rm(list=ls())
library(tidyverse)
library(tidyquant)
library(timetk)
library(PerformanceAnalytics)
library(DT)
1. Import data file
# Import data using read_tsv()
data1 <- read_tsv("tej_day_price_2024_20250630.txt")
# Show results
glimpse(data1)
## Rows: 337,347
## Columns: 12
## $ CO_ID <chr> "1101 TCC", "1102 ACC", "1103 CHC", "1104 UCC", …
## $ Date <dbl> 20240102, 20240102, 20240102, 20240102, 20240102…
## $ `TSE ID` <dbl> 1101, 1102, 1103, 1104, 1108, 1109, 1110, 1201, …
## $ `TSE Sector` <chr> "01", "01", "01", "01", "01", "01", "01", "02", …
## $ `English Short Name` <chr> "TCC", "ACC", "CHC", "UCC", "Lucky Cement", "HSI…
## $ `Open(NTD)` <dbl> 32.5373, 37.2642, 17.7825, 26.0628, 14.1679, 16.…
## $ `High(NTD)` <dbl> 32.5373, 37.4442, 17.7825, 26.1505, 14.1679, 16.…
## $ `Low(NTD)` <dbl> 32.3038, 36.9492, 17.5953, 25.9750, 14.0343, 16.…
## $ `Close(NTD)` <dbl> 32.3972, 37.0392, 17.6421, 26.0628, 14.0788, 16.…
## $ `Volume(1000S)` <dbl> 14937, 6223, 171, 260, 442, 228, 57, 126, 48, 18…
## $ `Amount(NTD1000)` <dbl> 518751, 256522, 3240, 7736, 6992, 4159, 1075, 24…
## $ `Market Cap.(NTD MN)` <dbl> 262026, 145941, 14896, 19995, 6395, 6209, 10754,…
2. Replace column names
data2 <- data1 %>%
rename(
date = 2, # Date column
id = 3, # TSE ID column
name = 5, # English Short Name column
price = 9, # Close(NTD) column
cap = 12 # Market Cap.(NTD MN) column
) %>%
select(id, name, date, price, cap)
glimpse(data2)
## Rows: 337,347
## Columns: 5
## $ id <dbl> 1101, 1102, 1103, 1104, 1108, 1109, 1110, 1201, 1203, 1210, 1213…
## $ name <chr> "TCC", "ACC", "CHC", "UCC", "Lucky Cement", "HSINGTA", "Tuna Cem…
## $ date <dbl> 20240102, 20240102, 20240102, 20240102, 20240102, 20240102, 2024…
## $ price <dbl> 32.3972, 37.0392, 17.6421, 26.0628, 14.0788, 16.1807, 18.3336, 1…
## $ cap <dbl> 262026, 145941, 14896, 19995, 6395, 6209, 10754, 9640, 13992, 52…
4. Find stocks with NA values
na_counts <- data3 %>%
select(-date) %>%
summarise(across(everything(), ~sum(is.na(.)))) %>%
pivot_longer(everything(), names_to = "key", values_to = "value") %>%
filter(value > 0) %>%
arrange(value)
datatable(na_counts, options = list(pageLength = 10))
5. Replace NA values
# Replace NA with closest available stock prices
data5 <- data3 %>%
tk_xts(date_var = date) %>%
na.locf() %>% # Replace NA with last observation carried forward
tk_tbl(preserve_index = TRUE, rename_index = "date")
# Show results
datatable(data5, options = list(pageLength = 10, scrollX = TRUE))
6. Delete stocks with NA
# Get list of stocks with NA from Question 4
stocks_with_na <- na_counts$key
# Remove those stocks
data6 <- data3 %>%
select(-any_of(stocks_with_na))
# Show dimensions
dim(data6)
## [1] 358 937
7. Calculate daily returns
# Convert to xts
data7_xts <- data6 %>%
tk_xts(date_var = date)
# Calculate daily returns (discrete returns)
daily_returns <- Return.calculate(data7_xts, method = "discrete")
# Remove first row (NA) and show first 5 stocks, first 5 days
daily_returns_clean <- daily_returns[-1, ]
daily_returns_clean[1:5, 1:5]
## 1101 1102 1103 1104 1108
## 2024-01-03 -0.014408653 -0.012149290 -0.007958236 -0.006733735 -0.003160781
## 2024-01-04 0.000000000 0.012298711 0.000000000 -0.013558772 0.003170803
## 2024-01-05 0.004384536 -0.001214929 0.002674026 0.010306896 0.000000000
## 2024-01-08 -0.002909225 0.004865628 0.002666895 -0.003399291 0.006328664
## 2024-01-09 -0.005841680 -0.007263102 -0.002659801 -0.013655209 -0.025155457
8. Calculate monthly returns
# Convert to monthly and calculate returns
monthly_prices <- to.monthly(data7_xts, OHLC = FALSE)
monthly_returns <- Return.calculate(monthly_prices, method = "discrete")
# Remove first row and show first 5 stocks, first 5 months
monthly_returns_clean <- monthly_returns[-1, ]
monthly_returns_clean[1:5, 1:5]
## 1101 1102 1103 1104 1108
## Feb 2024 0.006272034 0.01760804 -0.008404066 0.01887014 0.036185231
## Mar 2024 0.001554899 0.02101398 -0.016950585 0.06397241 0.003170803
## Apr 2024 -0.003108301 0.05811288 0.057470064 0.11234002 0.072790295
## May 2024 0.029639309 -0.04920108 0.032611536 -0.03271487 0.000000000
## Jun 2024 0.036364817 0.05535680 -0.036845213 0.04852830 -0.011805133
9. Find largest cap firms
# Get the original data with cap information
data9 <- data2 %>%
mutate(date = ymd(as.character(date))) %>%
mutate(year1 = year(date))
# Find the 20 largest cap firms at year end of 2024 and 2025
top20_firms <- data9 %>%
filter(date == as.Date("2024-12-31") | date == as.Date("2025-06-30")) %>%
group_by(year1) %>%
arrange(desc(cap)) %>%
slice(1:20) %>%
ungroup() %>%
mutate(cap1 = paste0("$", format(cap, big.mark = ","))) %>%
select(date, year1, cap, cap1, id, name)
# Show results
datatable(top20_firms, options = list(pageLength = 10))