 0.0663 Inf  -0.991  0.9656
 StepF5 - StepF4  -0.0958 0.0664 Inf  -1.443  0.5957
 StepF6 - StepF5  -0.0550 0.0663 Inf  -0.830  0.9656

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
.report_step_test_rtms(sw_b5_12_rt, "5", "12 steps")


==============================
TEST (rt_ms) | Block 5 | 12 steps | Axis X
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    53.6589 11  1.362e-07 ***
Accuracy  1.2839  1     0.2572    
rt_ms     1.4777  1     0.2241    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.662 0.0536 Inf     0.556     0.767
 2      0.641 0.0533 Inf     0.537     0.746
 3      0.693 0.0533 Inf     0.588     0.797
 4      0.601 0.0533 Inf     0.496     0.705
 5      0.582 0.0533 Inf     0.478     0.687
 6      0.612 0.0533 Inf     0.507     0.716
 7      0.604 0.0533 Inf     0.500     0.709
 8      0.587 0.0533 Inf     0.482     0.691
 9      0.520 0.0533 Inf     0.415     0.625
 10     0.576 0.0533 Inf     0.472     0.681
 11     0.620 0.0533 Inf     0.515     0.724
 12     0.535 0.0533 Inf     0.431     0.640

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.633 0.0539 Inf     0.528     0.739
 2      0.613 0.0537 Inf     0.508     0.718
 3      0.664 0.0537 Inf     0.559     0.770
 4      0.572 0.0537 Inf     0.467     0.678
 5      0.554 0.0537 Inf     0.449     0.659
 6      0.583 0.0537 Inf     0.478     0.689
 7      0.576 0.0537 Inf     0.471     0.681
 8      0.558 0.0537 Inf     0.453     0.664
 9      0.492 0.0537 Inf     0.387     0.597
 10     0.548 0.0537 Inf     0.443     0.653
 11     0.591 0.0537 Inf     0.486     0.697
 12     0.507 0.0537 Inf     0.402     0.613

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.02035 0.0319 Inf   0.639  1.0000
 StepF1 - StepF3   -0.03098 0.0319 Inf  -0.970  0.9983
 StepF1 - StepF4    0.06087 0.0318 Inf   1.915  0.7498
 StepF1 - StepF5    0.07942 0.0317 Inf   2.503  0.3378
 StepF1 - StepF6    0.04985 0.0317 Inf   1.570  0.9199
 StepF1 - StepF7    0.05744 0.0314 Inf   1.830  0.8018
 StepF1 - StepF8    0.07490 0.0316 Inf   2.367  0.4284
 StepF1 - StepF9    0.14153 0.0314 Inf   4.505  0.0004
 StepF1 - StepF10   0.08530 0.0317 Inf   2.688  0.2321
 StepF1 - StepF11   0.04185 0.0318 Inf   1.316  0.9772
 StepF1 - StepF12   0.12605 0.0317 Inf   3.971  0.0041
 StepF2 - StepF3   -0.05132 0.0312 Inf  -1.645  0.8925
 StepF2 - StepF4    0.04053 0.0312 Inf   1.299  0.9795
 StepF2 - StepF5    0.05908 0.0312 Inf   1.893  0.7640
 StepF2 - StepF6    0.02951 0.0312 Inf   0.946  0.9986
 StepF2 - StepF7    0.03709 0.0313 Inf   1.183  0.9903
 StepF2 - StepF8    0.05456 0.0312 Inf   1.747  0.8461
 StepF2 - StepF9    0.12118 0.0313 Inf   3.868  0.0062
 StepF2 - StepF10   0.06495 0.0312 Inf   2.081  0.6363
 StepF2 - StepF11   0.02150 0.0312 Inf   0.689  0.9999
 StepF2 - StepF12   0.10570 0.0312 Inf   3.387  0.0343
 StepF3 - StepF4    0.09185 0.0312 Inf   2.943  0.1260
 StepF3 - StepF5    0.11040 0.0312 Inf   3.536  0.0208
 StepF3 - StepF6    0.08083 0.0312 Inf   2.589  0.2855
 StepF3 - StepF7    0.08842 0.0314 Inf   2.818  0.1724
 StepF3 - StepF8    0.10588 0.0312 Inf   3.389  0.0341
 StepF3 - StepF9    0.17251 0.0314 Inf   5.500  <.0001
 StepF3 - StepF10   0.11628 0.0312 Inf   3.725  0.0106
 StepF3 - StepF11   0.07283 0.0312 Inf   2.333  0.4525
 StepF3 - StepF12   0.15702 0.0312 Inf   5.030  <.0001
 StepF4 - StepF5    0.01855 0.0312 Inf   0.595  1.0000
 StepF4 - StepF6   -0.01102 0.0312 Inf  -0.353  1.0000
 StepF4 - StepF7   -0.00343 0.0313 Inf  -0.110  1.0000
 StepF4 - StepF8    0.01403 0.0312 Inf   0.450  1.0000
 StepF4 - StepF9    0.08066 0.0313 Inf   2.577  0.2925
 StepF4 - StepF10   0.02443 0.0312 Inf   0.783  0.9998
 StepF4 - StepF11  -0.01902 0.0312 Inf  -0.610  1.0000
 StepF4 - StepF12   0.06517 0.0312 Inf   2.089  0.6309
 StepF5 - StepF6   -0.02957 0.0312 Inf  -0.948  0.9986
 StepF5 - StepF7   -0.02198 0.0313 Inf  -0.703  0.9999
 StepF5 - StepF8   -0.00452 0.0312 Inf  -0.145  1.0000
 StepF5 - StepF9    0.06210 0.0313 Inf   1.986  0.7034
 StepF5 - StepF10   0.00588 0.0312 Inf   0.188  1.0000
 StepF5 - StepF11  -0.03758 0.0312 Inf  -1.204  0.9888
 StepF5 - StepF12   0.04662 0.0312 Inf   1.494  0.9426
 StepF6 - StepF7    0.00759 0.0313 Inf   0.242  1.0000
 StepF6 - StepF8    0.02505 0.0312 Inf   0.803  0.9997
 StepF6 - StepF9    0.09167 0.0313 Inf   2.931  0.1301
 StepF6 - StepF10   0.03545 0.0312 Inf   1.136  0.9931
 StepF6 - StepF11  -0.00801 0.0312 Inf  -0.257  1.0000
 StepF6 - StepF12   0.07619 0.0312 Inf   2.442  0.3775
 StepF7 - StepF8    0.01746 0.0313 Inf   0.559  1.0000
 StepF7 - StepF9    0.08409 0.0312 Inf   2.695  0.2285
 StepF7 - StepF10   0.02786 0.0313 Inf   0.890  0.9992
 StepF7 - StepF11  -0.01559 0.0313 Inf  -0.498  1.0000
 StepF7 - StepF12   0.06861 0.0313 Inf   2.192  0.5551
 StepF8 - StepF9    0.06663 0.0312 Inf   2.132  0.5992
 StepF8 - StepF10   0.01040 0.0312 Inf   0.333  1.0000
 StepF8 - StepF11  -0.03305 0.0312 Inf  -1.059  0.9962
 StepF8 - StepF12   0.05114 0.0312 Inf   1.639  0.8949
 StepF9 - StepF10  -0.05623 0.0313 Inf  -1.798  0.8197
 StepF9 - StepF11  -0.09968 0.0313 Inf  -3.185  0.0643
 StepF9 - StepF12  -0.01548 0.0313 Inf  -0.495  1.0000
 StepF10 - StepF11 -0.04345 0.0312 Inf  -1.393  0.9652
 StepF10 - StepF12  0.04075 0.0312 Inf   1.306  0.9786
 StepF11 - StepF12  0.08420 0.0312 Inf   2.698  0.2268

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.02035 0.0319 Inf   0.639  1.0000
 StepF1 - StepF3   -0.03098 0.0319 Inf  -0.970  0.9983
 StepF1 - StepF4    0.06087 0.0318 Inf   1.915  0.7498
 StepF1 - StepF5    0.07942 0.0317 Inf   2.503  0.3378
 StepF1 - StepF6    0.04985 0.0317 Inf   1.570  0.9199
 StepF1 - StepF7    0.05744 0.0314 Inf   1.830  0.8018
 StepF1 - StepF8    0.07490 0.0316 Inf   2.367  0.4284
 StepF1 - StepF9    0.14153 0.0314 Inf   4.505  0.0004
 StepF1 - StepF10   0.08530 0.0317 Inf   2.688  0.2321
 StepF1 - StepF11   0.04185 0.0318 Inf   1.316  0.9772
 StepF1 - StepF12   0.12605 0.0317 Inf   3.971  0.0041
 StepF2 - StepF3   -0.05132 0.0312 Inf  -1.645  0.8925
 StepF2 - StepF4    0.04053 0.0312 Inf   1.299  0.9795
 StepF2 - StepF5    0.05908 0.0312 Inf   1.893  0.7640
 StepF2 - StepF6    0.02951 0.0312 Inf   0.946  0.9986
 StepF2 - StepF7    0.03709 0.0313 Inf   1.183  0.9903
 StepF2 - StepF8    0.05456 0.0312 Inf   1.747  0.8461
 StepF2 - StepF9    0.12118 0.0313 Inf   3.868  0.0062
 StepF2 - StepF10   0.06495 0.0312 Inf   2.081  0.6363
 StepF2 - StepF11   0.02150 0.0312 Inf   0.689  0.9999
 StepF2 - StepF12   0.10570 0.0312 Inf   3.387  0.0343
 StepF3 - StepF4    0.09185 0.0312 Inf   2.943  0.1260
 StepF3 - StepF5    0.11040 0.0312 Inf   3.536  0.0208
 StepF3 - StepF6    0.08083 0.0312 Inf   2.589  0.2855
 StepF3 - StepF7    0.08842 0.0314 Inf   2.818  0.1724
 StepF3 - StepF8    0.10588 0.0312 Inf   3.389  0.0341
 StepF3 - StepF9    0.17251 0.0314 Inf   5.500  <.0001
 StepF3 - StepF10   0.11628 0.0312 Inf   3.725  0.0106
 StepF3 - StepF11   0.07283 0.0312 Inf   2.333  0.4525
 StepF3 - StepF12   0.15702 0.0312 Inf   5.030  <.0001
 StepF4 - StepF5    0.01855 0.0312 Inf   0.595  1.0000
 StepF4 - StepF6   -0.01102 0.0312 Inf  -0.353  1.0000
 StepF4 - StepF7   -0.00343 0.0313 Inf  -0.110  1.0000
 StepF4 - StepF8    0.01403 0.0312 Inf   0.450  1.0000
 StepF4 - StepF9    0.08066 0.0313 Inf   2.577  0.2925
 StepF4 - StepF10   0.02443 0.0312 Inf   0.783  0.9998
 StepF4 - StepF11  -0.01902 0.0312 Inf  -0.610  1.0000
 StepF4 - StepF12   0.06517 0.0312 Inf   2.089  0.6309
 StepF5 - StepF6   -0.02957 0.0312 Inf  -0.948  0.9986
 StepF5 - StepF7   -0.02198 0.0313 Inf  -0.703  0.9999
 StepF5 - StepF8   -0.00452 0.0312 Inf  -0.145  1.0000
 StepF5 - StepF9    0.06210 0.0313 Inf   1.986  0.7034
 StepF5 - StepF10   0.00588 0.0312 Inf   0.188  1.0000
 StepF5 - StepF11  -0.03758 0.0312 Inf  -1.204  0.9888
 StepF5 - StepF12   0.04662 0.0312 Inf   1.494  0.9426
 StepF6 - StepF7    0.00759 0.0313 Inf   0.242  1.0000
 StepF6 - StepF8    0.02505 0.0312 Inf   0.803  0.9997
 StepF6 - StepF9    0.09167 0.0313 Inf   2.931  0.1301
 StepF6 - StepF10   0.03545 0.0312 Inf   1.136  0.9931
 StepF6 - StepF11  -0.00801 0.0312 Inf  -0.257  1.0000
 StepF6 - StepF12   0.07619 0.0312 Inf   2.442  0.3775
 StepF7 - StepF8    0.01746 0.0313 Inf   0.559  1.0000
 StepF7 - StepF9    0.08409 0.0312 Inf   2.695  0.2285
 StepF7 - StepF10   0.02786 0.0313 Inf   0.890  0.9992
 StepF7 - StepF11  -0.01559 0.0313 Inf  -0.498  1.0000
 StepF7 - StepF12   0.06861 0.0313 Inf   2.192  0.5551
 StepF8 - StepF9    0.06663 0.0312 Inf   2.132  0.5992
 StepF8 - StepF10   0.01040 0.0312 Inf   0.333  1.0000
 StepF8 - StepF11  -0.03305 0.0312 Inf  -1.059  0.9962
 StepF8 - StepF12   0.05114 0.0312 Inf   1.639  0.8949
 StepF9 - StepF10  -0.05623 0.0313 Inf  -1.798  0.8197
 StepF9 - StepF11  -0.09968 0.0313 Inf  -3.185  0.0643
 StepF9 - StepF12  -0.01548 0.0313 Inf  -0.495  1.0000
 StepF10 - StepF11 -0.04345 0.0312 Inf  -1.393  0.9652
 StepF10 - StepF12  0.04075 0.0312 Inf   1.306  0.9786
 StepF11 - StepF12  0.08420 0.0312 Inf   2.698  0.2268

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.02035 0.0319 Inf  -0.639  1.0000
 StepF3 - StepF2    0.05132 0.0312 Inf   1.645  0.7001
 StepF4 - StepF3   -0.09185 0.0312 Inf  -2.943  0.0358
 StepF5 - StepF4   -0.01855 0.0312 Inf  -0.595  1.0000
 StepF6 - StepF5    0.02957 0.0312 Inf   0.948  1.0000
 StepF7 - StepF6   -0.00759 0.0313 Inf  -0.242  1.0000
 StepF8 - StepF7   -0.01746 0.0313 Inf  -0.559  1.0000
 StepF9 - StepF8   -0.06663 0.0312 Inf  -2.132  0.2967
 StepF10 - StepF9   0.05623 0.0313 Inf   1.798  0.5777
 StepF11 - StepF10  0.04345 0.0312 Inf   1.393  0.9825
 StepF12 - StepF11 -0.08420 0.0312 Inf  -2.698  0.0697

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.02035 0.0319 Inf  -0.639  1.0000
 StepF3 - StepF2    0.05132 0.0312 Inf   1.645  0.7001
 StepF4 - StepF3   -0.09185 0.0312 Inf  -2.943  0.0358
 StepF5 - StepF4   -0.01855 0.0312 Inf  -0.595  1.0000
 StepF6 - StepF5    0.02957 0.0312 Inf   0.948  1.0000
 StepF7 - StepF6   -0.00759 0.0313 Inf  -0.242  1.0000
 StepF8 - StepF7   -0.01746 0.0313 Inf  -0.559  1.0000
 StepF9 - StepF8   -0.06663 0.0312 Inf  -2.132  0.2967
 StepF10 - StepF9   0.05623 0.0313 Inf   1.798  0.5777
 StepF11 - StepF10  0.04345 0.0312 Inf   1.393  0.9825
 StepF12 - StepF11 -0.08420 0.0312 Inf  -2.698  0.0697

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST (rt_ms) | Block 5 | 12 steps | Axis Y
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    114.6655 11    < 2e-16 ***
Accuracy   3.9200  1    0.04771 *  
rt_ms      1.3543  1    0.24454    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.631 0.0614 Inf     0.511     0.752
 2      0.812 0.0611 Inf     0.692     0.931
 3      0.691 0.0611 Inf     0.571     0.811
 4      0.691 0.0611 Inf     0.571     0.811
 5      0.624 0.0611 Inf     0.504     0.744
 6      0.542 0.0611 Inf     0.422     0.662
 7      0.607 0.0612 Inf     0.488     0.727
 8      0.635 0.0611 Inf     0.515     0.755
 9      0.557 0.0612 Inf     0.437     0.676
 10     0.660 0.0611 Inf     0.540     0.779
 11     0.615 0.0611 Inf     0.496     0.735
 12     0.549 0.0611 Inf     0.429     0.669

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.584 0.0616 Inf     0.464     0.705
 2      0.765 0.0615 Inf     0.644     0.885
 3      0.644 0.0615 Inf     0.523     0.764
 4      0.644 0.0614 Inf     0.524     0.765
 5      0.577 0.0614 Inf     0.457     0.697
 6      0.495 0.0614 Inf     0.374     0.615
 7      0.561 0.0614 Inf     0.440     0.681
 8      0.588 0.0614 Inf     0.468     0.709
 9      0.510 0.0614 Inf     0.389     0.630
 10     0.613 0.0614 Inf     0.492     0.733
 11     0.569 0.0614 Inf     0.448     0.689
 12     0.502 0.0614 Inf     0.381     0.622

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.180423 0.0334 Inf  -5.405  <.0001
 StepF1 - StepF3   -0.059538 0.0335 Inf  -1.779  0.8297
 StepF1 - StepF4   -0.060122 0.0333 Inf  -1.806  0.8154
 StepF1 - StepF5    0.007261 0.0333 Inf   0.218  1.0000
 StepF1 - StepF6    0.089408 0.0333 Inf   2.688  0.2322
 StepF1 - StepF7    0.023710 0.0329 Inf   0.721  0.9999
 StepF1 - StepF8   -0.004092 0.0332 Inf  -0.123  1.0000
 StepF1 - StepF9    0.074656 0.0329 Inf   2.268  0.4998
 StepF1 - StepF10  -0.028443 0.0333 Inf  -0.855  0.9995
 StepF1 - StepF11   0.015755 0.0333 Inf   0.473  1.0000
 StepF1 - StepF12   0.082420 0.0333 Inf   2.478  0.3539
 StepF2 - StepF3    0.120885 0.0327 Inf   3.697  0.0118
 StepF2 - StepF4    0.120301 0.0327 Inf   3.679  0.0126
 StepF2 - StepF5    0.187684 0.0327 Inf   5.738  <.0001
 StepF2 - StepF6    0.269831 0.0327 Inf   8.250  <.0001
 StepF2 - StepF7    0.204132 0.0328 Inf   6.215  <.0001
 StepF2 - StepF8    0.176330 0.0327 Inf   5.389  <.0001
 StepF2 - StepF9    0.255079 0.0328 Inf   7.770  <.0001
 StepF2 - StepF10   0.151980 0.0327 Inf   4.647  0.0002
 StepF2 - StepF11   0.196178 0.0327 Inf   5.999  <.0001
 StepF2 - StepF12   0.262843 0.0327 Inf   8.037  <.0001
 StepF3 - StepF4   -0.000584 0.0327 Inf  -0.018  1.0000
 StepF3 - StepF5    0.066799 0.0327 Inf   2.042  0.6646
 StepF3 - StepF6    0.148946 0.0327 Inf   4.553  0.0003
 StepF3 - StepF7    0.083247 0.0329 Inf   2.531  0.3201
 StepF3 - StepF8    0.055445 0.0327 Inf   1.693  0.8717
 StepF3 - StepF9    0.134194 0.0329 Inf   4.083  0.0026
 StepF3 - StepF10   0.031095 0.0327 Inf   0.950  0.9986
 StepF3 - StepF11   0.075293 0.0327 Inf   2.302  0.4751
 StepF3 - StepF12   0.141958 0.0327 Inf   4.339  0.0009
 StepF4 - StepF5    0.067383 0.0327 Inf   2.061  0.6512
 StepF4 - StepF6    0.149530 0.0327 Inf   4.573  0.0003
 StepF4 - StepF7    0.083831 0.0328 Inf   2.555  0.3057
 StepF4 - StepF8    0.056029 0.0327 Inf   1.713  0.8628
 StepF4 - StepF9    0.134778 0.0328 Inf   4.110  0.0023
 StepF4 - StepF10   0.031679 0.0327 Inf   0.969  0.9983
 StepF4 - StepF11   0.075877 0.0327 Inf   2.320  0.4618
 StepF4 - StepF12   0.142542 0.0327 Inf   4.359  0.0008
 StepF5 - StepF6    0.082147 0.0327 Inf   2.512  0.3320
 StepF5 - StepF7    0.016449 0.0328 Inf   0.502  1.0000
 StepF5 - StepF8   -0.011354 0.0327 Inf  -0.347  1.0000
 StepF5 - StepF9    0.067395 0.0328 Inf   2.056  0.6543
 StepF5 - StepF10  -0.035704 0.0327 Inf  -1.092  0.9951
 StepF5 - StepF11   0.008494 0.0327 Inf   0.260  1.0000
 StepF5 - StepF12   0.075159 0.0327 Inf   2.298  0.4776
 StepF6 - StepF7   -0.065698 0.0328 Inf  -2.003  0.6914
 StepF6 - StepF8   -0.093500 0.0327 Inf  -2.859  0.1559
 StepF6 - StepF9   -0.014752 0.0328 Inf  -0.450  1.0000
 StepF6 - StepF10  -0.117851 0.0327 Inf  -3.604  0.0164
 StepF6 - StepF11  -0.073653 0.0327 Inf  -2.252  0.5111
 StepF6 - StepF12  -0.006988 0.0327 Inf  -0.214  1.0000
 StepF7 - StepF8   -0.027802 0.0328 Inf  -0.849  0.9995
 StepF7 - StepF9    0.050946 0.0327 Inf   1.558  0.9239
 StepF7 - StepF10  -0.052152 0.0328 Inf  -1.591  0.9130
 StepF7 - StepF11  -0.007954 0.0328 Inf  -0.242  1.0000
 StepF7 - StepF12   0.058711 0.0328 Inf   1.790  0.8237
 StepF8 - StepF9    0.078748 0.0327 Inf   2.405  0.4023
 StepF8 - StepF10  -0.024350 0.0327 Inf  -0.745  0.9999
 StepF8 - StepF11   0.019848 0.0327 Inf   0.607  1.0000
 StepF8 - StepF12   0.086513 0.0327 Inf   2.645  0.2544
 StepF9 - StepF10  -0.103099 0.0328 Inf  -3.145  0.0722
 StepF9 - StepF11  -0.058901 0.0328 Inf  -1.796  0.8208
 StepF9 - StepF12   0.007764 0.0328 Inf   0.237  1.0000
 StepF10 - StepF11  0.044198 0.0327 Inf   1.352  0.9722
 StepF10 - StepF12  0.110863 0.0327 Inf   3.390  0.0339
 StepF11 - StepF12  0.066665 0.0327 Inf   2.039  0.6667

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.180423 0.0334 Inf  -5.405  <.0001
 StepF1 - StepF3   -0.059538 0.0335 Inf  -1.779  0.8297
 StepF1 - StepF4   -0.060122 0.0333 Inf  -1.806  0.8154
 StepF1 - StepF5    0.007261 0.0333 Inf   0.218  1.0000
 StepF1 - StepF6    0.089408 0.0333 Inf   2.688  0.2322
 StepF1 - StepF7    0.023710 0.0329 Inf   0.721  0.9999
 StepF1 - StepF8   -0.004092 0.0332 Inf  -0.123  1.0000
 StepF1 - StepF9    0.074656 0.0329 Inf   2.268  0.4998
 StepF1 - StepF10  -0.028443 0.0333 Inf  -0.855  0.9995
 StepF1 - StepF11   0.015755 0.0333 Inf   0.473  1.0000
 StepF1 - StepF12   0.082420 0.0333 Inf   2.478  0.3539
 StepF2 - StepF3    0.120885 0.0327 Inf   3.697  0.0118
 StepF2 - StepF4    0.120301 0.0327 Inf   3.679  0.0126
 StepF2 - StepF5    0.187684 0.0327 Inf   5.738  <.0001
 StepF2 - StepF6    0.269831 0.0327 Inf   8.250  <.0001
 StepF2 - StepF7    0.204132 0.0328 Inf   6.215  <.0001
 StepF2 - StepF8    0.176330 0.0327 Inf   5.389  <.0001
 StepF2 - StepF9    0.255079 0.0328 Inf   7.770  <.0001
 StepF2 - StepF10   0.151980 0.0327 Inf   4.647  0.0002
 StepF2 - StepF11   0.196178 0.0327 Inf   5.999  <.0001
 StepF2 - StepF12   0.262843 0.0327 Inf   8.037  <.0001
 StepF3 - StepF4   -0.000584 0.0327 Inf  -0.018  1.0000
 StepF3 - StepF5    0.066799 0.0327 Inf   2.042  0.6646
 StepF3 - StepF6    0.148946 0.0327 Inf   4.553  0.0003
 StepF3 - StepF7    0.083247 0.0329 Inf   2.531  0.3201
 StepF3 - StepF8    0.055445 0.0327 Inf   1.693  0.8717
 StepF3 - StepF9    0.134194 0.0329 Inf   4.083  0.0026
 StepF3 - StepF10   0.031095 0.0327 Inf   0.950  0.9986
 StepF3 - StepF11   0.075293 0.0327 Inf   2.302  0.4751
 StepF3 - StepF12   0.141958 0.0327 Inf   4.339  0.0009
 StepF4 - StepF5    0.067383 0.0327 Inf   2.061  0.6512
 StepF4 - StepF6    0.149530 0.0327 Inf   4.573  0.0003
 StepF4 - StepF7    0.083831 0.0328 Inf   2.555  0.3057
 StepF4 - StepF8    0.056029 0.0327 Inf   1.713  0.8628
 StepF4 - StepF9    0.134778 0.0328 Inf   4.110  0.0023
 StepF4 - StepF10   0.031679 0.0327 Inf   0.969  0.9983
 StepF4 - StepF11   0.075877 0.0327 Inf   2.320  0.4618
 StepF4 - StepF12   0.142542 0.0327 Inf   4.359  0.0008
 StepF5 - StepF6    0.082147 0.0327 Inf   2.512  0.3320
 StepF5 - StepF7    0.016449 0.0328 Inf   0.502  1.0000
 StepF5 - StepF8   -0.011354 0.0327 Inf  -0.347  1.0000
 StepF5 - StepF9    0.067395 0.0328 Inf   2.056  0.6543
 StepF5 - StepF10  -0.035704 0.0327 Inf  -1.092  0.9951
 StepF5 - StepF11   0.008494 0.0327 Inf   0.260  1.0000
 StepF5 - StepF12   0.075159 0.0327 Inf   2.298  0.4776
 StepF6 - StepF7   -0.065698 0.0328 Inf  -2.003  0.6914
 StepF6 - StepF8   -0.093500 0.0327 Inf  -2.859  0.1559
 StepF6 - StepF9   -0.014752 0.0328 Inf  -0.450  1.0000
 StepF6 - StepF10  -0.117851 0.0327 Inf  -3.604  0.0164
 StepF6 - StepF11  -0.073653 0.0327 Inf  -2.252  0.5111
 StepF6 - StepF12  -0.006988 0.0327 Inf  -0.214  1.0000
 StepF7 - StepF8   -0.027802 0.0328 Inf  -0.849  0.9995
 StepF7 - StepF9    0.050946 0.0327 Inf   1.558  0.9239
 StepF7 - StepF10  -0.052152 0.0328 Inf  -1.591  0.9130
 StepF7 - StepF11  -0.007954 0.0328 Inf  -0.242  1.0000
 StepF7 - StepF12   0.058711 0.0328 Inf   1.790  0.8237
 StepF8 - StepF9    0.078748 0.0327 Inf   2.405  0.4023
 StepF8 - StepF10  -0.024350 0.0327 Inf  -0.745  0.9999
 StepF8 - StepF11   0.019848 0.0327 Inf   0.607  1.0000
 StepF8 - StepF12   0.086513 0.0327 Inf   2.645  0.2544
 StepF9 - StepF10  -0.103099 0.0328 Inf  -3.145  0.0722
 StepF9 - StepF11  -0.058901 0.0328 Inf  -1.796  0.8208
 StepF9 - StepF12   0.007764 0.0328 Inf   0.237  1.0000
 StepF10 - StepF11  0.044198 0.0327 Inf   1.352  0.9722
 StepF10 - StepF12  0.110863 0.0327 Inf   3.390  0.0339
 StepF11 - StepF12  0.066665 0.0327 Inf   2.039  0.6667

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.180423 0.0334 Inf   5.405  <.0001
 StepF3 - StepF2   -0.120885 0.0327 Inf  -3.697  0.0022
 StepF4 - StepF3    0.000584 0.0327 Inf   0.018  0.9858
 StepF5 - StepF4   -0.067383 0.0327 Inf  -2.061  0.2360
 StepF6 - StepF5   -0.082147 0.0327 Inf  -2.512  0.0960
 StepF7 - StepF6    0.065698 0.0328 Inf   2.003  0.2360
 StepF8 - StepF7    0.027802 0.0328 Inf   0.849  0.7919
 StepF9 - StepF8   -0.078748 0.0327 Inf  -2.405  0.1132
 StepF10 - StepF9   0.103099 0.0328 Inf   3.145  0.0149
 StepF11 - StepF10 -0.044198 0.0327 Inf  -1.352  0.5295
 StepF12 - StepF11 -0.066665 0.0327 Inf  -2.039  0.2360

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.180423 0.0334 Inf   5.405  <.0001
 StepF3 - StepF2   -0.120885 0.0327 Inf  -3.697  0.0022
 StepF4 - StepF3    0.000584 0.0327 Inf   0.018  0.9858
 StepF5 - StepF4   -0.067383 0.0327 Inf  -2.061  0.2360
 StepF6 - StepF5   -0.082147 0.0327 Inf  -2.512  0.0960
 StepF7 - StepF6    0.065698 0.0328 Inf   2.003  0.2360
 StepF8 - StepF7    0.027802 0.0328 Inf   0.849  0.7919
 StepF9 - StepF8   -0.078748 0.0327 Inf  -2.405  0.1132
 StepF10 - StepF9   0.103099 0.0328 Inf   3.145  0.0149
 StepF11 - StepF10 -0.044198 0.0327 Inf  -1.352  0.5295
 StepF12 - StepF11 -0.066665 0.0327 Inf  -2.039  0.2360

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST (rt_ms) | Block 5 | 12 steps | Axis Z
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    90.1815 11  1.536e-14 ***
Accuracy  3.1320  1    0.07677 .  
rt_ms     0.8732  1    0.35008    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.37 0.141 Inf     1.090      1.64
 2       1.60 0.140 Inf     1.321      1.87
 3       1.44 0.140 Inf     1.168      1.72
 4       1.31 0.140 Inf     1.032      1.58
 5       1.31 0.140 Inf     1.040      1.59
 6       1.30 0.140 Inf     1.025      1.57
 7       1.32 0.140 Inf     1.042      1.59
 8       1.25 0.140 Inf     0.972      1.52
 9       1.21 0.140 Inf     0.936      1.49
 10      1.28 0.140 Inf     1.003      1.55
 11      1.26 0.140 Inf     0.981      1.53
 12      1.15 0.140 Inf     0.871      1.42

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.25 0.141 Inf     0.972      1.53
 2       1.48 0.141 Inf     1.202      1.76
 3       1.33 0.141 Inf     1.049      1.60
 4       1.19 0.141 Inf     0.913      1.47
 5       1.20 0.141 Inf     0.921      1.47
 6       1.18 0.141 Inf     0.906      1.46
 7       1.20 0.141 Inf     0.924      1.48
 8       1.13 0.141 Inf     0.853      1.41
 9       1.09 0.141 Inf     0.818      1.37
 10      1.16 0.141 Inf     0.884      1.44
 11      1.14 0.141 Inf     0.862      1.42
 12      1.03 0.141 Inf     0.753      1.31

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.22995 0.0583 Inf  -3.945  0.0046
 StepF1 - StepF3   -0.07660 0.0584 Inf  -1.311  0.9780
 StepF1 - StepF4    0.05927 0.0581 Inf   1.019  0.9973
 StepF1 - StepF5    0.05145 0.0581 Inf   0.886  0.9993
 StepF1 - StepF6    0.06629 0.0581 Inf   1.141  0.9928
 StepF1 - StepF7    0.04863 0.0574 Inf   0.847  0.9995
 StepF1 - StepF8    0.11899 0.0579 Inf   2.056  0.6546
 StepF1 - StepF9    0.15492 0.0575 Inf   2.696  0.2278
 StepF1 - StepF10   0.08832 0.0581 Inf   1.521  0.9351
 StepF1 - StepF11   0.11011 0.0582 Inf   1.893  0.7639
 StepF1 - StepF12   0.21980 0.0581 Inf   3.785  0.0085
 StepF2 - StepF3    0.15335 0.0571 Inf   2.687  0.2323
 StepF2 - StepF4    0.28922 0.0571 Inf   5.068  <.0001
 StepF2 - StepF5    0.28140 0.0571 Inf   4.931  0.0001
 StepF2 - StepF6    0.29624 0.0571 Inf   5.191  <.0001
 StepF2 - StepF7    0.27858 0.0573 Inf   4.860  0.0001
 StepF2 - StepF8    0.34894 0.0571 Inf   6.111  <.0001
 StepF2 - StepF9    0.38487 0.0573 Inf   6.717  <.0001
 StepF2 - StepF10   0.31827 0.0571 Inf   5.577  <.0001
 StepF2 - StepF11   0.34006 0.0571 Inf   5.959  <.0001
 StepF2 - StepF12   0.44975 0.0571 Inf   7.881  <.0001
 StepF3 - StepF4    0.13587 0.0571 Inf   2.380  0.4194
 StepF3 - StepF5    0.12805 0.0571 Inf   2.243  0.5181
 StepF3 - StepF6    0.14289 0.0571 Inf   2.503  0.3378
 StepF3 - StepF7    0.12523 0.0574 Inf   2.182  0.5629
 StepF3 - StepF8    0.19558 0.0571 Inf   3.423  0.0305
 StepF3 - StepF9    0.23152 0.0574 Inf   4.036  0.0032
 StepF3 - StepF10   0.16492 0.0571 Inf   2.889  0.1447
 StepF3 - StepF11   0.18671 0.0571 Inf   3.271  0.0495
 StepF3 - StepF12   0.29640 0.0571 Inf   5.192  <.0001
 StepF4 - StepF5   -0.00782 0.0571 Inf  -0.137  1.0000
 StepF4 - StepF6    0.00702 0.0571 Inf   0.123  1.0000
 StepF4 - StepF7   -0.01064 0.0573 Inf  -0.186  1.0000
 StepF4 - StepF8    0.05971 0.0571 Inf   1.046  0.9966
 StepF4 - StepF9    0.09565 0.0572 Inf   1.671  0.8814
 StepF4 - StepF10   0.02905 0.0571 Inf   0.509  1.0000
 StepF4 - StepF11   0.05084 0.0571 Inf   0.891  0.9992
 StepF4 - StepF12   0.16053 0.0571 Inf   2.813  0.1742
 StepF5 - StepF6    0.01483 0.0571 Inf   0.260  1.0000
 StepF5 - StepF7   -0.00282 0.0572 Inf  -0.049  1.0000
 StepF5 - StepF8    0.06753 0.0571 Inf   1.183  0.9903
 StepF5 - StepF9    0.10347 0.0572 Inf   1.809  0.8135
 StepF5 - StepF10   0.03687 0.0571 Inf   0.646  1.0000
 StepF5 - StepF11   0.05865 0.0571 Inf   1.028  0.9971
 StepF5 - StepF12   0.16834 0.0571 Inf   2.950  0.1236
 StepF6 - StepF7   -0.01765 0.0572 Inf  -0.308  1.0000
 StepF6 - StepF8    0.05270 0.0571 Inf   0.923  0.9989
 StepF6 - StepF9    0.08863 0.0572 Inf   1.549  0.9267
 StepF6 - StepF10   0.02203 0.0571 Inf   0.386  1.0000
 StepF6 - StepF11   0.04382 0.0571 Inf   0.768  0.9998
 StepF6 - StepF12   0.15351 0.0571 Inf   2.690  0.2308
 StepF7 - StepF8    0.07035 0.0572 Inf   1.231  0.9866
 StepF7 - StepF9    0.10629 0.0571 Inf   1.863  0.7825
 StepF7 - StepF10   0.03969 0.0572 Inf   0.694  0.9999
 StepF7 - StepF11   0.06148 0.0573 Inf   1.073  0.9958
 StepF7 - StepF12   0.17116 0.0572 Inf   2.991  0.1111
 StepF8 - StepF9    0.03594 0.0571 Inf   0.629  1.0000
 StepF8 - StepF10  -0.03066 0.0571 Inf  -0.537  1.0000
 StepF8 - StepF11  -0.00888 0.0571 Inf  -0.156  1.0000
 StepF8 - StepF12   0.10081 0.0571 Inf   1.766  0.8364
 StepF9 - StepF10  -0.06660 0.0572 Inf  -1.164  0.9915
 StepF9 - StepF11  -0.04481 0.0572 Inf  -0.783  0.9998
 StepF9 - StepF12   0.06488 0.0572 Inf   1.134  0.9932
 StepF10 - StepF11  0.02179 0.0571 Inf   0.382  1.0000
 StepF10 - StepF12  0.13148 0.0571 Inf   2.304  0.4735
 StepF11 - StepF12  0.10969 0.0571 Inf   1.922  0.7454

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.22995 0.0583 Inf  -3.945  0.0046
 StepF1 - StepF3   -0.07660 0.0584 Inf  -1.311  0.9780
 StepF1 - StepF4    0.05927 0.0581 Inf   1.019  0.9973
 StepF1 - StepF5    0.05145 0.0581 Inf   0.886  0.9993
 StepF1 - StepF6    0.06629 0.0581 Inf   1.141  0.9928
 StepF1 - StepF7    0.04863 0.0574 Inf   0.847  0.9995
 StepF1 - StepF8    0.11899 0.0579 Inf   2.056  0.6546
 StepF1 - StepF9    0.15492 0.0575 Inf   2.696  0.2278
 StepF1 - StepF10   0.08832 0.0581 Inf   1.521  0.9351
 StepF1 - StepF11   0.11011 0.0582 Inf   1.893  0.7639
 StepF1 - StepF12   0.21980 0.0581 Inf   3.785  0.0085
 StepF2 - StepF3    0.15335 0.0571 Inf   2.687  0.2323
 StepF2 - StepF4    0.28922 0.0571 Inf   5.068  <.0001
 StepF2 - StepF5    0.28140 0.0571 Inf   4.931  0.0001
 StepF2 - StepF6    0.29624 0.0571 Inf   5.191  <.0001
 StepF2 - StepF7    0.27858 0.0573 Inf   4.860  0.0001
 StepF2 - StepF8    0.34894 0.0571 Inf   6.111  <.0001
 StepF2 - StepF9    0.38487 0.0573 Inf   6.717  <.0001
 StepF2 - StepF10   0.31827 0.0571 Inf   5.577  <.0001
 StepF2 - StepF11   0.34006 0.0571 Inf   5.959  <.0001
 StepF2 - StepF12   0.44975 0.0571 Inf   7.881  <.0001
 StepF3 - StepF4    0.13587 0.0571 Inf   2.380  0.4194
 StepF3 - StepF5    0.12805 0.0571 Inf   2.243  0.5181
 StepF3 - StepF6    0.14289 0.0571 Inf   2.503  0.3378
 StepF3 - StepF7    0.12523 0.0574 Inf   2.182  0.5629
 StepF3 - StepF8    0.19558 0.0571 Inf   3.423  0.0305
 StepF3 - StepF9    0.23152 0.0574 Inf   4.036  0.0032
 StepF3 - StepF10   0.16492 0.0571 Inf   2.889  0.1447
 StepF3 - StepF11   0.18671 0.0571 Inf   3.271  0.0495
 StepF3 - StepF12   0.29640 0.0571 Inf   5.192  <.0001
 StepF4 - StepF5   -0.00782 0.0571 Inf  -0.137  1.0000
 StepF4 - StepF6    0.00702 0.0571 Inf   0.123  1.0000
 StepF4 - StepF7   -0.01064 0.0573 Inf  -0.186  1.0000
 StepF4 - StepF8    0.05971 0.0571 Inf   1.046  0.9966
 StepF4 - StepF9    0.09565 0.0572 Inf   1.671  0.8814
 StepF4 - StepF10   0.02905 0.0571 Inf   0.509  1.0000
 StepF4 - StepF11   0.05084 0.0571 Inf   0.891  0.9992
 StepF4 - StepF12   0.16053 0.0571 Inf   2.813  0.1742
 StepF5 - StepF6    0.01483 0.0571 Inf   0.260  1.0000
 StepF5 - StepF7   -0.00282 0.0572 Inf  -0.049  1.0000
 StepF5 - StepF8    0.06753 0.0571 Inf   1.183  0.9903
 StepF5 - StepF9    0.10347 0.0572 Inf   1.809  0.8135
 StepF5 - StepF10   0.03687 0.0571 Inf   0.646  1.0000
 StepF5 - StepF11   0.05865 0.0571 Inf   1.028  0.9971
 StepF5 - StepF12   0.16834 0.0571 Inf   2.950  0.1236
 StepF6 - StepF7   -0.01765 0.0572 Inf  -0.308  1.0000
 StepF6 - StepF8    0.05270 0.0571 Inf   0.923  0.9989
 StepF6 - StepF9    0.08863 0.0572 Inf   1.549  0.9267
 StepF6 - StepF10   0.02203 0.0571 Inf   0.386  1.0000
 StepF6 - StepF11   0.04382 0.0571 Inf   0.768  0.9998
 StepF6 - StepF12   0.15351 0.0571 Inf   2.690  0.2308
 StepF7 - StepF8    0.07035 0.0572 Inf   1.231  0.9866
 StepF7 - StepF9    0.10629 0.0571 Inf   1.863  0.7825
 StepF7 - StepF10   0.03969 0.0572 Inf   0.694  0.9999
 StepF7 - StepF11   0.06148 0.0573 Inf   1.073  0.9958
 StepF7 - StepF12   0.17116 0.0572 Inf   2.991  0.1111
 StepF8 - StepF9    0.03594 0.0571 Inf   0.629  1.0000
 StepF8 - StepF10  -0.03066 0.0571 Inf  -0.537  1.0000
 StepF8 - StepF11  -0.00888 0.0571 Inf  -0.156  1.0000
 StepF8 - StepF12   0.10081 0.0571 Inf   1.766  0.8364
 StepF9 - StepF10  -0.06660 0.0572 Inf  -1.164  0.9915
 StepF9 - StepF11  -0.04481 0.0572 Inf  -0.783  0.9998
 StepF9 - StepF12   0.06488 0.0572 Inf   1.134  0.9932
 StepF10 - StepF11  0.02179 0.0571 Inf   0.382  1.0000
 StepF10 - StepF12  0.13148 0.0571 Inf   2.304  0.4735
 StepF11 - StepF12  0.10969 0.0571 Inf   1.922  0.7454

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.22995 0.0583 Inf   3.945  0.0009
 StepF3 - StepF2   -0.15335 0.0571 Inf  -2.687  0.0720
 StepF4 - StepF3   -0.13587 0.0571 Inf  -2.380  0.1557
 StepF5 - StepF4    0.00782 0.0571 Inf   0.137  1.0000
 StepF6 - StepF5   -0.01483 0.0571 Inf  -0.260  1.0000
 StepF7 - StepF6    0.01765 0.0572 Inf   0.308  1.0000
 StepF8 - StepF7   -0.07035 0.0572 Inf  -1.231  1.0000
 StepF9 - StepF8   -0.03594 0.0571 Inf  -0.629  1.0000
 StepF10 - StepF9   0.06660 0.0572 Inf   1.164  1.0000
 StepF11 - StepF10 -0.02179 0.0571 Inf  -0.382  1.0000
 StepF12 - StepF11 -0.10969 0.0571 Inf  -1.922  0.4366

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.22995 0.0583 Inf   3.945  0.0009
 StepF3 - StepF2   -0.15335 0.0571 Inf  -2.687  0.0720
 StepF4 - StepF3   -0.13587 0.0571 Inf  -2.380  0.1557
 StepF5 - StepF4    0.00782 0.0571 Inf   0.137  1.0000
 StepF6 - StepF5   -0.01483 0.0571 Inf  -0.260  1.0000
 StepF7 - StepF6    0.01765 0.0572 Inf   0.308  1.0000
 StepF8 - StepF7   -0.07035 0.0572 Inf  -1.231  1.0000
 StepF9 - StepF8   -0.03594 0.0571 Inf  -0.629  1.0000
 StepF10 - StepF9   0.06660 0.0572 Inf   1.164  1.0000
 StepF11 - StepF10 -0.02179 0.0571 Inf  -0.382  1.0000
 StepF12 - StepF11 -0.10969 0.0571 Inf  -1.922  0.4366

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
.report_step_test_rtms(sw_b5_18_rt, "5", "18 steps")


==============================
TEST (rt_ms) | Block 5 | 18 steps | Axis X
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    72.3183 17  8.571e-09 ***
Accuracy  0.4428  1     0.5058    
rt_ms     0.8153  1     0.3666    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.675 0.0554 Inf     0.566     0.783
 2      0.625 0.0553 Inf     0.516     0.733
 3      0.690 0.0553 Inf     0.582     0.799
 4      0.613 0.0553 Inf     0.505     0.722
 5      0.573 0.0553 Inf     0.464     0.681
 6      0.609 0.0553 Inf     0.501     0.717
 7      0.636 0.0553 Inf     0.527     0.744
 8      0.571 0.0553 Inf     0.463     0.680
 9      0.576 0.0553 Inf     0.468     0.685
 10     0.618 0.0553 Inf     0.509     0.726
 11     0.648 0.0553 Inf     0.540     0.757
 12     0.532 0.0553 Inf     0.424     0.640
 13     0.574 0.0553 Inf     0.466     0.682
 14     0.609 0.0553 Inf     0.501     0.718
 15     0.598 0.0553 Inf     0.489     0.706
 16     0.544 0.0553 Inf     0.435     0.652
 17     0.529 0.0553 Inf     0.421     0.637
 18     0.523 0.0553 Inf     0.415     0.632

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.652 0.0562 Inf     0.542     0.762
 2      0.602 0.0562 Inf     0.492     0.712
 3      0.668 0.0562 Inf     0.558     0.778
 4      0.591 0.0562 Inf     0.481     0.701
 5      0.550 0.0561 Inf     0.440     0.660
 6      0.587 0.0561 Inf     0.477     0.697
 7      0.613 0.0561 Inf     0.503     0.723
 8      0.549 0.0561 Inf     0.439     0.659
 9      0.554 0.0561 Inf     0.444     0.664
 10     0.595 0.0561 Inf     0.485     0.705
 11     0.626 0.0562 Inf     0.516     0.736
 12     0.510 0.0561 Inf     0.400     0.620
 13     0.552 0.0561 Inf     0.442     0.662
 14     0.587 0.0561 Inf     0.477     0.697
 15     0.575 0.0562 Inf     0.465     0.685
 16     0.521 0.0562 Inf     0.411     0.631
 17     0.506 0.0562 Inf     0.396     0.617
 18     0.501 0.0561 Inf     0.391     0.611

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.049822 0.0335 Inf   1.487  0.9916
 StepF1 - StepF3   -0.015630 0.0335 Inf  -0.466  1.0000
 StepF1 - StepF4    0.061234 0.0335 Inf   1.830  0.9358
 StepF1 - StepF5    0.101836 0.0334 Inf   3.050  0.1768
 StepF1 - StepF6    0.065505 0.0334 Inf   1.963  0.8868
 StepF1 - StepF7    0.038961 0.0333 Inf   1.169  0.9995
 StepF1 - StepF8    0.103341 0.0334 Inf   3.090  0.1594
 StepF1 - StepF9    0.098451 0.0332 Inf   2.962  0.2190
 StepF1 - StepF10   0.056819 0.0333 Inf   1.705  0.9660
 StepF1 - StepF11   0.026170 0.0335 Inf   0.782  1.0000
 StepF1 - StepF12   0.142616 0.0334 Inf   4.267  0.0026
 StepF1 - StepF13   0.100626 0.0332 Inf   3.027  0.1873
 StepF1 - StepF14   0.065300 0.0334 Inf   1.957  0.8895
 StepF1 - StepF15   0.077028 0.0335 Inf   2.300  0.6835
 StepF1 - StepF16   0.130821 0.0335 Inf   3.904  0.0115
 StepF1 - StepF17   0.145720 0.0335 Inf   4.356  0.0018
 StepF1 - StepF18   0.151198 0.0334 Inf   4.524  0.0008
 StepF2 - StepF3   -0.065452 0.0332 Inf  -1.971  0.8833
 StepF2 - StepF4    0.011412 0.0332 Inf   0.344  1.0000
 StepF2 - StepF5    0.052014 0.0332 Inf   1.566  0.9855
 StepF2 - StepF6    0.015683 0.0332 Inf   0.472  1.0000
 StepF2 - StepF7   -0.010861 0.0332 Inf  -0.327  1.0000
 StepF2 - StepF8    0.053519 0.0332 Inf   1.611  0.9805
 StepF2 - StepF9    0.048628 0.0333 Inf   1.459  0.9932
 StepF2 - StepF10   0.006997 0.0333 Inf   0.210  1.0000
 StepF2 - StepF11  -0.023652 0.0332 Inf  -0.712  1.0000
 StepF2 - StepF12   0.092793 0.0332 Inf   2.794  0.3168
 StepF2 - StepF13   0.050803 0.0333 Inf   1.524  0.9890
 StepF2 - StepF14   0.015478 0.0332 Inf   0.466  1.0000
 StepF2 - StepF15   0.027206 0.0332 Inf   0.819  1.0000
 StepF2 - StepF16   0.080998 0.0332 Inf   2.439  0.5778
 StepF2 - StepF17   0.095897 0.0332 Inf   2.887  0.2595
 StepF2 - StepF18   0.101376 0.0332 Inf   3.052  0.1758
 StepF3 - StepF4    0.076864 0.0332 Inf   2.314  0.6730
 StepF3 - StepF5    0.117466 0.0332 Inf   3.535  0.0429
 StepF3 - StepF6    0.081135 0.0332 Inf   2.441  0.5759
 StepF3 - StepF7    0.054591 0.0333 Inf   1.642  0.9764
 StepF3 - StepF8    0.118971 0.0332 Inf   3.582  0.0368
 StepF3 - StepF9    0.114081 0.0333 Inf   3.421  0.0620
 StepF3 - StepF10   0.072449 0.0333 Inf   2.178  0.7684
 StepF3 - StepF11   0.041800 0.0332 Inf   1.259  0.9988
 StepF3 - StepF12   0.158246 0.0332 Inf   4.764  0.0003
 StepF3 - StepF13   0.116256 0.0333 Inf   3.487  0.0503
 StepF3 - StepF14   0.080931 0.0332 Inf   2.435  0.5807
 StepF3 - StepF15   0.092658 0.0332 Inf   2.790  0.3191
 StepF3 - StepF16   0.146451 0.0332 Inf   4.410  0.0014
 StepF3 - StepF17   0.161350 0.0332 Inf   4.858  0.0002
 StepF3 - StepF18   0.166828 0.0332 Inf   5.022  0.0001
 StepF4 - StepF5    0.040602 0.0332 Inf   1.222  0.9992
 StepF4 - StepF6    0.004271 0.0332 Inf   0.129  1.0000
 StepF4 - StepF7   -0.022273 0.0332 Inf  -0.670  1.0000
 StepF4 - StepF8    0.042107 0.0332 Inf   1.268  0.9987
 StepF4 - StepF9    0.037216 0.0333 Inf   1.117  0.9997
 StepF4 - StepF10  -0.004415 0.0332 Inf  -0.133  1.0000
 StepF4 - StepF11  -0.035064 0.0332 Inf  -1.056  0.9999
 StepF4 - StepF12   0.081381 0.0332 Inf   2.450  0.5689
 StepF4 - StepF13   0.039391 0.0333 Inf   1.183  0.9995
 StepF4 - StepF14   0.004066 0.0332 Inf   0.122  1.0000
 StepF4 - StepF15   0.015794 0.0332 Inf   0.476  1.0000
 StepF4 - StepF16   0.069587 0.0332 Inf   2.095  0.8196
 StepF4 - StepF17   0.084485 0.0332 Inf   2.544  0.4962
 StepF4 - StepF18   0.089964 0.0332 Inf   2.709  0.3740
 StepF5 - StepF6   -0.036331 0.0332 Inf  -1.094  0.9998
 StepF5 - StepF7   -0.062875 0.0332 Inf  -1.893  0.9150
 StepF5 - StepF8    0.001505 0.0332 Inf   0.045  1.0000
 StepF5 - StepF9   -0.003385 0.0333 Inf  -0.102  1.0000
 StepF5 - StepF10  -0.045017 0.0332 Inf  -1.355  0.9971
 StepF5 - StepF11  -0.075666 0.0332 Inf  -2.278  0.6997
 StepF5 - StepF12   0.040780 0.0332 Inf   1.228  0.9991
 StepF5 - StepF13  -0.001210 0.0333 Inf  -0.036  1.0000
 StepF5 - StepF14  -0.036535 0.0332 Inf  -1.100  0.9998
 StepF5 - StepF15  -0.024807 0.0332 Inf  -0.747  1.0000
 StepF5 - StepF16   0.028985 0.0332 Inf   0.872  1.0000
 StepF5 - StepF17   0.043884 0.0332 Inf   1.321  0.9979
 StepF5 - StepF18   0.049362 0.0332 Inf   1.486  0.9917
 StepF6 - StepF7   -0.026544 0.0332 Inf  -0.799  1.0000
 StepF6 - StepF8    0.037836 0.0332 Inf   1.139  0.9997
 StepF6 - StepF9    0.032945 0.0333 Inf   0.991  1.0000
 StepF6 - StepF10  -0.008686 0.0332 Inf  -0.262  1.0000
 StepF6 - StepF11  -0.039335 0.0332 Inf  -1.184  0.9995
 StepF6 - StepF12   0.077110 0.0332 Inf   2.322  0.6675
 StepF6 - StepF13   0.035121 0.0333 Inf   1.056  0.9999
 StepF6 - StepF14  -0.000205 0.0332 Inf  -0.006  1.0000
 StepF6 - StepF15   0.011523 0.0332 Inf   0.347  1.0000
 StepF6 - StepF16   0.065316 0.0332 Inf   1.965  0.8858
 StepF6 - StepF17   0.080214 0.0332 Inf   2.415  0.5966
 StepF6 - StepF18   0.085693 0.0332 Inf   2.580  0.4685
 StepF7 - StepF8    0.064380 0.0332 Inf   1.938  0.8976
 StepF7 - StepF9    0.059489 0.0332 Inf   1.790  0.9471
 StepF7 - StepF10   0.017858 0.0332 Inf   0.538  1.0000
 StepF7 - StepF11  -0.012791 0.0332 Inf  -0.385  1.0000
 StepF7 - StepF12   0.103654 0.0332 Inf   3.120  0.1476
 StepF7 - StepF13   0.061664 0.0332 Inf   1.855  0.9279
 StepF7 - StepF14   0.026339 0.0332 Inf   0.793  1.0000
 StepF7 - StepF15   0.038067 0.0332 Inf   1.145  0.9997
 StepF7 - StepF16   0.091859 0.0333 Inf   2.763  0.3371
 StepF7 - StepF17   0.106758 0.0332 Inf   3.212  0.1149
 StepF7 - StepF18   0.112237 0.0332 Inf   3.378  0.0707
 StepF8 - StepF9   -0.004890 0.0333 Inf  -0.147  1.0000
 StepF8 - StepF10  -0.046522 0.0332 Inf  -1.400  0.9958
 StepF8 - StepF11  -0.077171 0.0332 Inf  -2.324  0.6661
 StepF8 - StepF12   0.039275 0.0332 Inf   1.183  0.9995
 StepF8 - StepF13  -0.002715 0.0333 Inf  -0.082  1.0000
 StepF8 - StepF14  -0.038040 0.0332 Inf  -1.145  0.9997
 StepF8 - StepF15  -0.026313 0.0332 Inf  -0.792  1.0000
 StepF8 - StepF16   0.027480 0.0332 Inf   0.827  1.0000
 StepF8 - StepF17   0.042379 0.0332 Inf   1.276  0.9986
 StepF8 - StepF18   0.047857 0.0332 Inf   1.441  0.9941
 StepF9 - StepF10  -0.041632 0.0332 Inf  -1.253  0.9989
 StepF9 - StepF11  -0.072281 0.0333 Inf  -2.169  0.7745
 StepF9 - StepF12   0.044165 0.0333 Inf   1.327  0.9978
 StepF9 - StepF13   0.002175 0.0332 Inf   0.065  1.0000
 StepF9 - StepF14  -0.033150 0.0333 Inf  -0.997  0.9999
 StepF9 - StepF15  -0.021422 0.0333 Inf  -0.643  1.0000
 StepF9 - StepF16   0.032370 0.0333 Inf   0.971  1.0000
 StepF9 - StepF17   0.047269 0.0333 Inf   1.419  0.9950
 StepF9 - StepF18   0.052747 0.0333 Inf   1.585  0.9835
 StepF10 - StepF11 -0.030649 0.0332 Inf  -0.922  1.0000
 StepF10 - StepF12  0.085797 0.0332 Inf   2.582  0.4669
 StepF10 - StepF13  0.043807 0.0332 Inf   1.318  0.9979
 StepF10 - StepF14  0.008482 0.0332 Inf   0.255  1.0000
 StepF10 - StepF15  0.020209 0.0333 Inf   0.608  1.0000
 StepF10 - StepF16  0.074002 0.0333 Inf   2.225  0.7370
 StepF10 - StepF17  0.088901 0.0332 Inf   2.675  0.3983
 StepF10 - StepF18  0.094379 0.0332 Inf   2.840  0.2873
 StepF11 - StepF12  0.116446 0.0332 Inf   3.506  0.0473
 StepF11 - StepF13  0.074456 0.0333 Inf   2.235  0.7302
 StepF11 - StepF14  0.039131 0.0332 Inf   1.178  0.9995
 StepF11 - StepF15  0.050859 0.0332 Inf   1.531  0.9885
 StepF11 - StepF16  0.104651 0.0332 Inf   3.151  0.1359
 StepF11 - StepF17  0.119550 0.0332 Inf   3.600  0.0346
 StepF11 - StepF18  0.125028 0.0332 Inf   3.764  0.0194
 StepF12 - StepF13 -0.041990 0.0333 Inf  -1.262  0.9988
 StepF12 - StepF14 -0.077315 0.0332 Inf  -2.328  0.6629
 StepF12 - StepF15 -0.065587 0.0332 Inf  -1.975  0.8816
 StepF12 - StepF16 -0.011795 0.0332 Inf  -0.355  1.0000
 StepF12 - StepF17  0.003104 0.0332 Inf   0.093  1.0000
 StepF12 - StepF18  0.008582 0.0332 Inf   0.258  1.0000
 StepF13 - StepF14 -0.035325 0.0333 Inf  -1.062  0.9999
 StepF13 - StepF15 -0.023597 0.0333 Inf  -0.708  1.0000
 StepF13 - StepF16  0.030195 0.0333 Inf   0.906  1.0000
 StepF13 - StepF17  0.045094 0.0333 Inf   1.354  0.9971
 StepF13 - StepF18  0.050572 0.0333 Inf   1.520  0.9894
 StepF14 - StepF15  0.011728 0.0332 Inf   0.353  1.0000
 StepF14 - StepF16  0.065520 0.0332 Inf   1.972  0.8830
 StepF14 - StepF17  0.080419 0.0332 Inf   2.421  0.5919
 StepF14 - StepF18  0.085897 0.0332 Inf   2.586  0.4639
 StepF15 - StepF16  0.053792 0.0332 Inf   1.620  0.9794
 StepF15 - StepF17  0.068691 0.0332 Inf   2.068  0.8347
 StepF15 - StepF18  0.074170 0.0332 Inf   2.233  0.7316
 StepF16 - StepF17  0.014899 0.0332 Inf   0.449  1.0000
 StepF16 - StepF18  0.020377 0.0332 Inf   0.613  1.0000
 StepF17 - StepF18  0.005478 0.0332 Inf   0.165  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.049822 0.0335 Inf   1.487  0.9916
 StepF1 - StepF3   -0.015630 0.0335 Inf  -0.466  1.0000
 StepF1 - StepF4    0.061234 0.0335 Inf   1.830  0.9358
 StepF1 - StepF5    0.101836 0.0334 Inf   3.050  0.1768
 StepF1 - StepF6    0.065505 0.0334 Inf   1.963  0.8868
 StepF1 - StepF7    0.038961 0.0333 Inf   1.169  0.9995
 StepF1 - StepF8    0.103341 0.0334 Inf   3.090  0.1594
 StepF1 - StepF9    0.098451 0.0332 Inf   2.962  0.2190
 StepF1 - StepF10   0.056819 0.0333 Inf   1.705  0.9660
 StepF1 - StepF11   0.026170 0.0335 Inf   0.782  1.0000
 StepF1 - StepF12   0.142616 0.0334 Inf   4.267  0.0026
 StepF1 - StepF13   0.100626 0.0332 Inf   3.027  0.1873
 StepF1 - StepF14   0.065300 0.0334 Inf   1.957  0.8895
 StepF1 - StepF15   0.077028 0.0335 Inf   2.300  0.6835
 StepF1 - StepF16   0.130821 0.0335 Inf   3.904  0.0115
 StepF1 - StepF17   0.145720 0.0335 Inf   4.356  0.0018
 StepF1 - StepF18   0.151198 0.0334 Inf   4.524  0.0008
 StepF2 - StepF3   -0.065452 0.0332 Inf  -1.971  0.8833
 StepF2 - StepF4    0.011412 0.0332 Inf   0.344  1.0000
 StepF2 - StepF5    0.052014 0.0332 Inf   1.566  0.9855
 StepF2 - StepF6    0.015683 0.0332 Inf   0.472  1.0000
 StepF2 - StepF7   -0.010861 0.0332 Inf  -0.327  1.0000
 StepF2 - StepF8    0.053519 0.0332 Inf   1.611  0.9805
 StepF2 - StepF9    0.048628 0.0333 Inf   1.459  0.9932
 StepF2 - StepF10   0.006997 0.0333 Inf   0.210  1.0000
 StepF2 - StepF11  -0.023652 0.0332 Inf  -0.712  1.0000
 StepF2 - StepF12   0.092793 0.0332 Inf   2.794  0.3168
 StepF2 - StepF13   0.050803 0.0333 Inf   1.524  0.9890
 StepF2 - StepF14   0.015478 0.0332 Inf   0.466  1.0000
 StepF2 - StepF15   0.027206 0.0332 Inf   0.819  1.0000
 StepF2 - StepF16   0.080998 0.0332 Inf   2.439  0.5778
 StepF2 - StepF17   0.095897 0.0332 Inf   2.887  0.2595
 StepF2 - StepF18   0.101376 0.0332 Inf   3.052  0.1758
 StepF3 - StepF4    0.076864 0.0332 Inf   2.314  0.6730
 StepF3 - StepF5    0.117466 0.0332 Inf   3.535  0.0429
 StepF3 - StepF6    0.081135 0.0332 Inf   2.441  0.5759
 StepF3 - StepF7    0.054591 0.0333 Inf   1.642  0.9764
 StepF3 - StepF8    0.118971 0.0332 Inf   3.582  0.0368
 StepF3 - StepF9    0.114081 0.0333 Inf   3.421  0.0620
 StepF3 - StepF10   0.072449 0.0333 Inf   2.178  0.7684
 StepF3 - StepF11   0.041800 0.0332 Inf   1.259  0.9988
 StepF3 - StepF12   0.158246 0.0332 Inf   4.764  0.0003
 StepF3 - StepF13   0.116256 0.0333 Inf   3.487  0.0503
 StepF3 - StepF14   0.080931 0.0332 Inf   2.435  0.5807
 StepF3 - StepF15   0.092658 0.0332 Inf   2.790  0.3191
 StepF3 - StepF16   0.146451 0.0332 Inf   4.410  0.0014
 StepF3 - StepF17   0.161350 0.0332 Inf   4.858  0.0002
 StepF3 - StepF18   0.166828 0.0332 Inf   5.022  0.0001
 StepF4 - StepF5    0.040602 0.0332 Inf   1.222  0.9992
 StepF4 - StepF6    0.004271 0.0332 Inf   0.129  1.0000
 StepF4 - StepF7   -0.022273 0.0332 Inf  -0.670  1.0000
 StepF4 - StepF8    0.042107 0.0332 Inf   1.268  0.9987
 StepF4 - StepF9    0.037216 0.0333 Inf   1.117  0.9997
 StepF4 - StepF10  -0.004415 0.0332 Inf  -0.133  1.0000
 StepF4 - StepF11  -0.035064 0.0332 Inf  -1.056  0.9999
 StepF4 - StepF12   0.081381 0.0332 Inf   2.450  0.5689
 StepF4 - StepF13   0.039391 0.0333 Inf   1.183  0.9995
 StepF4 - StepF14   0.004066 0.0332 Inf   0.122  1.0000
 StepF4 - StepF15   0.015794 0.0332 Inf   0.476  1.0000
 StepF4 - StepF16   0.069587 0.0332 Inf   2.095  0.8196
 StepF4 - StepF17   0.084485 0.0332 Inf   2.544  0.4962
 StepF4 - StepF18   0.089964 0.0332 Inf   2.709  0.3740
 StepF5 - StepF6   -0.036331 0.0332 Inf  -1.094  0.9998
 StepF5 - StepF7   -0.062875 0.0332 Inf  -1.893  0.9150
 StepF5 - StepF8    0.001505 0.0332 Inf   0.045  1.0000
 StepF5 - StepF9   -0.003385 0.0333 Inf  -0.102  1.0000
 StepF5 - StepF10  -0.045017 0.0332 Inf  -1.355  0.9971
 StepF5 - StepF11  -0.075666 0.0332 Inf  -2.278  0.6997
 StepF5 - StepF12   0.040780 0.0332 Inf   1.228  0.9991
 StepF5 - StepF13  -0.001210 0.0333 Inf  -0.036  1.0000
 StepF5 - StepF14  -0.036535 0.0332 Inf  -1.100  0.9998
 StepF5 - StepF15  -0.024807 0.0332 Inf  -0.747  1.0000
 StepF5 - StepF16   0.028985 0.0332 Inf   0.872  1.0000
 StepF5 - StepF17   0.043884 0.0332 Inf   1.321  0.9979
 StepF5 - StepF18   0.049362 0.0332 Inf   1.486  0.9917
 StepF6 - StepF7   -0.026544 0.0332 Inf  -0.799  1.0000
 StepF6 - StepF8    0.037836 0.0332 Inf   1.139  0.9997
 StepF6 - StepF9    0.032945 0.0333 Inf   0.991  1.0000
 StepF6 - StepF10  -0.008686 0.0332 Inf  -0.262  1.0000
 StepF6 - StepF11  -0.039335 0.0332 Inf  -1.184  0.9995
 StepF6 - StepF12   0.077110 0.0332 Inf   2.322  0.6675
 StepF6 - StepF13   0.035121 0.0333 Inf   1.056  0.9999
 StepF6 - StepF14  -0.000205 0.0332 Inf  -0.006  1.0000
 StepF6 - StepF15   0.011523 0.0332 Inf   0.347  1.0000
 StepF6 - StepF16   0.065316 0.0332 Inf   1.965  0.8858
 StepF6 - StepF17   0.080214 0.0332 Inf   2.415  0.5966
 StepF6 - StepF18   0.085693 0.0332 Inf   2.580  0.4685
 StepF7 - StepF8    0.064380 0.0332 Inf   1.938  0.8976
 StepF7 - StepF9    0.059489 0.0332 Inf   1.790  0.9471
 StepF7 - StepF10   0.017858 0.0332 Inf   0.538  1.0000
 StepF7 - StepF11  -0.012791 0.0332 Inf  -0.385  1.0000
 StepF7 - StepF12   0.103654 0.0332 Inf   3.120  0.1476
 StepF7 - StepF13   0.061664 0.0332 Inf   1.855  0.9279
 StepF7 - StepF14   0.026339 0.0332 Inf   0.793  1.0000
 StepF7 - StepF15   0.038067 0.0332 Inf   1.145  0.9997
 StepF7 - StepF16   0.091859 0.0333 Inf   2.763  0.3371
 StepF7 - StepF17   0.106758 0.0332 Inf   3.212  0.1149
 StepF7 - StepF18   0.112237 0.0332 Inf   3.378  0.0707
 StepF8 - StepF9   -0.004890 0.0333 Inf  -0.147  1.0000
 StepF8 - StepF10  -0.046522 0.0332 Inf  -1.400  0.9958
 StepF8 - StepF11  -0.077171 0.0332 Inf  -2.324  0.6661
 StepF8 - StepF12   0.039275 0.0332 Inf   1.183  0.9995
 StepF8 - StepF13  -0.002715 0.0333 Inf  -0.082  1.0000
 StepF8 - StepF14  -0.038040 0.0332 Inf  -1.145  0.9997
 StepF8 - StepF15  -0.026313 0.0332 Inf  -0.792  1.0000
 StepF8 - StepF16   0.027480 0.0332 Inf   0.827  1.0000
 StepF8 - StepF17   0.042379 0.0332 Inf   1.276  0.9986
 StepF8 - StepF18   0.047857 0.0332 Inf   1.441  0.9941
 StepF9 - StepF10  -0.041632 0.0332 Inf  -1.253  0.9989
 StepF9 - StepF11  -0.072281 0.0333 Inf  -2.169  0.7745
 StepF9 - StepF12   0.044165 0.0333 Inf   1.327  0.9978
 StepF9 - StepF13   0.002175 0.0332 Inf   0.065  1.0000
 StepF9 - StepF14  -0.033150 0.0333 Inf  -0.997  0.9999
 StepF9 - StepF15  -0.021422 0.0333 Inf  -0.643  1.0000
 StepF9 - StepF16   0.032370 0.0333 Inf   0.971  1.0000
 StepF9 - StepF17   0.047269 0.0333 Inf   1.419  0.9950
 StepF9 - StepF18   0.052747 0.0333 Inf   1.585  0.9835
 StepF10 - StepF11 -0.030649 0.0332 Inf  -0.922  1.0000
 StepF10 - StepF12  0.085797 0.0332 Inf   2.582  0.4669
 StepF10 - StepF13  0.043807 0.0332 Inf   1.318  0.9979
 StepF10 - StepF14  0.008482 0.0332 Inf   0.255  1.0000
 StepF10 - StepF15  0.020209 0.0333 Inf   0.608  1.0000
 StepF10 - StepF16  0.074002 0.0333 Inf   2.225  0.7370
 StepF10 - StepF17  0.088901 0.0332 Inf   2.675  0.3983
 StepF10 - StepF18  0.094379 0.0332 Inf   2.840  0.2873
 StepF11 - StepF12  0.116446 0.0332 Inf   3.506  0.0473
 StepF11 - StepF13  0.074456 0.0333 Inf   2.235  0.7302
 StepF11 - StepF14  0.039131 0.0332 Inf   1.178  0.9995
 StepF11 - StepF15  0.050859 0.0332 Inf   1.531  0.9885
 StepF11 - StepF16  0.104651 0.0332 Inf   3.151  0.1359
 StepF11 - StepF17  0.119550 0.0332 Inf   3.600  0.0346
 StepF11 - StepF18  0.125028 0.0332 Inf   3.764  0.0194
 StepF12 - StepF13 -0.041990 0.0333 Inf  -1.262  0.9988
 StepF12 - StepF14 -0.077315 0.0332 Inf  -2.328  0.6629
 StepF12 - StepF15 -0.065587 0.0332 Inf  -1.975  0.8816
 StepF12 - StepF16 -0.011795 0.0332 Inf  -0.355  1.0000
 StepF12 - StepF17  0.003104 0.0332 Inf   0.093  1.0000
 StepF12 - StepF18  0.008582 0.0332 Inf   0.258  1.0000
 StepF13 - StepF14 -0.035325 0.0333 Inf  -1.062  0.9999
 StepF13 - StepF15 -0.023597 0.0333 Inf  -0.708  1.0000
 StepF13 - StepF16  0.030195 0.0333 Inf   0.906  1.0000
 StepF13 - StepF17  0.045094 0.0333 Inf   1.354  0.9971
 StepF13 - StepF18  0.050572 0.0333 Inf   1.520  0.9894
 StepF14 - StepF15  0.011728 0.0332 Inf   0.353  1.0000
 StepF14 - StepF16  0.065520 0.0332 Inf   1.972  0.8830
 StepF14 - StepF17  0.080419 0.0332 Inf   2.421  0.5919
 StepF14 - StepF18  0.085897 0.0332 Inf   2.586  0.4639
 StepF15 - StepF16  0.053792 0.0332 Inf   1.620  0.9794
 StepF15 - StepF17  0.068691 0.0332 Inf   2.068  0.8347
 StepF15 - StepF18  0.074170 0.0332 Inf   2.233  0.7316
 StepF16 - StepF17  0.014899 0.0332 Inf   0.449  1.0000
 StepF16 - StepF18  0.020377 0.0332 Inf   0.613  1.0000
 StepF17 - StepF18  0.005478 0.0332 Inf   0.165  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.04982 0.0335 Inf  -1.487  1.0000
 StepF3 - StepF2    0.06545 0.0332 Inf   1.971  0.7312
 StepF4 - StepF3   -0.07686 0.0332 Inf  -2.314  0.3304
 StepF5 - StepF4   -0.04060 0.0332 Inf  -1.222  1.0000
 StepF6 - StepF5    0.03633 0.0332 Inf   1.094  1.0000
 StepF7 - StepF6    0.02654 0.0332 Inf   0.799  1.0000
 StepF8 - StepF7   -0.06438 0.0332 Inf  -1.938  0.7375
 StepF9 - StepF8    0.00489 0.0333 Inf   0.147  1.0000
 StepF10 - StepF9   0.04163 0.0332 Inf   1.253  1.0000
 StepF11 - StepF10  0.03065 0.0332 Inf   0.922  1.0000
 StepF12 - StepF11 -0.11645 0.0332 Inf  -3.506  0.0077
 StepF13 - StepF12  0.04199 0.0333 Inf   1.262  1.0000
 StepF14 - StepF13  0.03533 0.0333 Inf   1.062  1.0000
 StepF15 - StepF14 -0.01173 0.0332 Inf  -0.353  1.0000
 StepF16 - StepF15 -0.05379 0.0332 Inf  -1.620  1.0000
 StepF17 - StepF16 -0.01490 0.0332 Inf  -0.449  1.0000
 StepF18 - StepF17 -0.00548 0.0332 Inf  -0.165  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.04982 0.0335 Inf  -1.487  1.0000
 StepF3 - StepF2    0.06545 0.0332 Inf   1.971  0.7312
 StepF4 - StepF3   -0.07686 0.0332 Inf  -2.314  0.3304
 StepF5 - StepF4   -0.04060 0.0332 Inf  -1.222  1.0000
 StepF6 - StepF5    0.03633 0.0332 Inf   1.094  1.0000
 StepF7 - StepF6    0.02654 0.0332 Inf   0.799  1.0000
 StepF8 - StepF7   -0.06438 0.0332 Inf  -1.938  0.7375
 StepF9 - StepF8    0.00489 0.0333 Inf   0.147  1.0000
 StepF10 - StepF9   0.04163 0.0332 Inf   1.253  1.0000
 StepF11 - StepF10  0.03065 0.0332 Inf   0.922  1.0000
 StepF12 - StepF11 -0.11645 0.0332 Inf  -3.506  0.0077
 StepF13 - StepF12  0.04199 0.0333 Inf   1.262  1.0000
 StepF14 - StepF13  0.03533 0.0333 Inf   1.062  1.0000
 StepF15 - StepF14 -0.01173 0.0332 Inf  -0.353  1.0000
 StepF16 - StepF15 -0.05379 0.0332 Inf  -1.620  1.0000
 StepF17 - StepF16 -0.01490 0.0332 Inf  -0.449  1.0000
 StepF18 - StepF17 -0.00548 0.0332 Inf  -0.165  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST (rt_ms) | Block 5 | 18 steps | Axis Y
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    57.2234 17  2.996e-06 ***
Accuracy  0.7343  1    0.39148    
rt_ms     3.1504  1    0.07591 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.670 0.0825 Inf     0.508     0.832
 2      0.835 0.0821 Inf     0.674     0.996
 3      0.778 0.0821 Inf     0.617     0.939
 4      0.669 0.0821 Inf     0.508     0.830
 5      0.581 0.0822 Inf     0.420     0.742
 6      0.653 0.0822 Inf     0.492     0.814
 7      0.650 0.0822 Inf     0.489     0.811
 8      0.687 0.0821 Inf     0.526     0.848
 9      0.753 0.0823 Inf     0.591     0.914
 10     0.767 0.0822 Inf     0.606     0.928
 11     0.711 0.0821 Inf     0.550     0.872
 12     0.602 0.0821 Inf     0.441     0.763
 13     0.571 0.0823 Inf     0.410     0.732
 14     0.654 0.0822 Inf     0.493     0.815
 15     0.655 0.0821 Inf     0.494     0.816
 16     0.600 0.0821 Inf     0.439     0.761
 17     0.551 0.0821 Inf     0.390     0.712
 18     0.545 0.0821 Inf     0.384     0.706

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.606 0.0851 Inf     0.439     0.773
 2      0.771 0.0850 Inf     0.604     0.938
 3      0.714 0.0850 Inf     0.548     0.881
 4      0.605 0.0850 Inf     0.439     0.772
 5      0.517 0.0850 Inf     0.351     0.684
 6      0.589 0.0849 Inf     0.422     0.755
 7      0.587 0.0849 Inf     0.420     0.753
 8      0.623 0.0850 Inf     0.457     0.790
 9      0.689 0.0850 Inf     0.523     0.856
 10     0.703 0.0849 Inf     0.536     0.869
 11     0.647 0.0850 Inf     0.481     0.814
 12     0.539 0.0850 Inf     0.372     0.705
 13     0.507 0.0849 Inf     0.341     0.674
 14     0.590 0.0849 Inf     0.424     0.757
 15     0.591 0.0850 Inf     0.424     0.758
 16     0.536 0.0850 Inf     0.370     0.703
 17     0.487 0.0850 Inf     0.321     0.654
 18     0.481 0.0850 Inf     0.314     0.647

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.164782 0.0638 Inf  -2.584  0.4654
 StepF1 - StepF3   -0.108208 0.0638 Inf  -1.696  0.9677
 StepF1 - StepF4    0.000930 0.0637 Inf   0.015  1.0000
 StepF1 - StepF5    0.088997 0.0636 Inf   1.400  0.9958
 StepF1 - StepF6    0.017264 0.0635 Inf   0.272  1.0000
 StepF1 - StepF7    0.019625 0.0634 Inf   0.309  1.0000
 StepF1 - StepF8   -0.016914 0.0637 Inf  -0.266  1.0000
 StepF1 - StepF9   -0.082915 0.0633 Inf  -1.310  0.9981
 StepF1 - StepF10  -0.096744 0.0634 Inf  -1.525  0.9890
 StepF1 - StepF11  -0.041108 0.0637 Inf  -0.645  1.0000
 StepF1 - StepF12   0.067538 0.0636 Inf   1.062  0.9999
 StepF1 - StepF13   0.099042 0.0633 Inf   1.565  0.9855
 StepF1 - StepF14   0.015847 0.0635 Inf   0.249  1.0000
 StepF1 - StepF15   0.015075 0.0637 Inf   0.236  1.0000
 StepF1 - StepF16   0.069992 0.0638 Inf   1.097  0.9998
 StepF1 - StepF17   0.118925 0.0637 Inf   1.867  0.9239
 StepF1 - StepF18   0.125225 0.0636 Inf   1.969  0.8843
 StepF2 - StepF3    0.056574 0.0632 Inf   0.895  1.0000
 StepF2 - StepF4    0.165712 0.0632 Inf   2.621  0.4375
 StepF2 - StepF5    0.253779 0.0632 Inf   4.013  0.0076
 StepF2 - StepF6    0.182046 0.0633 Inf   2.878  0.2648
 StepF2 - StepF7    0.184407 0.0633 Inf   2.914  0.2445
 StepF2 - StepF8    0.147868 0.0632 Inf   2.339  0.6546
 StepF2 - StepF9    0.081867 0.0635 Inf   1.290  0.9984
 StepF2 - StepF10   0.068038 0.0633 Inf   1.075  0.9999
 StepF2 - StepF11   0.123674 0.0632 Inf   1.956  0.8897
 StepF2 - StepF12   0.232320 0.0632 Inf   3.674  0.0268
 StepF2 - StepF13   0.263824 0.0634 Inf   4.158  0.0042
 StepF2 - StepF14   0.180629 0.0633 Inf   2.856  0.2781
 StepF2 - StepF15   0.179857 0.0632 Inf   2.845  0.2844
 StepF2 - StepF16   0.234774 0.0632 Inf   3.714  0.0233
 StepF2 - StepF17   0.283708 0.0632 Inf   4.488  0.0010
 StepF2 - StepF18   0.290007 0.0632 Inf   4.587  0.0006
 StepF3 - StepF4    0.109137 0.0632 Inf   1.726  0.9619
 StepF3 - StepF5    0.197204 0.0632 Inf   3.118  0.1483
 StepF3 - StepF6    0.125472 0.0633 Inf   1.983  0.8776
 StepF3 - StepF7    0.127832 0.0633 Inf   2.020  0.8602
 StepF3 - StepF8    0.091294 0.0632 Inf   1.444  0.9940
 StepF3 - StepF9    0.025293 0.0635 Inf   0.398  1.0000
 StepF3 - StepF10   0.011463 0.0633 Inf   0.181  1.0000
 StepF3 - StepF11   0.067099 0.0632 Inf   1.061  0.9999
 StepF3 - StepF12   0.175746 0.0632 Inf   2.779  0.3260
 StepF3 - StepF13   0.207250 0.0635 Inf   3.266  0.0987
 StepF3 - StepF14   0.124055 0.0633 Inf   1.961  0.8877
 StepF3 - StepF15   0.123283 0.0632 Inf   1.950  0.8924
 StepF3 - StepF16   0.178199 0.0632 Inf   2.819  0.3006
 StepF3 - StepF17   0.227133 0.0632 Inf   3.593  0.0355
 StepF3 - StepF18   0.233433 0.0632 Inf   3.692  0.0252
 StepF4 - StepF5    0.088067 0.0632 Inf   1.393  0.9960
 StepF4 - StepF6    0.016334 0.0632 Inf   0.258  1.0000
 StepF4 - StepF7    0.018695 0.0633 Inf   0.296  1.0000
 StepF4 - StepF8   -0.017844 0.0632 Inf  -0.282  1.0000
 StepF4 - StepF9   -0.083845 0.0634 Inf  -1.322  0.9978
 StepF4 - StepF10  -0.097674 0.0633 Inf  -1.544  0.9875
 StepF4 - StepF11  -0.042038 0.0632 Inf  -0.665  1.0000
 StepF4 - StepF12   0.066609 0.0632 Inf   1.054  0.9999
 StepF4 - StepF13   0.098112 0.0634 Inf   1.548  0.9871
 StepF4 - StepF14   0.014917 0.0632 Inf   0.236  1.0000
 StepF4 - StepF15   0.014145 0.0632 Inf   0.224  1.0000
 StepF4 - StepF16   0.069062 0.0632 Inf   1.092  0.9998
 StepF4 - StepF17   0.117996 0.0632 Inf   1.867  0.9242
 StepF4 - StepF18   0.124295 0.0632 Inf   1.966  0.8854
 StepF5 - StepF6   -0.071733 0.0632 Inf  -1.135  0.9997
 StepF5 - StepF7   -0.069372 0.0632 Inf  -1.097  0.9998
 StepF5 - StepF8   -0.105911 0.0632 Inf  -1.675  0.9713
 StepF5 - StepF9   -0.171912 0.0633 Inf  -2.714  0.3701
 StepF5 - StepF10  -0.185741 0.0632 Inf  -2.937  0.2317
 StepF5 - StepF11  -0.130105 0.0632 Inf  -2.058  0.8405
 StepF5 - StepF12  -0.021458 0.0632 Inf  -0.339  1.0000
 StepF5 - StepF13   0.010045 0.0633 Inf   0.159  1.0000
 StepF5 - StepF14  -0.073150 0.0632 Inf  -1.157  0.9996
 StepF5 - StepF15  -0.073922 0.0632 Inf  -1.169  0.9995
 StepF5 - StepF16  -0.019005 0.0632 Inf  -0.301  1.0000
 StepF5 - StepF17   0.029929 0.0632 Inf   0.473  1.0000
 StepF5 - StepF18   0.036228 0.0632 Inf   0.573  1.0000
 StepF6 - StepF7    0.002361 0.0632 Inf   0.037  1.0000
 StepF6 - StepF8   -0.034178 0.0632 Inf  -0.541  1.0000
 StepF6 - StepF9   -0.100179 0.0633 Inf  -1.582  0.9838
 StepF6 - StepF10  -0.114008 0.0632 Inf  -1.803  0.9435
 StepF6 - StepF11  -0.058372 0.0632 Inf  -0.923  1.0000
 StepF6 - StepF12   0.050274 0.0632 Inf   0.795  1.0000
 StepF6 - StepF13   0.081778 0.0633 Inf   1.292  0.9984
 StepF6 - StepF14  -0.001417 0.0632 Inf  -0.022  1.0000
 StepF6 - StepF15  -0.002189 0.0632 Inf  -0.035  1.0000
 StepF6 - StepF16   0.052728 0.0633 Inf   0.834  1.0000
 StepF6 - StepF17   0.101661 0.0632 Inf   1.608  0.9809
 StepF6 - StepF18   0.107961 0.0632 Inf   1.708  0.9656
 StepF7 - StepF8   -0.036539 0.0632 Inf  -0.578  1.0000
 StepF7 - StepF9   -0.102540 0.0633 Inf  -1.621  0.9793
 StepF7 - StepF10  -0.116369 0.0632 Inf  -1.841  0.9325
 StepF7 - StepF11  -0.060733 0.0633 Inf  -0.960  1.0000
 StepF7 - StepF12   0.047914 0.0632 Inf   0.758  1.0000
 StepF7 - StepF13   0.079417 0.0633 Inf   1.255  0.9989
 StepF7 - StepF14  -0.003778 0.0632 Inf  -0.060  1.0000
 StepF7 - StepF15  -0.004550 0.0633 Inf  -0.072  1.0000
 StepF7 - StepF16   0.050367 0.0633 Inf   0.796  1.0000
 StepF7 - StepF17   0.099301 0.0633 Inf   1.570  0.9851
 StepF7 - StepF18   0.105600 0.0632 Inf   1.670  0.9722
 StepF8 - StepF9   -0.066001 0.0634 Inf  -1.041  0.9999
 StepF8 - StepF10  -0.079830 0.0633 Inf  -1.262  0.9988
 StepF8 - StepF11  -0.024194 0.0632 Inf  -0.383  1.0000
 StepF8 - StepF12   0.084452 0.0632 Inf   1.336  0.9976
 StepF8 - StepF13   0.115956 0.0634 Inf   1.830  0.9359
 StepF8 - StepF14   0.032761 0.0632 Inf   0.518  1.0000
 StepF8 - StepF15   0.031989 0.0632 Inf   0.506  1.0000
 StepF8 - StepF16   0.086906 0.0632 Inf   1.375  0.9966
 StepF8 - StepF17   0.135840 0.0632 Inf   2.149  0.7872
 StepF8 - StepF18   0.142139 0.0632 Inf   2.248  0.7207
 StepF9 - StepF10  -0.013829 0.0633 Inf  -0.219  1.0000
 StepF9 - StepF11   0.041807 0.0634 Inf   0.659  1.0000
 StepF9 - StepF12   0.150453 0.0634 Inf   2.374  0.6277
 StepF9 - StepF13   0.181957 0.0632 Inf   2.878  0.2647
 StepF9 - StepF14   0.098762 0.0633 Inf   1.560  0.9860
 StepF9 - StepF15   0.097990 0.0635 Inf   1.544  0.9874
 StepF9 - StepF16   0.152907 0.0635 Inf   2.409  0.6011
 StepF9 - StepF17   0.201840 0.0634 Inf   3.183  0.1246
 StepF9 - StepF18   0.208140 0.0634 Inf   3.285  0.0935
 StepF10 - StepF11  0.055636 0.0633 Inf   0.879  1.0000
 StepF10 - StepF12  0.164282 0.0632 Inf   2.597  0.4553
 StepF10 - StepF13  0.195786 0.0633 Inf   3.095  0.1574
 StepF10 - StepF14  0.112591 0.0632 Inf   1.781  0.9494
 StepF10 - StepF15  0.111819 0.0633 Inf   1.767  0.9529
 StepF10 - StepF16  0.166736 0.0633 Inf   2.634  0.4281
 StepF10 - StepF17  0.215670 0.0633 Inf   3.409  0.0644
 StepF10 - StepF18  0.221969 0.0632 Inf   3.510  0.0467
 StepF11 - StepF12  0.108647 0.0632 Inf   1.718  0.9634
 StepF11 - StepF13  0.140150 0.0634 Inf   2.210  0.7473
 StepF11 - StepF14  0.056955 0.0632 Inf   0.901  1.0000
 StepF11 - StepF15  0.056183 0.0632 Inf   0.889  1.0000
 StepF11 - StepF16  0.111100 0.0632 Inf   1.757  0.9551
 StepF11 - StepF17  0.160034 0.0632 Inf   2.532  0.5058
 StepF11 - StepF18  0.166333 0.0632 Inf   2.631  0.4303
 StepF12 - StepF13  0.031504 0.0634 Inf   0.497  1.0000
 StepF12 - StepF14 -0.051691 0.0632 Inf  -0.818  1.0000
 StepF12 - StepF15 -0.052463 0.0632 Inf  -0.830  1.0000
 StepF12 - StepF16  0.002453 0.0632 Inf   0.039  1.0000
 StepF12 - StepF17  0.051387 0.0632 Inf   0.813  1.0000
 StepF12 - StepF18  0.057687 0.0632 Inf   0.913  1.0000
 StepF13 - StepF14 -0.083195 0.0633 Inf  -1.314  0.9980
 StepF13 - StepF15 -0.083967 0.0634 Inf  -1.324  0.9978
 StepF13 - StepF16 -0.029050 0.0635 Inf  -0.458  1.0000
 StepF13 - StepF17  0.019883 0.0634 Inf   0.314  1.0000
 StepF13 - StepF18  0.026183 0.0633 Inf   0.413  1.0000
 StepF14 - StepF15 -0.000772 0.0632 Inf  -0.012  1.0000
 StepF14 - StepF16  0.054145 0.0633 Inf   0.856  1.0000
 StepF14 - StepF17  0.103078 0.0632 Inf   1.630  0.9781
 StepF14 - StepF18  0.109378 0.0632 Inf   1.730  0.9611
 StepF15 - StepF16  0.054917 0.0632 Inf   0.869  1.0000
 StepF15 - StepF17  0.103850 0.0632 Inf   1.643  0.9763
 StepF15 - StepF18  0.110150 0.0632 Inf   1.742  0.9585
 StepF16 - StepF17  0.048934 0.0632 Inf   0.774  1.0000
 StepF16 - StepF18  0.055233 0.0632 Inf   0.874  1.0000
 StepF17 - StepF18  0.006300 0.0632 Inf   0.100  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.164782 0.0638 Inf  -2.584  0.4654
 StepF1 - StepF3   -0.108208 0.0638 Inf  -1.696  0.9677
 StepF1 - StepF4    0.000930 0.0637 Inf   0.015  1.0000
 StepF1 - StepF5    0.088997 0.0636 Inf   1.400  0.9958
 StepF1 - StepF6    0.017264 0.0635 Inf   0.272  1.0000
 StepF1 - StepF7    0.019625 0.0634 Inf   0.309  1.0000
 StepF1 - StepF8   -0.016914 0.0637 Inf  -0.266  1.0000
 StepF1 - StepF9   -0.082915 0.0633 Inf  -1.310  0.9981
 StepF1 - StepF10  -0.096744 0.0634 Inf  -1.525  0.9890
 StepF1 - StepF11  -0.041108 0.0637 Inf  -0.645  1.0000
 StepF1 - StepF12   0.067538 0.0636 Inf   1.062  0.9999
 StepF1 - StepF13   0.099042 0.0633 Inf   1.565  0.9855
 StepF1 - StepF14   0.015847 0.0635 Inf   0.249  1.0000
 StepF1 - StepF15   0.015075 0.0637 Inf   0.236  1.0000
 StepF1 - StepF16   0.069992 0.0638 Inf   1.097  0.9998
 StepF1 - StepF17   0.118925 0.0637 Inf   1.867  0.9239
 StepF1 - StepF18   0.125225 0.0636 Inf   1.969  0.8843
 StepF2 - StepF3    0.056574 0.0632 Inf   0.895  1.0000
 StepF2 - StepF4    0.165712 0.0632 Inf   2.621  0.4375
 StepF2 - StepF5    0.253779 0.0632 Inf   4.013  0.0076
 StepF2 - StepF6    0.182046 0.0633 Inf   2.878  0.2648
 StepF2 - StepF7    0.184407 0.0633 Inf   2.914  0.2445
 StepF2 - StepF8    0.147868 0.0632 Inf   2.339  0.6546
 StepF2 - StepF9    0.081867 0.0635 Inf   1.290  0.9984
 StepF2 - StepF10   0.068038 0.0633 Inf   1.075  0.9999
 StepF2 - StepF11   0.123674 0.0632 Inf   1.956  0.8897
 StepF2 - StepF12   0.232320 0.0632 Inf   3.674  0.0268
 StepF2 - StepF13   0.263824 0.0634 Inf   4.158  0.0042
 StepF2 - StepF14   0.180629 0.0633 Inf   2.856  0.2781
 StepF2 - StepF15   0.179857 0.0632 Inf   2.845  0.2844
 StepF2 - StepF16   0.234774 0.0632 Inf   3.714  0.0233
 StepF2 - StepF17   0.283708 0.0632 Inf   4.488  0.0010
 StepF2 - StepF18   0.290007 0.0632 Inf   4.587  0.0006
 StepF3 - StepF4    0.109137 0.0632 Inf   1.726  0.9619
 StepF3 - StepF5    0.197204 0.0632 Inf   3.118  0.1483
 StepF3 - StepF6    0.125472 0.0633 Inf   1.983  0.8776
 StepF3 - StepF7    0.127832 0.0633 Inf   2.020  0.8602
 StepF3 - StepF8    0.091294 0.0632 Inf   1.444  0.9940
 StepF3 - StepF9    0.025293 0.0635 Inf   0.398  1.0000
 StepF3 - StepF10   0.011463 0.0633 Inf   0.181  1.0000
 StepF3 - StepF11   0.067099 0.0632 Inf   1.061  0.9999
 StepF3 - StepF12   0.175746 0.0632 Inf   2.779  0.3260
 StepF3 - StepF13   0.207250 0.0635 Inf   3.266  0.0987
 StepF3 - StepF14   0.124055 0.0633 Inf   1.961  0.8877
 StepF3 - StepF15   0.123283 0.0632 Inf   1.950  0.8924
 StepF3 - StepF16   0.178199 0.0632 Inf   2.819  0.3006
 StepF3 - StepF17   0.227133 0.0632 Inf   3.593  0.0355
 StepF3 - StepF18   0.233433 0.0632 Inf   3.692  0.0252
 StepF4 - StepF5    0.088067 0.0632 Inf   1.393  0.9960
 StepF4 - StepF6    0.016334 0.0632 Inf   0.258  1.0000
 StepF4 - StepF7    0.018695 0.0633 Inf   0.296  1.0000
 StepF4 - StepF8   -0.017844 0.0632 Inf  -0.282  1.0000
 StepF4 - StepF9   -0.083845 0.0634 Inf  -1.322  0.9978
 StepF4 - StepF10  -0.097674 0.0633 Inf  -1.544  0.9875
 StepF4 - StepF11  -0.042038 0.0632 Inf  -0.665  1.0000
 StepF4 - StepF12   0.066609 0.0632 Inf   1.054  0.9999
 StepF4 - StepF13   0.098112 0.0634 Inf   1.548  0.9871
 StepF4 - StepF14   0.014917 0.0632 Inf   0.236  1.0000
 StepF4 - StepF15   0.014145 0.0632 Inf   0.224  1.0000
 StepF4 - StepF16   0.069062 0.0632 Inf   1.092  0.9998
 StepF4 - StepF17   0.117996 0.0632 Inf   1.867  0.9242
 StepF4 - StepF18   0.124295 0.0632 Inf   1.966  0.8854
 StepF5 - StepF6   -0.071733 0.0632 Inf  -1.135  0.9997
 StepF5 - StepF7   -0.069372 0.0632 Inf  -1.097  0.9998
 StepF5 - StepF8   -0.105911 0.0632 Inf  -1.675  0.9713
 StepF5 - StepF9   -0.171912 0.0633 Inf  -2.714  0.3701
 StepF5 - StepF10  -0.185741 0.0632 Inf  -2.937  0.2317
 StepF5 - StepF11  -0.130105 0.0632 Inf  -2.058  0.8405
 StepF5 - StepF12  -0.021458 0.0632 Inf  -0.339  1.0000
 StepF5 - StepF13   0.010045 0.0633 Inf   0.159  1.0000
 StepF5 - StepF14  -0.073150 0.0632 Inf  -1.157  0.9996
 StepF5 - StepF15  -0.073922 0.0632 Inf  -1.169  0.9995
 StepF5 - StepF16  -0.019005 0.0632 Inf  -0.301  1.0000
 StepF5 - StepF17   0.029929 0.0632 Inf   0.473  1.0000
 StepF5 - StepF18   0.036228 0.0632 Inf   0.573  1.0000
 StepF6 - StepF7    0.002361 0.0632 Inf   0.037  1.0000
 StepF6 - StepF8   -0.034178 0.0632 Inf  -0.541  1.0000
 StepF6 - StepF9   -0.100179 0.0633 Inf  -1.582  0.9838
 StepF6 - StepF10  -0.114008 0.0632 Inf  -1.803  0.9435
 StepF6 - StepF11  -0.058372 0.0632 Inf  -0.923  1.0000
 StepF6 - StepF12   0.050274 0.0632 Inf   0.795  1.0000
 StepF6 - StepF13   0.081778 0.0633 Inf   1.292  0.9984
 StepF6 - StepF14  -0.001417 0.0632 Inf  -0.022  1.0000
 StepF6 - StepF15  -0.002189 0.0632 Inf  -0.035  1.0000
 StepF6 - StepF16   0.052728 0.0633 Inf   0.834  1.0000
 StepF6 - StepF17   0.101661 0.0632 Inf   1.608  0.9809
 StepF6 - StepF18   0.107961 0.0632 Inf   1.708  0.9656
 StepF7 - StepF8   -0.036539 0.0632 Inf  -0.578  1.0000
 StepF7 - StepF9   -0.102540 0.0633 Inf  -1.621  0.9793
 StepF7 - StepF10  -0.116369 0.0632 Inf  -1.841  0.9325
 StepF7 - StepF11  -0.060733 0.0633 Inf  -0.960  1.0000
 StepF7 - StepF12   0.047914 0.0632 Inf   0.758  1.0000
 StepF7 - StepF13   0.079417 0.0633 Inf   1.255  0.9989
 StepF7 - StepF14  -0.003778 0.0632 Inf  -0.060  1.0000
 StepF7 - StepF15  -0.004550 0.0633 Inf  -0.072  1.0000
 StepF7 - StepF16   0.050367 0.0633 Inf   0.796  1.0000
 StepF7 - StepF17   0.099301 0.0633 Inf   1.570  0.9851
 StepF7 - StepF18   0.105600 0.0632 Inf   1.670  0.9722
 StepF8 - StepF9   -0.066001 0.0634 Inf  -1.041  0.9999
 StepF8 - StepF10  -0.079830 0.0633 Inf  -1.262  0.9988
 StepF8 - StepF11  -0.024194 0.0632 Inf  -0.383  1.0000
 StepF8 - StepF12   0.084452 0.0632 Inf   1.336  0.9976
 StepF8 - StepF13   0.115956 0.0634 Inf   1.830  0.9359
 StepF8 - StepF14   0.032761 0.0632 Inf   0.518  1.0000
 StepF8 - StepF15   0.031989 0.0632 Inf   0.506  1.0000
 StepF8 - StepF16   0.086906 0.0632 Inf   1.375  0.9966
 StepF8 - StepF17   0.135840 0.0632 Inf   2.149  0.7872
 StepF8 - StepF18   0.142139 0.0632 Inf   2.248  0.7207
 StepF9 - StepF10  -0.013829 0.0633 Inf  -0.219  1.0000
 StepF9 - StepF11   0.041807 0.0634 Inf   0.659  1.0000
 StepF9 - StepF12   0.150453 0.0634 Inf   2.374  0.6277
 StepF9 - StepF13   0.181957 0.0632 Inf   2.878  0.2647
 StepF9 - StepF14   0.098762 0.0633 Inf   1.560  0.9860
 StepF9 - StepF15   0.097990 0.0635 Inf   1.544  0.9874
 StepF9 - StepF16   0.152907 0.0635 Inf   2.409  0.6011
 StepF9 - StepF17   0.201840 0.0634 Inf   3.183  0.1246
 StepF9 - StepF18   0.208140 0.0634 Inf   3.285  0.0935
 StepF10 - StepF11  0.055636 0.0633 Inf   0.879  1.0000
 StepF10 - StepF12  0.164282 0.0632 Inf   2.597  0.4553
 StepF10 - StepF13  0.195786 0.0633 Inf   3.095  0.1574
 StepF10 - StepF14  0.112591 0.0632 Inf   1.781  0.9494
 StepF10 - StepF15  0.111819 0.0633 Inf   1.767  0.9529
 StepF10 - StepF16  0.166736 0.0633 Inf   2.634  0.4281
 StepF10 - StepF17  0.215670 0.0633 Inf   3.409  0.0644
 StepF10 - StepF18  0.221969 0.0632 Inf   3.510  0.0467
 StepF11 - StepF12  0.108647 0.0632 Inf   1.718  0.9634
 StepF11 - StepF13  0.140150 0.0634 Inf   2.210  0.7473
 StepF11 - StepF14  0.056955 0.0632 Inf   0.901  1.0000
 StepF11 - StepF15  0.056183 0.0632 Inf   0.889  1.0000
 StepF11 - StepF16  0.111100 0.0632 Inf   1.757  0.9551
 StepF11 - StepF17  0.160034 0.0632 Inf   2.532  0.5058
 StepF11 - StepF18  0.166333 0.0632 Inf   2.631  0.4303
 StepF12 - StepF13  0.031504 0.0634 Inf   0.497  1.0000
 StepF12 - StepF14 -0.051691 0.0632 Inf  -0.818  1.0000
 StepF12 - StepF15 -0.052463 0.0632 Inf  -0.830  1.0000
 StepF12 - StepF16  0.002453 0.0632 Inf   0.039  1.0000
 StepF12 - StepF17  0.051387 0.0632 Inf   0.813  1.0000
 StepF12 - StepF18  0.057687 0.0632 Inf   0.913  1.0000
 StepF13 - StepF14 -0.083195 0.0633 Inf  -1.314  0.9980
 StepF13 - StepF15 -0.083967 0.0634 Inf  -1.324  0.9978
 StepF13 - StepF16 -0.029050 0.0635 Inf  -0.458  1.0000
 StepF13 - StepF17  0.019883 0.0634 Inf   0.314  1.0000
 StepF13 - StepF18  0.026183 0.0633 Inf   0.413  1.0000
 StepF14 - StepF15 -0.000772 0.0632 Inf  -0.012  1.0000
 StepF14 - StepF16  0.054145 0.0633 Inf   0.856  1.0000
 StepF14 - StepF17  0.103078 0.0632 Inf   1.630  0.9781
 StepF14 - StepF18  0.109378 0.0632 Inf   1.730  0.9611
 StepF15 - StepF16  0.054917 0.0632 Inf   0.869  1.0000
 StepF15 - StepF17  0.103850 0.0632 Inf   1.643  0.9763
 StepF15 - StepF18  0.110150 0.0632 Inf   1.742  0.9585
 StepF16 - StepF17  0.048934 0.0632 Inf   0.774  1.0000
 StepF16 - StepF18  0.055233 0.0632 Inf   0.874  1.0000
 StepF17 - StepF18  0.006300 0.0632 Inf   0.100  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.164782 0.0638 Inf   2.584  0.1659
 StepF3 - StepF2   -0.056574 0.0632 Inf  -0.895  1.0000
 StepF4 - StepF3   -0.109137 0.0632 Inf  -1.726  1.0000
 StepF5 - StepF4   -0.088067 0.0632 Inf  -1.393  1.0000
 StepF6 - StepF5    0.071733 0.0632 Inf   1.135  1.0000
 StepF7 - StepF6   -0.002361 0.0632 Inf  -0.037  1.0000
 StepF8 - StepF7    0.036539 0.0632 Inf   0.578  1.0000
 StepF9 - StepF8    0.066001 0.0634 Inf   1.041  1.0000
 StepF10 - StepF9   0.013829 0.0633 Inf   0.219  1.0000
 StepF11 - StepF10 -0.055636 0.0633 Inf  -0.879  1.0000
 StepF12 - StepF11 -0.108647 0.0632 Inf  -1.718  1.0000
 StepF13 - StepF12 -0.031504 0.0634 Inf  -0.497  1.0000
 StepF14 - StepF13  0.083195 0.0633 Inf   1.314  1.0000
 StepF15 - StepF14  0.000772 0.0632 Inf   0.012  1.0000
 StepF16 - StepF15 -0.054917 0.0632 Inf  -0.869  1.0000
 StepF17 - StepF16 -0.048934 0.0632 Inf  -0.774  1.0000
 StepF18 - StepF17 -0.006300 0.0632 Inf  -0.100  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.164782 0.0638 Inf   2.584  0.1659
 StepF3 - StepF2   -0.056574 0.0632 Inf  -0.895  1.0000
 StepF4 - StepF3   -0.109137 0.0632 Inf  -1.726  1.0000
 StepF5 - StepF4   -0.088067 0.0632 Inf  -1.393  1.0000
 StepF6 - StepF5    0.071733 0.0632 Inf   1.135  1.0000
 StepF7 - StepF6   -0.002361 0.0632 Inf  -0.037  1.0000
 StepF8 - StepF7    0.036539 0.0632 Inf   0.578  1.0000
 StepF9 - StepF8    0.066001 0.0634 Inf   1.041  1.0000
 StepF10 - StepF9   0.013829 0.0633 Inf   0.219  1.0000
 StepF11 - StepF10 -0.055636 0.0633 Inf  -0.879  1.0000
 StepF12 - StepF11 -0.108647 0.0632 Inf  -1.718  1.0000
 StepF13 - StepF12 -0.031504 0.0634 Inf  -0.497  1.0000
 StepF14 - StepF13  0.083195 0.0633 Inf   1.314  1.0000
 StepF15 - StepF14  0.000772 0.0632 Inf   0.012  1.0000
 StepF16 - StepF15 -0.054917 0.0632 Inf  -0.869  1.0000
 StepF17 - StepF16 -0.048934 0.0632 Inf  -0.774  1.0000
 StepF18 - StepF17 -0.006300 0.0632 Inf  -0.100  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST (rt_ms) | Block 5 | 18 steps | Axis Z
==============================

Type II Wald χ² (StepF, Accuracy, rt_ms):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    89.9297 17  6.287e-12 ***
Accuracy  0.7889  1     0.3744    
rt_ms     0.1217  1     0.7272    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy (adjusted at mean rt_ms):
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.46 0.177 Inf     1.114      1.81
 2       1.67 0.177 Inf     1.322      2.02
 3       1.53 0.177 Inf     1.180      1.87
 4       1.44 0.177 Inf     1.089      1.78
 5       1.38 0.177 Inf     1.037      1.73
 6       1.37 0.177 Inf     1.027      1.72
 7       1.48 0.177 Inf     1.137      1.83
 8       1.44 0.177 Inf     1.089      1.78
 9       1.40 0.177 Inf     1.056      1.75
 10      1.46 0.177 Inf     1.110      1.80
 11      1.33 0.177 Inf     0.987      1.68
 12      1.23 0.177 Inf     0.886      1.58
 13      1.27 0.177 Inf     0.922      1.62
 14      1.40 0.177 Inf     1.051      1.74
 15      1.32 0.177 Inf     0.972      1.67
 16      1.22 0.177 Inf     0.877      1.57
 17      1.17 0.177 Inf     0.821      1.51
 18      1.18 0.177 Inf     0.831      1.52

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.38 0.179 Inf     1.025      1.73
 2       1.58 0.179 Inf     1.233      1.94
 3       1.44 0.179 Inf     1.090      1.79
 4       1.35 0.179 Inf     1.000      1.70
 5       1.30 0.179 Inf     0.948      1.65
 6       1.29 0.179 Inf     0.938      1.64
 7       1.40 0.179 Inf     1.048      1.75
 8       1.35 0.179 Inf     1.000      1.70
 9       1.32 0.179 Inf     0.967      1.67
 10      1.37 0.179 Inf     1.021      1.72
 11      1.25 0.179 Inf     0.898      1.60
 12      1.15 0.179 Inf     0.797      1.50
 13      1.18 0.179 Inf     0.833      1.53
 14      1.31 0.179 Inf     0.962      1.66
 15      1.23 0.179 Inf     0.883      1.59
 16      1.14 0.179 Inf     0.788      1.49
 17      1.08 0.179 Inf     0.732      1.43
 18      1.09 0.179 Inf     0.742      1.44

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.207675 0.0804 Inf  -2.584  0.4653
 StepF1 - StepF3   -0.064939 0.0804 Inf  -0.808  1.0000
 StepF1 - StepF4    0.025362 0.0803 Inf   0.316  1.0000
 StepF1 - StepF5    0.077231 0.0801 Inf   0.964  1.0000
 StepF1 - StepF6    0.087151 0.0800 Inf   1.089  0.9998
 StepF1 - StepF7   -0.022747 0.0800 Inf  -0.284  1.0000
 StepF1 - StepF8    0.025175 0.0802 Inf   0.314  1.0000
 StepF1 - StepF9    0.058634 0.0797 Inf   0.735  1.0000
 StepF1 - StepF10   0.004265 0.0799 Inf   0.053  1.0000
 StepF1 - StepF11   0.127279 0.0803 Inf   1.585  0.9835
 StepF1 - StepF12   0.228514 0.0802 Inf   2.850  0.2814
 StepF1 - StepF13   0.192354 0.0798 Inf   2.412  0.5988
 StepF1 - StepF14   0.063752 0.0800 Inf   0.796  1.0000
 StepF1 - StepF15   0.142354 0.0803 Inf   1.772  0.9516
 StepF1 - StepF16   0.237832 0.0804 Inf   2.959  0.2206
 StepF1 - StepF17   0.293933 0.0803 Inf   3.662  0.0279
 StepF1 - StepF18   0.283660 0.0802 Inf   3.538  0.0425
 StepF2 - StepF3    0.142735 0.0797 Inf   1.792  0.9466
 StepF2 - StepF4    0.233037 0.0797 Inf   2.925  0.2384
 StepF2 - StepF5    0.284906 0.0797 Inf   3.575  0.0376
 StepF2 - StepF6    0.294826 0.0797 Inf   3.699  0.0246
 StepF2 - StepF7    0.184928 0.0798 Inf   2.319  0.6697
 StepF2 - StepF8    0.232850 0.0797 Inf   2.922  0.2398
 StepF2 - StepF9    0.266309 0.0800 Inf   3.330  0.0819
 StepF2 - StepF10   0.211940 0.0798 Inf   2.657  0.4112
 StepF2 - StepF11   0.334954 0.0797 Inf   4.204  0.0035
 StepF2 - StepF12   0.436189 0.0797 Inf   5.474  <.0001
 StepF2 - StepF13   0.400029 0.0800 Inf   5.003  0.0001
 StepF2 - StepF14   0.271427 0.0797 Inf   3.405  0.0652
 StepF2 - StepF15   0.350029 0.0797 Inf   4.394  0.0015
 StepF2 - StepF16   0.445507 0.0797 Inf   5.592  <.0001
 StepF2 - StepF17   0.501608 0.0797 Inf   6.296  <.0001
 StepF2 - StepF18   0.491335 0.0797 Inf   6.166  <.0001
 StepF3 - StepF4    0.090302 0.0797 Inf   1.133  0.9997
 StepF3 - StepF5    0.142170 0.0797 Inf   1.784  0.9487
 StepF3 - StepF6    0.152090 0.0797 Inf   1.908  0.9094
 StepF3 - StepF7    0.042193 0.0798 Inf   0.529  1.0000
 StepF3 - StepF8    0.090114 0.0797 Inf   1.131  0.9997
 StepF3 - StepF9    0.123573 0.0800 Inf   1.545  0.9874
 StepF3 - StepF10   0.069205 0.0798 Inf   0.867  1.0000
 StepF3 - StepF11   0.192218 0.0797 Inf   2.413  0.5981
 StepF3 - StepF12   0.293454 0.0797 Inf   3.683  0.0260
 StepF3 - StepF13   0.257294 0.0800 Inf   3.217  0.1134
 StepF3 - StepF14   0.128691 0.0797 Inf   1.614  0.9801
 StepF3 - StepF15   0.207293 0.0797 Inf   2.602  0.4519
 StepF3 - StepF16   0.302771 0.0797 Inf   3.800  0.0170
 StepF3 - StepF17   0.358872 0.0797 Inf   4.504  0.0009
 StepF3 - StepF18   0.348600 0.0797 Inf   4.375  0.0017
 StepF4 - StepF5    0.051868 0.0797 Inf   0.651  1.0000
 StepF4 - StepF6    0.061788 0.0797 Inf   0.775  1.0000
 StepF4 - StepF7   -0.048109 0.0797 Inf  -0.603  1.0000
 StepF4 - StepF8   -0.000188 0.0797 Inf  -0.002  1.0000
 StepF4 - StepF9    0.033272 0.0799 Inf   0.416  1.0000
 StepF4 - StepF10  -0.021097 0.0797 Inf  -0.265  1.0000
 StepF4 - StepF11   0.101917 0.0797 Inf   1.279  0.9986
 StepF4 - StepF12   0.203152 0.0797 Inf   2.550  0.4916
 StepF4 - StepF13   0.166992 0.0799 Inf   2.090  0.8224
 StepF4 - StepF14   0.038389 0.0797 Inf   0.482  1.0000
 StepF4 - StepF15   0.116992 0.0797 Inf   1.468  0.9927
 StepF4 - StepF16   0.212469 0.0797 Inf   2.667  0.4040
 StepF4 - StepF17   0.268570 0.0797 Inf   3.371  0.0723
 StepF4 - StepF18   0.258298 0.0797 Inf   3.242  0.1057
 StepF5 - StepF6    0.009920 0.0797 Inf   0.125  1.0000
 StepF5 - StepF7   -0.099978 0.0797 Inf  -1.255  0.9989
 StepF5 - StepF8   -0.052056 0.0797 Inf  -0.653  1.0000
 StepF5 - StepF9   -0.018597 0.0798 Inf  -0.233  1.0000
 StepF5 - StepF10  -0.072966 0.0797 Inf  -0.916  1.0000
 StepF5 - StepF11   0.050048 0.0797 Inf   0.628  1.0000
 StepF5 - StepF12   0.151284 0.0797 Inf   1.899  0.9127
 StepF5 - StepF13   0.115124 0.0798 Inf   1.443  0.9940
 StepF5 - StepF14  -0.013479 0.0797 Inf  -0.169  1.0000
 StepF5 - StepF15   0.065123 0.0797 Inf   0.817  1.0000
 StepF5 - StepF16   0.160601 0.0797 Inf   2.015  0.8625
 StepF5 - StepF17   0.216702 0.0797 Inf   2.720  0.3663
 StepF5 - StepF18   0.206429 0.0797 Inf   2.591  0.4601
 StepF6 - StepF7   -0.109898 0.0797 Inf  -1.379  0.9964
 StepF6 - StepF8   -0.061976 0.0797 Inf  -0.778  1.0000
 StepF6 - StepF9   -0.028517 0.0798 Inf  -0.357  1.0000
 StepF6 - StepF10  -0.082886 0.0797 Inf  -1.040  0.9999
 StepF6 - StepF11   0.040128 0.0797 Inf   0.503  1.0000
 StepF6 - StepF12   0.141364 0.0797 Inf   1.774  0.9510
 StepF6 - StepF13   0.105204 0.0798 Inf   1.319  0.9979
 StepF6 - StepF14  -0.023399 0.0797 Inf  -0.294  1.0000
 StepF6 - StepF15   0.055203 0.0797 Inf   0.693  1.0000
 StepF6 - StepF16   0.150681 0.0797 Inf   1.890  0.9160
 StepF6 - StepF17   0.206782 0.0797 Inf   2.595  0.4573
 StepF6 - StepF18   0.196509 0.0797 Inf   2.466  0.5564
 StepF7 - StepF8    0.047922 0.0797 Inf   0.601  1.0000
 StepF7 - StepF9    0.081381 0.0797 Inf   1.021  0.9999
 StepF7 - StepF10   0.027012 0.0797 Inf   0.339  1.0000
 StepF7 - StepF11   0.150026 0.0797 Inf   1.882  0.9190
 StepF7 - StepF12   0.251261 0.0797 Inf   3.153  0.1353
 StepF7 - StepF13   0.215101 0.0797 Inf   2.698  0.3815
 StepF7 - StepF14   0.086499 0.0797 Inf   1.086  0.9998
 StepF7 - StepF15   0.165101 0.0797 Inf   2.070  0.8336
 StepF7 - StepF16   0.260579 0.0798 Inf   3.267  0.0985
 StepF7 - StepF17   0.316680 0.0797 Inf   3.972  0.0089
 StepF7 - StepF18   0.306407 0.0797 Inf   3.845  0.0144
 StepF8 - StepF9    0.033459 0.0799 Inf   0.419  1.0000
 StepF8 - StepF10  -0.020910 0.0797 Inf  -0.262  1.0000
 StepF8 - StepF11   0.102104 0.0797 Inf   1.282  0.9985
 StepF8 - StepF12   0.203340 0.0797 Inf   2.552  0.4897
 StepF8 - StepF13   0.167180 0.0799 Inf   2.093  0.8206
 StepF8 - StepF14   0.038577 0.0797 Inf   0.484  1.0000
 StepF8 - StepF15   0.117179 0.0797 Inf   1.471  0.9926
 StepF8 - StepF16   0.212657 0.0797 Inf   2.669  0.4024
 StepF8 - StepF17   0.268758 0.0797 Inf   3.373  0.0718
 StepF8 - StepF18   0.258485 0.0797 Inf   3.245  0.1050
 StepF9 - StepF10  -0.054369 0.0797 Inf  -0.682  1.0000
 StepF9 - StepF11   0.068645 0.0799 Inf   0.859  1.0000
 StepF9 - StepF12   0.169880 0.0799 Inf   2.127  0.8005
 StepF9 - StepF13   0.133720 0.0797 Inf   1.678  0.9708
 StepF9 - StepF14   0.005118 0.0798 Inf   0.064  1.0000
 StepF9 - StepF15   0.083720 0.0800 Inf   1.047  0.9999
 StepF9 - StepF16   0.179198 0.0800 Inf   2.240  0.7266
 StepF9 - StepF17   0.235299 0.0799 Inf   2.945  0.2279
 StepF9 - StepF18   0.225026 0.0799 Inf   2.818  0.3012
 StepF10 - StepF11  0.123014 0.0798 Inf   1.542  0.9876
 StepF10 - StepF12  0.224249 0.0797 Inf   2.813  0.3041
 StepF10 - StepF13  0.188089 0.0797 Inf   2.360  0.6389
 StepF10 - StepF14  0.059487 0.0797 Inf   0.747  1.0000
 StepF10 - StepF15  0.138089 0.0798 Inf   1.731  0.9608
 StepF10 - StepF16  0.233567 0.0798 Inf   2.928  0.2370
 StepF10 - StepF17  0.289668 0.0797 Inf   3.633  0.0309
 StepF10 - StepF18  0.279395 0.0797 Inf   3.505  0.0474
 StepF11 - StepF12  0.101235 0.0797 Inf   1.271  0.9987
 StepF11 - StepF13  0.065075 0.0799 Inf   0.814  1.0000
 StepF11 - StepF14 -0.063527 0.0797 Inf  -0.797  1.0000
 StepF11 - StepF15  0.015075 0.0797 Inf   0.189  1.0000
 StepF11 - StepF16  0.110553 0.0797 Inf   1.388  0.9962
 StepF11 - StepF17  0.166654 0.0797 Inf   2.092  0.8215
 StepF11 - StepF18  0.156381 0.0797 Inf   1.963  0.8869
 StepF12 - StepF13 -0.036160 0.0798 Inf  -0.453  1.0000
 StepF12 - StepF14 -0.164763 0.0797 Inf  -2.068  0.8349
 StepF12 - StepF15 -0.086160 0.0797 Inf  -1.081  0.9998
 StepF12 - StepF16  0.009317 0.0797 Inf   0.117  1.0000
 StepF12 - StepF17  0.065419 0.0797 Inf   0.821  1.0000
 StepF12 - StepF18  0.055146 0.0797 Inf   0.692  1.0000
 StepF13 - StepF14 -0.128603 0.0798 Inf  -1.612  0.9804
 StepF13 - StepF15 -0.050001 0.0799 Inf  -0.625  1.0000
 StepF13 - StepF16  0.045477 0.0800 Inf   0.569  1.0000
 StepF13 - StepF17  0.101579 0.0799 Inf   1.271  0.9987
 StepF13 - StepF18  0.091306 0.0798 Inf   1.144  0.9997
 StepF14 - StepF15  0.078602 0.0797 Inf   0.986  1.0000
 StepF14 - StepF16  0.174080 0.0797 Inf   2.184  0.7649
 StepF14 - StepF17  0.230181 0.0797 Inf   2.888  0.2589
 StepF14 - StepF18  0.219909 0.0797 Inf   2.760  0.3388
 StepF15 - StepF16  0.095478 0.0797 Inf   1.198  0.9994
 StepF15 - StepF17  0.151579 0.0797 Inf   1.903  0.9114
 StepF15 - StepF18  0.141306 0.0797 Inf   1.773  0.9512
 StepF16 - StepF17  0.056101 0.0797 Inf   0.704  1.0000
 StepF16 - StepF18  0.045829 0.0797 Inf   0.575  1.0000
 StepF17 - StepF18 -0.010273 0.0797 Inf  -0.129  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.207675 0.0804 Inf  -2.584  0.4653
 StepF1 - StepF3   -0.064939 0.0804 Inf  -0.808  1.0000
 StepF1 - StepF4    0.025362 0.0803 Inf   0.316  1.0000
 StepF1 - StepF5    0.077231 0.0801 Inf   0.964  1.0000
 StepF1 - StepF6    0.087151 0.0800 Inf   1.089  0.9998
 StepF1 - StepF7   -0.022747 0.0800 Inf  -0.284  1.0000
 StepF1 - StepF8    0.025175 0.0802 Inf   0.314  1.0000
 StepF1 - StepF9    0.058634 0.0797 Inf   0.735  1.0000
 StepF1 - StepF10   0.004265 0.0799 Inf   0.053  1.0000
 StepF1 - StepF11   0.127279 0.0803 Inf   1.585  0.9835
 StepF1 - StepF12   0.228514 0.0802 Inf   2.850  0.2814
 StepF1 - StepF13   0.192354 0.0798 Inf   2.412  0.5988
 StepF1 - StepF14   0.063752 0.0800 Inf   0.796  1.0000
 StepF1 - StepF15   0.142354 0.0803 Inf   1.772  0.9516
 StepF1 - StepF16   0.237832 0.0804 Inf   2.959  0.2206
 StepF1 - StepF17   0.293933 0.0803 Inf   3.662  0.0279
 StepF1 - StepF18   0.283660 0.0802 Inf   3.538  0.0425
 StepF2 - StepF3    0.142735 0.0797 Inf   1.792  0.9466
 StepF2 - StepF4    0.233037 0.0797 Inf   2.925  0.2384
 StepF2 - StepF5    0.284906 0.0797 Inf   3.575  0.0376
 StepF2 - StepF6    0.294826 0.0797 Inf   3.699  0.0246
 StepF2 - StepF7    0.184928 0.0798 Inf   2.319  0.6697
 StepF2 - StepF8    0.232850 0.0797 Inf   2.922  0.2398
 StepF2 - StepF9    0.266309 0.0800 Inf   3.330  0.0819
 StepF2 - StepF10   0.211940 0.0798 Inf   2.657  0.4112
 StepF2 - StepF11   0.334954 0.0797 Inf   4.204  0.0035
 StepF2 - StepF12   0.436189 0.0797 Inf   5.474  <.0001
 StepF2 - StepF13   0.400029 0.0800 Inf   5.003  0.0001
 StepF2 - StepF14   0.271427 0.0797 Inf   3.405  0.0652
 StepF2 - StepF15   0.350029 0.0797 Inf   4.394  0.0015
 StepF2 - StepF16   0.445507 0.0797 Inf   5.592  <.0001
 StepF2 - StepF17   0.501608 0.0797 Inf   6.296  <.0001
 StepF2 - StepF18   0.491335 0.0797 Inf   6.166  <.0001
 StepF3 - StepF4    0.090302 0.0797 Inf   1.133  0.9997
 StepF3 - StepF5    0.142170 0.0797 Inf   1.784  0.9487
 StepF3 - StepF6    0.152090 0.0797 Inf   1.908  0.9094
 StepF3 - StepF7    0.042193 0.0798 Inf   0.529  1.0000
 StepF3 - StepF8    0.090114 0.0797 Inf   1.131  0.9997
 StepF3 - StepF9    0.123573 0.0800 Inf   1.545  0.9874
 StepF3 - StepF10   0.069205 0.0798 Inf   0.867  1.0000
 StepF3 - StepF11   0.192218 0.0797 Inf   2.413  0.5981
 StepF3 - StepF12   0.293454 0.0797 Inf   3.683  0.0260
 StepF3 - StepF13   0.257294 0.0800 Inf   3.217  0.1134
 StepF3 - StepF14   0.128691 0.0797 Inf   1.614  0.9801
 StepF3 - StepF15   0.207293 0.0797 Inf   2.602  0.4519
 StepF3 - StepF16   0.302771 0.0797 Inf   3.800  0.0170
 StepF3 - StepF17   0.358872 0.0797 Inf   4.504  0.0009
 StepF3 - StepF18   0.348600 0.0797 Inf   4.375  0.0017
 StepF4 - StepF5    0.051868 0.0797 Inf   0.651  1.0000
 StepF4 - StepF6    0.061788 0.0797 Inf   0.775  1.0000
 StepF4 - StepF7   -0.048109 0.0797 Inf  -0.603  1.0000
 StepF4 - StepF8   -0.000188 0.0797 Inf  -0.002  1.0000
 StepF4 - StepF9    0.033272 0.0799 Inf   0.416  1.0000
 StepF4 - StepF10  -0.021097 0.0797 Inf  -0.265  1.0000
 StepF4 - StepF11   0.101917 0.0797 Inf   1.279  0.9986
 StepF4 - StepF12   0.203152 0.0797 Inf   2.550  0.4916
 StepF4 - StepF13   0.166992 0.0799 Inf   2.090  0.8224
 StepF4 - StepF14   0.038389 0.0797 Inf   0.482  1.0000
 StepF4 - StepF15   0.116992 0.0797 Inf   1.468  0.9927
 StepF4 - StepF16   0.212469 0.0797 Inf   2.667  0.4040
 StepF4 - StepF17   0.268570 0.0797 Inf   3.371  0.0723
 StepF4 - StepF18   0.258298 0.0797 Inf   3.242  0.1057
 StepF5 - StepF6    0.009920 0.0797 Inf   0.125  1.0000
 StepF5 - StepF7   -0.099978 0.0797 Inf  -1.255  0.9989
 StepF5 - StepF8   -0.052056 0.0797 Inf  -0.653  1.0000
 StepF5 - StepF9   -0.018597 0.0798 Inf  -0.233  1.0000
 StepF5 - StepF10  -0.072966 0.0797 Inf  -0.916  1.0000
 StepF5 - StepF11   0.050048 0.0797 Inf   0.628  1.0000
 StepF5 - StepF12   0.151284 0.0797 Inf   1.899  0.9127
 StepF5 - StepF13   0.115124 0.0798 Inf   1.443  0.9940
 StepF5 - StepF14  -0.013479 0.0797 Inf  -0.169  1.0000
 StepF5 - StepF15   0.065123 0.0797 Inf   0.817  1.0000
 StepF5 - StepF16   0.160601 0.0797 Inf   2.015  0.8625
 StepF5 - StepF17   0.216702 0.0797 Inf   2.720  0.3663
 StepF5 - StepF18   0.206429 0.0797 Inf   2.591  0.4601
 StepF6 - StepF7   -0.109898 0.0797 Inf  -1.379  0.9964
 StepF6 - StepF8   -0.061976 0.0797 Inf  -0.778  1.0000
 StepF6 - StepF9   -0.028517 0.0798 Inf  -0.357  1.0000
 StepF6 - StepF10  -0.082886 0.0797 Inf  -1.040  0.9999
 StepF6 - StepF11   0.040128 0.0797 Inf   0.503  1.0000
 StepF6 - StepF12   0.141364 0.0797 Inf   1.774  0.9510
 StepF6 - StepF13   0.105204 0.0798 Inf   1.319  0.9979
 StepF6 - StepF14  -0.023399 0.0797 Inf  -0.294  1.0000
 StepF6 - StepF15   0.055203 0.0797 Inf   0.693  1.0000
 StepF6 - StepF16   0.150681 0.0797 Inf   1.890  0.9160
 StepF6 - StepF17   0.206782 0.0797 Inf   2.595  0.4573
 StepF6 - StepF18   0.196509 0.0797 Inf   2.466  0.5564
 StepF7 - StepF8    0.047922 0.0797 Inf   0.601  1.0000
 StepF7 - StepF9    0.081381 0.0797 Inf   1.021  0.9999
 StepF7 - StepF10   0.027012 0.0797 Inf   0.339  1.0000
 StepF7 - StepF11   0.150026 0.0797 Inf   1.882  0.9190
 StepF7 - StepF12   0.251261 0.0797 Inf   3.153  0.1353
 StepF7 - StepF13   0.215101 0.0797 Inf   2.698  0.3815
 StepF7 - StepF14   0.086499 0.0797 Inf   1.086  0.9998
 StepF7 - StepF15   0.165101 0.0797 Inf   2.070  0.8336
 StepF7 - StepF16   0.260579 0.0798 Inf   3.267  0.0985
 StepF7 - StepF17   0.316680 0.0797 Inf   3.972  0.0089
 StepF7 - StepF18   0.306407 0.0797 Inf   3.845  0.0144
 StepF8 - StepF9    0.033459 0.0799 Inf   0.419  1.0000
 StepF8 - StepF10  -0.020910 0.0797 Inf  -0.262  1.0000
 StepF8 - StepF11   0.102104 0.0797 Inf   1.282  0.9985
 StepF8 - StepF12   0.203340 0.0797 Inf   2.552  0.4897
 StepF8 - StepF13   0.167180 0.0799 Inf   2.093  0.8206
 StepF8 - StepF14   0.038577 0.0797 Inf   0.484  1.0000
 StepF8 - StepF15   0.117179 0.0797 Inf   1.471  0.9926
 StepF8 - StepF16   0.212657 0.0797 Inf   2.669  0.4024
 StepF8 - StepF17   0.268758 0.0797 Inf   3.373  0.0718
 StepF8 - StepF18   0.258485 0.0797 Inf   3.245  0.1050
 StepF9 - StepF10  -0.054369 0.0797 Inf  -0.682  1.0000
 StepF9 - StepF11   0.068645 0.0799 Inf   0.859  1.0000
 StepF9 - StepF12   0.169880 0.0799 Inf   2.127  0.8005
 StepF9 - StepF13   0.133720 0.0797 Inf   1.678  0.9708
 StepF9 - StepF14   0.005118 0.0798 Inf   0.064  1.0000
 StepF9 - StepF15   0.083720 0.0800 Inf   1.047  0.9999
 StepF9 - StepF16   0.179198 0.0800 Inf   2.240  0.7266
 StepF9 - StepF17   0.235299 0.0799 Inf   2.945  0.2279
 StepF9 - StepF18   0.225026 0.0799 Inf   2.818  0.3012
 StepF10 - StepF11  0.123014 0.0798 Inf   1.542  0.9876
 StepF10 - StepF12  0.224249 0.0797 Inf   2.813  0.3041
 StepF10 - StepF13  0.188089 0.0797 Inf   2.360  0.6389
 StepF10 - StepF14  0.059487 0.0797 Inf   0.747  1.0000
 StepF10 - StepF15  0.138089 0.0798 Inf   1.731  0.9608
 StepF10 - StepF16  0.233567 0.0798 Inf   2.928  0.2370
 StepF10 - StepF17  0.289668 0.0797 Inf   3.633  0.0309
 StepF10 - StepF18  0.279395 0.0797 Inf   3.505  0.0474
 StepF11 - StepF12  0.101235 0.0797 Inf   1.271  0.9987
 StepF11 - StepF13  0.065075 0.0799 Inf   0.814  1.0000
 StepF11 - StepF14 -0.063527 0.0797 Inf  -0.797  1.0000
 StepF11 - StepF15  0.015075 0.0797 Inf   0.189  1.0000
 StepF11 - StepF16  0.110553 0.0797 Inf   1.388  0.9962
 StepF11 - StepF17  0.166654 0.0797 Inf   2.092  0.8215
 StepF11 - StepF18  0.156381 0.0797 Inf   1.963  0.8869
 StepF12 - StepF13 -0.036160 0.0798 Inf  -0.453  1.0000
 StepF12 - StepF14 -0.164763 0.0797 Inf  -2.068  0.8349
 StepF12 - StepF15 -0.086160 0.0797 Inf  -1.081  0.9998
 StepF12 - StepF16  0.009317 0.0797 Inf   0.117  1.0000
 StepF12 - StepF17  0.065419 0.0797 Inf   0.821  1.0000
 StepF12 - StepF18  0.055146 0.0797 Inf   0.692  1.0000
 StepF13 - StepF14 -0.128603 0.0798 Inf  -1.612  0.9804
 StepF13 - StepF15 -0.050001 0.0799 Inf  -0.625  1.0000
 StepF13 - StepF16  0.045477 0.0800 Inf   0.569  1.0000
 StepF13 - StepF17  0.101579 0.0799 Inf   1.271  0.9987
 StepF13 - StepF18  0.091306 0.0798 Inf   1.144  0.9997
 StepF14 - StepF15  0.078602 0.0797 Inf   0.986  1.0000
 StepF14 - StepF16  0.174080 0.0797 Inf   2.184  0.7649
 StepF14 - StepF17  0.230181 0.0797 Inf   2.888  0.2589
 StepF14 - StepF18  0.219909 0.0797 Inf   2.760  0.3388
 StepF15 - StepF16  0.095478 0.0797 Inf   1.198  0.9994
 StepF15 - StepF17  0.151579 0.0797 Inf   1.903  0.9114
 StepF15 - StepF18  0.141306 0.0797 Inf   1.773  0.9512
 StepF16 - StepF17  0.056101 0.0797 Inf   0.704  1.0000
 StepF16 - StepF18  0.045829 0.0797 Inf   0.575  1.0000
 StepF17 - StepF18 -0.010273 0.0797 Inf  -0.129  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.20767 0.0804 Inf   2.584  0.1659
 StepF3 - StepF2   -0.14274 0.0797 Inf  -1.792  1.0000
 StepF4 - StepF3   -0.09030 0.0797 Inf  -1.133  1.0000
 StepF5 - StepF4   -0.05187 0.0797 Inf  -0.651  1.0000
 StepF6 - StepF5   -0.00992 0.0797 Inf  -0.125  1.0000
 StepF7 - StepF6    0.10990 0.0797 Inf   1.379  1.0000
 StepF8 - StepF7   -0.04792 0.0797 Inf  -0.601  1.0000
 StepF9 - StepF8   -0.03346 0.0799 Inf  -0.419  1.0000
 StepF10 - StepF9   0.05437 0.0797 Inf   0.682  1.0000
 StepF11 - StepF10 -0.12301 0.0798 Inf  -1.542  1.0000
 StepF12 - StepF11 -0.10124 0.0797 Inf  -1.271  1.0000
 StepF13 - StepF12  0.03616 0.0798 Inf   0.453  1.0000
 StepF14 - StepF13  0.12860 0.0798 Inf   1.612  1.0000
 StepF15 - StepF14 -0.07860 0.0797 Inf  -0.986  1.0000
 StepF16 - StepF15 -0.09548 0.0797 Inf  -1.198  1.0000
 StepF17 - StepF16 -0.05610 0.0797 Inf  -0.704  1.0000
 StepF18 - StepF17  0.01027 0.0797 Inf   0.129  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.20767 0.0804 Inf   2.584  0.1659
 StepF3 - StepF2   -0.14274 0.0797 Inf  -1.792  1.0000
 StepF4 - StepF3   -0.09030 0.0797 Inf  -1.133  1.0000
 StepF5 - StepF4   -0.05187 0.0797 Inf  -0.651  1.0000
 StepF6 - StepF5   -0.00992 0.0797 Inf  -0.125  1.0000
 StepF7 - StepF6    0.10990 0.0797 Inf   1.379  1.0000
 StepF8 - StepF7   -0.04792 0.0797 Inf  -0.601  1.0000
 StepF9 - StepF8   -0.03346 0.0799 Inf  -0.419  1.0000
 StepF10 - StepF9   0.05437 0.0797 Inf   0.682  1.0000
 StepF11 - StepF10 -0.12301 0.0798 Inf  -1.542  1.0000
 StepF12 - StepF11 -0.10124 0.0797 Inf  -1.271  1.0000
 StepF13 - StepF12  0.03616 0.0798 Inf   0.453  1.0000
 StepF14 - StepF13  0.12860 0.0798 Inf   1.612  1.0000
 StepF15 - StepF14 -0.07860 0.0797 Inf  -0.986  1.0000
 StepF16 - StepF15 -0.09548 0.0797 Inf  -1.198  1.0000
 StepF17 - StepF16 -0.05610 0.0797 Inf  -0.704  1.0000
 StepF18 - StepF17  0.01027 0.0797 Inf   0.129  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 
# ---- 3.2b PLOTS (rt_ms): unified y-scale (based on Z) + adjacent-step significance markers ----
suppressPackageStartupMessages({
  library(dplyr); library(ggplot2); library(lme4); library(emmeans); library(patchwork); library(stringr)
})
emm_options(lmer.df = "asymptotic")

# Robust RHS-step parser: works for "2 - 1", "S2 - S1", etc., without look-behind
.get_rhs_step <- function(x) {
  nums <- stringr::str_extract_all(x, "\\d+")
  vapply(nums, function(v) {
    if (length(v) >= 2) as.integer(v[2]) else NA_integer_
  }, integer(1))
}

# Compute EMMs (adjusted at mean rt_ms), SD ribbons, and adjacent-step markers for ONE axis
.compute_emm_sd_and_markers_rtms <- function(df_axis, alpha = 0.05) {
  if (nrow(df_axis) == 0) return(NULL)
  dd <- df_axis %>%
    dplyr::filter(as.character(Accuracy) == "1") %>%     # correct-only for plots
    dplyr::mutate(
      StepF    = factor(Step, levels = sort(unique(Step))),
      subject  = factor(subject),
      trial_id = factor(trial_id)
    )
  if (nrow(dd) == 0 || nlevels(dd$StepF) < 2) return(NULL)

  # RT-adjusted (actual RT) model for plotting
  m <- suppressWarnings(lme4::lmer(RMS ~ StepF + rt_ms + (1|subject) + (1|trial_id), data = dd, REML = TRUE))

  # EMMs per Step (rt_ms held at its mean by default)
  em_df <- as.data.frame(emmeans::emmeans(m, ~ StepF)) %>%
    dplyr::transmute(Step = as.numeric(as.character(StepF)),
                     emmean = emmean)

  # SD per Step from raw (correct-only)
  sd_df <- dd %>%
    dplyr::group_by(StepF) %>%
    dplyr::summarise(sd = stats::sd(RMS, na.rm = TRUE), .groups = "drop") %>%
    dplyr::transmute(Step = as.numeric(as.character(StepF)), sd = sd)

  emms_tbl <- dplyr::left_join(em_df, sd_df, by = "Step") %>%
    dplyr::mutate(ymin = pmax(0, emmean - sd),
                  ymax = emmean + sd)

  # Adjacent-step contrasts (Holm), based on EMMs
  cons_df <- as.data.frame(
    emmeans::contrast(emmeans::emmeans(m, ~ StepF), method = "consec", adjust = "holm")
  )

  # Place marker at the LOWER step (RHS of "k+1 - k"), direction by sign of estimate
  markers <- cons_df %>%
    dplyr::mutate(
      Step = .get_rhs_step(contrast),
      dir  = ifelse(estimate > 0, "up", "down"),
      sig  = !is.na(p.value) & (p.value < alpha)
    ) %>%
    dplyr::filter(sig) %>%
    dplyr::select(Step, dir, p.value)

  list(emms = emms_tbl, markers = markers)
}

# Build plots for a block (X/Y/Z) with unified y-scale based on Z-axis maxima
.plot_block_stepwise_sd_correct_rtms_unified <- function(df_block, block_title) {
  axes_map <- c("x"="X","y"="Y","z"="Z")

  # Collect EMMs & markers for each axis
  out <- lapply(names(axes_map), function(ax) {
    comp <- .compute_emm_sd_and_markers_rtms(df_block %>% dplyr::filter(Axis == ax))
    if (is.null(comp)) return(NULL)
    comp$emms    <- comp$emms    %>% dplyr::mutate(Axis = axes_map[[ax]])
    comp$markers <- comp$markers %>% dplyr::mutate(Axis = axes_map[[ax]])
    comp
  })
  out <- out[!vapply(out, is.null, logical(1))]
  if (length(out) == 0) return(invisible(NULL))

  emms_tbl <- dplyr::bind_rows(lapply(out, `[[`, "emms"))
  mark_tbl <- dplyr::bind_rows(lapply(out, `[[`, "markers"))

  # Unified y-limit driven by Z-axis ymax; fallback to overall if Z missing
  if ("Z" %in% unique(emms_tbl$Axis)) {
    z_max <- max(emms_tbl$ymax[emms_tbl$Axis == "Z"], na.rm = TRUE)
  } else {
    z_max <- max(emms_tbl$ymax, na.rm = TRUE)
  }
  y_upper <- if (is.finite(z_max)) z_max * 1.08 else 1
  y_lower <- 0

  # Marker y-positions near the top; stagger in overlay to avoid overlap
  if (nrow(mark_tbl) > 0) {
    mark_facets <- mark_tbl %>% dplyr::mutate(star_y = y_upper * 0.97)
    axis_offset <- c("X"=0.97, "Y"=0.94, "Z"=0.91)
    mark_overlay <- mark_tbl %>% dplyr::mutate(star_y = y_upper * axis_offset[Axis])
  } else {
    mark_facets <- mark_overlay <- mark_tbl
  }

  # Faceted plot (fixed unified y-scale)
  p_facets <- ggplot(emms_tbl, aes(x = Step, y = emmean)) +
    geom_ribbon(aes(ymin = pmin(ymin, y_upper), ymax = pmin(ymax, y_upper)), alpha = 0.18) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    facet_wrap(~ Axis, nrow = 1, scales = "fixed") +
    coord_cartesian(ylim = c(y_lower, y_upper), expand = FALSE) +
    {
      if (nrow(mark_facets) > 0)
        geom_point(data = mark_facets,
                   aes(x = Step, y = star_y, color = dir),
                   shape = 8, size = 3.2, inherit.aes = FALSE)
    } +
    scale_color_manual(values = c(up = "red3", down = "dodgerblue3"),
                       name = "Adjacent change",
                       labels = c(up = "↑ next higher", down = "↓ next lower")) +
    labs(title = paste0(block_title, " — Step-wise EMMs (±SD) — Correct trials (RT-adjusted @ mean rt_ms)"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "bottom")

  # Overlay plot (single panel; unified y-scale)
  p_overlay <- ggplot(emms_tbl, aes(x = Step, y = emmean, color = Axis, fill = Axis, group = Axis)) +
    geom_ribbon(aes(ymin = pmin(ymin, y_upper), ymax = pmin(ymax, y_upper)), alpha = 0.15, color = NA) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    {
      if (nrow(mark_overlay) > 0)
        geom_point(data = mark_overlay,
                   aes(x = Step, y = star_y, shape = dir),
                   size = 3.0, inherit.aes = FALSE, show.legend = TRUE)
    } +
    scale_shape_manual(values = c(up = 24, down = 25), name = "Adjacent change",
                       labels = c(up = "↑ next higher", down = "↓ next lower")) +
    coord_cartesian(ylim = c(y_lower, y_upper), expand = FALSE) +
    labs(title = paste0(block_title, " — Step-wise EMMs (±SD) — Correct trials (X/Y/Z overlaid, RT-adjusted @ mean rt_ms)"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "bottom")

  list(facets = p_facets, overlay = p_overlay)
}

# Length-specific wrapper for TEST blocks
.plot_block_len_sd_correct_rtms_unified <- function(df_block, title_prefix) {
  .plot_block_stepwise_sd_correct_rtms_unified(df_block, title_prefix)
}

# ---- RENDER: TRAINING (Blocks 1–3) ----
res_b1_rtms <- .plot_block_stepwise_sd_correct_rtms_unified(stepwise_6_rt,  "Block 1 (6 steps)")
res_b2_rtms <- .plot_block_stepwise_sd_correct_rtms_unified(stepwise_12_rt, "Block 2 (12 steps)")
res_b3_rtms <- .plot_block_stepwise_sd_correct_rtms_unified(stepwise_18_rt, "Block 3 (18 steps)")

if (!is.null(res_b1_rtms)) { print(res_b1_rtms$facets); print(res_b1_rtms$overlay) }

if (!is.null(res_b2_rtms)) { print(res_b2_rtms$facets); print(res_b2_rtms$overlay) }

if (!is.null(res_b3_rtms)) { print(res_b3_rtms$facets); print(res_b3_rtms$overlay) }

# ---- RENDER: TEST (Blocks 4–5) ----
# Block 4
res_b4_6_rtms  <- .plot_block_len_sd_correct_rtms_unified(sw_b4_6_rt,  "Block 4 — 6 steps")
res_b4_12_rtms <- .plot_block_len_sd_correct_rtms_unified(sw_b4_12_rt, "Block 4 — 12 steps")
res_b4_18_rtms <- .plot_block_len_sd_correct_rtms_unified(sw_b4_18_rt, "Block 4 — 18 steps")
if (!is.null(res_b4_6_rtms))  { print(res_b4_6_rtms$facets);  print(res_b4_6_rtms$overlay) }

if (!is.null(res_b4_12_rtms)) { print(res_b4_12_rtms$facets); print(res_b4_12_rtms$overlay) }

if (!is.null(res_b4_18_rtms)) { print(res_b4_18_rtms$facets); print(res_b4_18_rtms$overlay) }

# Block 5
res_b5_6_rtms  <- .plot_block_len_sd_correct_rtms_unified(sw_b5_6_rt,  "Block 5 — 6 steps")
res_b5_12_rtms <- .plot_block_len_sd_correct_rtms_unified(sw_b5_12_rt, "Block 5 — 12 steps")
res_b5_18_rtms <- .plot_block_len_sd_correct_rtms_unified(sw_b5_18_rt, "Block 5 — 18 steps")
if (!is.null(res_b5_6_rtms))  { print(res_b5_6_rtms$facets);  print(res_b5_6_rtms$overlay) }

if (!is.null(res_b5_12_rtms)) { print(res_b5_12_rtms$facets); print(res_b5_12_rtms$overlay) }

if (!is.null(res_b5_18_rtms)) { print(res_b5_18_rtms$facets); print(res_b5_18_rtms$overlay) }

# ---- 3.2d PLOTS (rt_ms): Overlay Block 4 vs Block 5, unified y-scale, adjacent-step markers ----
suppressPackageStartupMessages({
  library(dplyr); library(ggplot2); library(lme4); library(emmeans); library(stringr)
})
emm_options(lmer.df = "asymptotic")

# Robust RHS-step parser (no look-behind)
.get_rhs_step <- function(x) {
  nums <- stringr::str_extract_all(x, "\\d+")
  vapply(nums, function(v) if (length(v) >= 2) as.integer(v[2]) else NA_integer_, integer(1))
}

# Compute EMMs (adjusted @ mean rt_ms), SD ribbons, and adjacent-step markers for ONE axis & ONE block
.compute_emm_sd_markers_rtms_cond <- function(df_axis, cond_label, alpha = 0.05) {
  if (nrow(df_axis) == 0) return(NULL)
  dd <- df_axis %>%
    dplyr::filter(as.character(Accuracy) == "1") %>%   # correct-only
    dplyr::mutate(
      StepF    = factor(Step, levels = sort(unique(Step))),
      subject  = factor(subject),
      trial_id = factor(trial_id)
    )
  if (nrow(dd) == 0 || nlevels(dd$StepF) < 2) return(NULL)

  # Model for plotting: RMS ~ StepF + rt_ms + (1|subject) + (1|trial_id)
  m <- suppressWarnings(lme4::lmer(RMS ~ StepF + rt_ms + (1|subject) + (1|trial_id), data = dd, REML = TRUE))

  # EMMs per Step (rt_ms held at its mean)
  em_df <- as.data.frame(emmeans::emmeans(m, ~ StepF)) %>%
    dplyr::transmute(Step = as.numeric(as.character(StepF)), emmean = emmean, Condition = cond_label)

  # SD per Step from raw (correct-only)
  sd_df <- dd %>%
    dplyr::group_by(StepF) %>%
    dplyr::summarise(sd = stats::sd(RMS, na.rm = TRUE), .groups = "drop") %>%
    dplyr::transmute(Step = as.numeric(as.character(StepF)), sd = sd, Condition = cond_label)

  emms_tbl <- dplyr::left_join(em_df, sd_df, by = c("Step","Condition")) %>%
    dplyr::mutate(ymin = pmax(0, emmean - sd),
                  ymax = emmean + sd)

  # Adjacent-step contrasts (Holm)
  cons_df <- as.data.frame(
    emmeans::contrast(emmeans::emmeans(m, ~ StepF), method = "consec", adjust = "holm")
  )
  markers <- cons_df %>%
    dplyr::mutate(
      Step = .get_rhs_step(contrast),
      dir  = ifelse(estimate > 0, "up", "down"),
      sig  = !is.na(p.value) & p.value < alpha
    ) %>%
    dplyr::filter(sig) %>%
    dplyr::transmute(Step, dir, Condition = cond_label)

  list(emms = emms_tbl, markers = markers)
}

# Build overlay (Block 4 vs 5) for a given sequence length subset pair
.plot_len_overlay_b4b5_rtms_unified <- function(df_b4, df_b5, title_prefix) {
  axes_map <- c("x"="X","y"="Y","z"="Z")

  out <- lapply(names(axes_map), function(ax) {
    comp4 <- .compute_emm_sd_markers_rtms_cond(
      df_b4 %>% dplyr::filter(Axis == ax),
      cond_label = "Block 4 (Familiar)"
    )
    comp5 <- .compute_emm_sd_markers_rtms_cond(
      df_b5 %>% dplyr::filter(Axis == ax),
      cond_label = "Block 5 (Unfamiliar)"
    )
    lst <- list(comp4, comp5)
    lst <- lst[!vapply(lst, is.null, logical(1))]
    if (!length(lst)) return(NULL)

    emms <- dplyr::bind_rows(lapply(lst, `[[`, "emms")) %>% dplyr::mutate(Axis = axes_map[[ax]])
    marks <- dplyr::bind_rows(lapply(lst, `[[`, "markers")) %>% dplyr::mutate(Axis = axes_map[[ax]])
    list(emms = emms, markers = marks)
  })
  out <- out[!vapply(out, is.null, logical(1))]
  if (!length(out)) return(invisible(NULL))

  emms_tbl <- dplyr::bind_rows(lapply(out, `[[`, "emms"))
  mark_tbl <- dplyr::bind_rows(lapply(out, `[[`, "markers"))

  # Unified y-limit driven by Z-axis max across BOTH blocks
  if ("Z" %in% unique(emms_tbl$Axis)) {
    z_max <- max(emms_tbl$ymax[emms_tbl$Axis == "Z"], na.rm = TRUE)
  } else {
    z_max <- max(emms_tbl$ymax, na.rm = TRUE)
  }
  y_upper <- if (is.finite(z_max)) z_max * 1.08 else 1
  y_lower <- 0

  # Marker positions: stagger by Condition to avoid overlap
  if (nrow(mark_tbl) > 0) {
    cond_off <- c("Block 4 (Familiar)" = 0.97, "Block 5 (Unfamiliar)" = 0.94)
    mark_facets <- mark_tbl %>% dplyr::mutate(star_y = y_upper * cond_off[Condition])
  } else {
    mark_facets <- mark_tbl
  }

  # Faceted by Axis; overlay both blocks; unified y-scale
  p_facets <- ggplot(emms_tbl, aes(x = Step, y = emmean, color = Condition, fill = Condition, group = Condition)) +
    geom_ribbon(aes(ymin = pmin(ymin, y_upper), ymax = pmin(ymax, y_upper)), alpha = 0.15, color = NA) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    facet_wrap(~ Axis, nrow = 1, scales = "fixed") +
    coord_cartesian(ylim = c(y_lower, y_upper), expand = FALSE) +
    {
      if (nrow(mark_facets) > 0)
        geom_point(data = mark_facets,
                   aes(x = Step, y = star_y, shape = dir, color = Condition),
                   size = 3.0, inherit.aes = FALSE, show.legend = TRUE)
    } +
    scale_shape_manual(values = c(up = 24, down = 25),
                       name = "Adjacent change",
                       labels = c(up = "↑ next higher", down = "↓ next lower")) +
    labs(title = paste0(title_prefix, " — Step-wise EMMs (±SD) — Correct trials, RT-adjusted @ mean rt_ms"),
         x = "Step", y = "EMM RMS", color = NULL, fill = NULL) +
    theme_classic() +
    theme(legend.position = "bottom")

  p_facets
}

# ---- RENDER: Block 4 vs Block 5 overlays ----
# 6 steps
p_b45_6  <- .plot_len_overlay_b4b5_rtms_unified(sw_b4_6_rt,  sw_b5_6_rt,  "6 steps (B4 vs B5)")
# 12 steps
p_b45_12 <- .plot_len_overlay_b4b5_rtms_unified(sw_b4_12_rt, sw_b5_12_rt, "12 steps (B4 vs B5)")
# 18 steps
p_b45_18 <- .plot_len_overlay_b4b5_rtms_unified(sw_b4_18_rt, sw_b5_18_rt, "18 steps (B4 vs B5)")

if (!is.null(p_b45_6))  print(p_b45_6)

if (!is.null(p_b45_12)) print(p_b45_12)

if (!is.null(p_b45_18)) print(p_b45_18)