Meta Data

The total sample size, including drop-outs, is N=219. We collected 157 completed survey interviews. These are the main objects of the descriptive analysis.

Completion rate

Share of drop-outs
Level Share
Completed 0.72
Drop-outs 0.28

Duration in minutes (incl. drop-outs)

Moments duration
Statistic Value
Min. 0.13
1st Qu. 10.46
Median 17.05
Mean 21.34
3rd Qu. 23.14
Max. 254.58

Duration in minutes (excl. drop-outs)

Moments duration
Statistic Value
Min. 5.20
1st Qu. 15.53
Median 19.82
Mean 25.49
3rd Qu. 25.92
Max. 188.68

Devices used (incl. drop-outs)

Devices used (excl. drop-outs)

Socio-demographics

Gender

Age

Statistic Value
Min. 18.00
1st Qu. 33.00
Median 46.00
Mean 44.93
3rd Qu. 57.00
Max. 69.00

Municipality size

Education

Household size

Income

We generated a quasi-continuous measure of income by using the mid-points of the income brackets. The highest bracket is assigned a value of 8001.

Statistic Value
Min. 749.50
1st Qu. 2249.50
Median 4249.50
Mean 3961.32
3rd Qu. 5249.50
Max. 8001.00

Children

Children below 18

Shares are conditional on having children

Grandchildren

Shares are conditional on having children

Employment

Political affiliation

Spatial distribution of respondents

Drop-outs and selection on observables

We excluded two observations that showed item non-response on socio-demographic variables collected during the screening process (n=2).

Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.960 882.745 -0.017 0.986
genderfemale 0.234 0.351 0.667 0.505
age 0.005 0.016 0.293 0.770
income 0.000 0.000 -1.047 0.295
size_munitown 0.401 0.501 0.800 0.424
size_munimid-sized town 0.627 0.480 1.306 0.192
size_municity 0.246 0.525 0.468 0.640
education_1first-level-secondary 14.445 882.744 0.016 0.987
education_1second-level-secondary 13.804 882.744 0.016 0.988
education_1third-level-secondary 13.772 882.744 0.016 0.988
education_1high school degree 13.338 882.744 0.015 0.988
education_1university degree 12.564 882.744 0.014 0.989
hhsize 0.226 0.196 1.154 0.248
childrenNo -0.427 0.510 -0.838 0.402
grandchild1 -0.310 0.543 -0.572 0.568
ch_b_181 -0.572 0.490 -1.168 0.243

Measurement of latent variables

Personal and social norms

Factor Loadings
Latent Factor Indicator B SE Z p-value Beta
f_pn H1A1_1 1.000 0.000 NA NA 0.862
f_pn H1A2_1 0.894 0.054 16.612 0 0.771
f_pn H1A3_1 0.854 0.058 14.817 0 0.736
f_sn H1A4_1 1.000 0.000 NA NA 0.849
f_sn H1A5_1 0.911 0.045 20.062 0 0.773
f_sn H1A6_1 1.011 0.044 22.720 0 0.859
Variances
name Resid_Var Resid_SE Resid_Z Resid_p_value Resid_Beta
H1A1_1 0.258 0.000 NA NA 0.258
H1A2_1 0.406 0.000 NA NA 0.406
H1A3_1 0.458 0.000 NA NA 0.458
H1A4_1 0.279 0.000 NA NA 0.279
H1A5_1 0.402 0.000 NA NA 0.402
H1A6_1 0.263 0.000 NA NA 0.263
f_pn 0.742 0.051 14.633 0 1.000
f_sn 0.721 0.047 15.482 0 1.000
Reliability measures
f_pn f_sn
alpha 0.781 0.820
alpha.ord 0.834 0.855
omega 0.792 0.835
omega2 0.792 0.835
omega3 0.790 0.848
avevar 0.626 0.686

The factors capturing personal norms (f_pn) and social norms (f_sn) to financially support ecosystem service provision are highly correlated (0.62). This might be expected due to the internalization of social norms. However, to test if the social and personal norms can be empirically separated by the two factor model, we estimated a one factor model and compare its fit to the two factor model using the procedure suggested by Satorra–Bentler (2010). The two-factor model outperforms the one factor model as the latter shows a higher RMSEA.

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
fit_norm 8 NA NA 9.345 NA NA NA NA
fit_norm_2 9 NA NA 22.891 21.303 0.283 1 0

Risk aversion

Factor Loadings
Latent Factor Indicator B SE Z p-value Beta
f_risk R1 1.000 0.000 NA NA 1.022
f_risk R2 0.840 0.041 20.277 0 0.859
f_risk R3 0.618 0.045 13.772 0 0.632
Variances
name Resid_Var Resid_SE Resid_Z Resid_p_value Resid_Beta
R1 -0.045 0.000 NA NA -0.045
R2 0.263 0.000 NA NA 0.263
R3 0.601 0.000 NA NA 0.601
f_risk 1.045 0.045 23.098 0 1.000
Reliability measures
f_risk
alpha 0.845
alpha.ord 0.869
omega 0.845
omega2 0.845
omega3 0.845
avevar 0.727

The standardized factor loading of R1 suggests that this indicator perfectly predicts the latent variable. This also explains that R1’s remaining variance is negative and close to zero. The factor structure also suggests that R3, asking about risk attitudes when it comes to financial investment, although related to the general risk factor (R1 and R2 ask for general risk attitudes), measures risky behavior in another context, mirroring empirical findings on domain-specific risk attitudes.

Trust in institutions

Factor Loadings
Latent Factor Indicator B SE Z p-value Beta
f_trust SD5a 1.000 0.000 NA NA 0.956
f_trust SD5b 0.731 0.038 19.465 0 0.699
f_trust SD5c 0.998 0.015 66.161 0 0.955
f_trust SD5d 0.942 0.016 58.870 0 0.901
Variances
name Resid_Var Resid_SE Resid_Z Resid_p_value Resid_Beta
SD5a 0.086 0.000 NA NA 0.086
SD5b 0.511 0.000 NA NA 0.511
SD5c 0.089 0.000 NA NA 0.089
SD5d 0.188 0.000 NA NA 0.188
f_trust 0.914 0.019 48.481 0 1.000
Reliability measures
f_trust
alpha 0.92
alpha.ord 0.93
omega 0.93
omega2 0.93
omega3 0.93
avevar 0.78

Altruism

Before running the confirmatory factor analysis, we standardized the indicator AL2A1_z, as it is measured on a continuous scale ranging from 0 to 1000. The other two indicators were treated as ordinal given that they are measured on a rating scale ranging from 0 to 10.

Factor Loadings
Latent Factor Indicator B SE Z p-value Beta
f_alt AL1 1.000 0.000 NA NA 0.795
f_alt AL3 1.079 0.197 5.465 0 0.858
f_alt AL2A1_z 0.534 0.112 4.788 0 0.426
Variances
name Resid_Var Resid_SE Resid_Z Resid_p_value Resid_Beta
AL1 0.367 0.000 NA NA 0.367
AL3 0.264 0.000 NA NA 0.264
AL2A1_z 0.813 0.076 10.654 0 0.818
f_alt 0.633 0.125 5.054 0 1.000

We calculate composite reliability based on McDonald’s Omega.

Model reliability
Statistic Value
Composite Reliability 0.749

As a robustness check, we treat the ten point rating scale indicators as continuous indicators and repeat the confirmatory factor analysis, compute reliability measures and compare them to the previous model.

Factor Loadings
Latent Factor Indicator B SE Z p-value Beta
f_alt AL1 1.000 0.000 NA NA 0.759
f_alt AL3 1.163 0.242 4.816 0 0.843
f_alt AL2A1_z 0.255 0.057 4.442 0 0.411
Variances
name Resid_Var Resid_SE Resid_Z Resid_p_value Resid_Beta
AL1 1.905 0.547 3.485 0.000 0.424
AL3 1.431 0.699 2.047 0.041 0.290
AL2A1_z 0.826 0.099 8.362 0.000 0.831
f_alt 2.587 0.681 3.800 0.000 1.000
Reliability measures
f_alt
alpha 0.69
omega 0.78
omega2 0.78
omega3 0.78
avevar 0.60

DCE Information uptake

Video attention

Control questions

After watching the introduction video, survey respondents were presented with control questions. For each attribute, we provided between three and four response options per question. The respondents were required to select the correct description of the attributes. In cases of incorrect answers, we informed them of the correct response afterwards.

Above-ground biodiversity

Response Share
correct 1
false 0

Water pollution

Response Share
false 0
correct 1

Carbon sequestration

Response Share
correct 0.98
false 0.02

Below-ground biodiversity

Response Share
correct 0.99
false 0.01

Indirect land-use effects

Response Share
false 0.01
correct 0.99

Knowledge on agriculture

Knowledge on agriculture (after watching the video)

Before-after comparison of knowledge

Ordinal random intercept regression model

Estimate Std. Error z value Pr(>|z|)
No knowledge|low knowledge -6.242 0.613 -10.189 0
low knowledge|medium knowledge -3.023 0.323 -9.367 0
medium knowledge|high knowledge 4.645 0.406 11.448 0
high knowledge|Expert knowledge 9.733 1.030 9.453 0
after 1.316 0.253 5.199 0

Trust in information

Importance of ecosystem services

Complexity of the survey

DCE

Duration per choice task

Randomization into blocks

Status quo vs. policy choices

Distribution of choices
Alternative Count Proportion
1 1179 0.63
2 705 0.37

Status quo vs. policy choices (Within Blocks)

Distribution of choices per Block
Block Alternative Count Proportion
1 1 226 0.61
1 2 146 0.39
2 1 270 0.58
2 2 198 0.42
3 1 221 0.71
3 2 91 0.29
4 1 271 0.65
4 2 149 0.35
5 1 191 0.61
5 2 121 0.39

Variation within respondents

Share of respondents choosing:
Always Status Quo Always Policy
0.083 0.057

Within variation of choices within blocks

Share of respondents (per Block) choosing:
Block Always Status Quo Always Policy
1 0.129 0.065
2 0.051 0.128
3 0.115 0.000
4 0.057 0.000
5 0.077 0.077

Distribution of status quo values

Approval rates for change

Protesters

All respondents who filled out the questionnaire were included in the pre-test analysis. However, we descriptively examined the share of protesters. These were identified based on two criteria: i) the respondent always selects the status quo option, and ii) the respondent’s response time for each choice set (except the first one) is below the lowest median response time of any choice set. We identified five respondents (3.2%) in the pre-test data fulfilling both criteria.

Utility functions

\[ \begin{aligned} x_{njt,1} &= \text{carbon sequestration} \\ x_{njt,2} &= \text{above ground biodiversity} \\ x_{njt,3} &= \text{water pollution (N leaching)} \\ x_{njt,4} &= \text{below ground biodiversity} \\ x_{njt,5} &= \text{indirect landuse effects} \\ x_{njt,6} &= \text{tax} \end{aligned} \]

Interaction

\[ U_{njt} = \beta_0 + \sum_{k=1}^{6} \beta_k x_{njt,k} + \sum_{k=1}^{4} \beta_k x_{njt,k} SQ_{n,k} + \beta_{11} x_{njt,1} x_{njt,3} + \beta_{12} x_{njt,1} x_{njt,5} + \varepsilon_{njt} \]

Quadratic

\[ U_{njt} = \beta_0 + \sum_{k=1}^{4} \left( \beta_k x_{njt,k} + \beta_k x_{njt,k}^2 \right) + \beta_5 x_{njt,5} + \beta_6 x_{njt,6} + \beta_{11} x_{njt,1} x_{njt,3} + \beta_{12} x_{njt,1} x_{njt,5} + \varepsilon_{njt} \]

Linear

\[ U_{njt} = \beta_0 + \sum_{k=1}^{6} \beta_k x_{njt,k} + \beta_{11} x_{njt,1} x_{njt,3} + \beta_{12} x_{njt,1} x_{njt,5} + \varepsilon_{njt} \]

Logarithmic

\[ U_{njt} = \beta_0 + \sum_{k=1}^{4} \beta_k \log(x_{njt,k}) + \beta_5 x_{njt,5} + \beta_6 x_{njt,6} + \beta_{11} x_{njt,1} x_{njt,3} + \beta_{12} x_{njt,1} x_{njt,5} + \varepsilon_{njt} \]

Conditional logit models

Model fit characteristics
Model AIC BIC LL.final.
Interaction 2239.59 2311.62 -1106.79
Quadratic 2233.76 2305.79 -1103.88
Linear 2241.48 2291.35 -1111.74
Logarithmic 2237.92 2287.79 -1109.96

Interaction

Conditional logit model output
Estimate Rob.s.e. Rob.t.rat.(0) p(2-sided)
asc_1 -0.3796686 0.1828243 -2.0766856 0.0378306
asc_2 0.0000000 NA NA NA
b_climate 0.3445682 0.3843503 0.8964952 0.3699883
b_biodiv -0.0728449 0.0792200 -0.9195269 0.3578200
b_bgbio -0.0318491 0.1279205 -0.2489754 0.8033798
b_water -0.0528978 0.0207149 -2.5536146 0.0106611
b_iLUC -0.0000077 0.0000031 -2.4476545 0.0143789
b_tax -0.0071302 0.0007439 -9.5850657 0.0000000
b_sq_climate 3.9569000 3.9774482 0.9948338 0.3198171
b_sq_biodiv 0.0040222 0.0033204 1.2113465 0.2257626
b_sq_bgbio 0.0117651 0.0306876 0.3833831 0.7014357
b_sq_water 0.0009258 0.0006980 1.3263755 0.1847153
b_cli_water -0.0166300 0.0150961 -1.1016139 0.2706296
b_cli_iLUC -0.0000011 0.0000051 -0.2100873 0.8335995

Quadratic

Conditional logit model output
Estimate Rob.s.e. Rob.t.rat.(0) p(2-sided)
asc_1 -0.1460122 0.1997993 -0.7307943 0.4649048
asc_2 0.0000000 NA NA NA
b_climate 0.6217885 0.7119592 0.8733484 0.3824732
b_biodiv -0.0560597 0.1264766 -0.4432416 0.6575910
b_bgbio 0.3980020 0.1313508 3.0300684 0.0024450
b_water -0.0506742 0.0243195 -2.0836871 0.0371886
b_iLUC -0.0000065 0.0000031 -2.1149302 0.0344359
b_tax -0.0071380 0.0007519 -9.4934022 0.0000000
b_climate_2 -0.0767346 0.5707773 -0.1344388 0.8930556
b_biodiv_2 0.0013498 0.0019982 0.6755023 0.4993567
b_bgbio_2 -0.0235859 0.0082603 -2.8553356 0.0042991
b_water_2 0.0004787 0.0005568 0.8598087 0.3898945
b_cli_water -0.0155417 0.0145831 -1.0657359 0.2865430
b_cli_iLUC -0.0000016 0.0000052 -0.3040987 0.7610527

Linear

Conditional logit model output
Estimate Rob.s.e. Rob.t.rat.(0) p(2-sided)
asc_1 -0.3907367 0.1778032 -2.1975799 0.0279791
asc_2 0.0000000 NA NA NA
b_climate 0.5395263 0.3438981 1.5688551 0.1166817
b_biodiv 0.0223617 0.0099695 2.2430034 0.0248966
b_bgbio 0.0152390 0.0181957 0.8375044 0.4023091
b_water -0.0318993 0.0100739 -3.1665244 0.0015427
b_iLUC -0.0000075 0.0000032 -2.3607300 0.0182390
b_tax -0.0070699 0.0007417 -9.5316170 0.0000000
b_cli_water -0.0154526 0.0147196 -1.0497988 0.2938106
b_cli_iLUC -0.0000013 0.0000052 -0.2550740 0.7986659

Logarithmic

Conditional logit model output
Estimate Rob.s.e. Rob.t.rat.(0) p(2-sided)
asc_1 -0.3729531 0.1833249 -2.0343827 0.0419130
asc_2 0.0000000 NA NA NA
log_climate 0.6773519 0.4965181 1.3642038 0.1725034
log_biodiv 0.5948756 0.3149669 1.8886923 0.0589331
log_bgbio 0.2072895 0.1284558 1.6137020 0.1065921
log_water -0.4024033 0.1195111 -3.3670787 0.0007597
b_iLUC -0.0000084 0.0000032 -2.5992334 0.0093432
b_tax -0.0072341 0.0007504 -9.6407563 0.0000000
b_cli_water -0.0129085 0.0138473 -0.9322006 0.3512329
b_cli_iLUC 0.0000003 0.0000052 0.0619002 0.9506423

Flexible specifications (Conditional logit)

Examining the model fit characteristics and the coefficients of the CLM suggests the need for more flexible model specifications. So far, we specified each attribute for which we hypothesize diminishing marginal returns as either logarithmic or quadratic. However, the model outputs above suggest that the effect of changes in above-ground biodiversity on utility is better captured with a logarithmic specification, while the below-ground biodiversity attribute and its effect on utility might follow a quadratic relationship. Using the same model selection strategy as before, we re-estimate the quadratic model, but use a logarithmic transformation of the above-ground biodiversity attribute (Flex 1). Conversely, we re-estimate the logarithmic model but allow for a quadratic effect of below-ground biodiversity on utility (Flex 2). The interacted variables are also in log terms. Further, given the small sample size, we estimated a main effects model, excluding the interactions, to gauge MWTP values of the main attributes. The main effects model uses the either Flex 1 or Flex 2, depending on which shows the better fit characteristics.

Model fit characteristics
Model AIC BIC LL.final.
Flex 1 2234.26 2300.76 -1105.13
Flex 2 2229.31 2284.73 -1104.66
Main effects 2226.38 2270.71 -1105.19

Flex 1

Conditional logit model output
Estimate Rob.s.e. Rob.t.rat.(0) p(2-sided)
asc_1 -0.1346255 0.2000046 -0.6731121 0.5008760
asc_2 0.0000000 NA NA NA
b_climate 0.6300469 0.7069646 0.8912000 0.3728219
log_biodiv 0.8054338 0.3197592 2.5188764 0.0117730
b_bgbio 0.4112114 0.1324175 3.1054152 0.0019001
b_water -0.0499653 0.0241724 -2.0670413 0.0387303
b_iLUC -0.0000062 0.0000031 -1.9948446 0.0460598
b_tax -0.0071416 0.0007509 -9.5104222 0.0000000
b_climate_2 -0.0465187 0.5642994 -0.0824361 0.9342999
b_bgbio_2 -0.0242469 0.0083169 -2.9153702 0.0035527
b_water_2 0.0004909 0.0005551 0.8844297 0.3764643
b_cli_water -0.0159618 0.0145143 -1.0997288 0.2714503
b_cli_iLUC -0.0000021 0.0000052 -0.4078813 0.6833608

Flex 2

Conditional logit model output
Estimate Rob.s.e. Rob.t.rat.(0) p(2-sided)
asc_1 -0.1782785 0.1971978 -0.9040593 0.3659640
asc_2 0.0000000 NA NA NA
log_climate 0.7867420 0.7429937 1.0588812 0.2896539
log_biodiv 0.7603117 0.3128048 2.4306264 0.0150727
b_bgbio 0.4071531 0.1360935 2.9917151 0.0027742
b_bgbio_2 -0.0241298 0.0085491 -2.8224859 0.0047653
log_water -0.4042547 0.1315474 -3.0730734 0.0021187
b_iLUC -0.0000077 0.0000034 -2.2797834 0.0226205
b_tax -0.0072117 0.0007478 -9.6443831 0.0000000
b_cli_water -0.1590021 0.2503875 -0.6350240 0.5254128
b_cli_iLUC 0.0000014 0.0000077 0.1864911 0.8520597

Main effects model

Conditional logit model output
Estimate Rob.s.e. Rob.t.rat.(0) p(2-sided)
asc_1 -0.1635949 0.1874886 -0.8725589 0.3829036
asc_2 0.0000000 NA NA NA
log_climate 0.4408386 0.2091042 2.1082244 0.0350116
log_biodiv 0.7296738 0.3163015 2.3068935 0.0210608
b_bgbio 0.4099737 0.1358654 3.0175002 0.0025487
b_bgbio_2 -0.0242406 0.0085499 -2.8352064 0.0045796
log_water -0.4411707 0.0990269 -4.4550589 0.0000084
b_iLUC -0.0000073 0.0000019 -3.9386991 0.0000819
b_tax -0.0071825 0.0007430 -9.6673185 0.0000000
b_cli_water 0.0000000 NA NA NA
b_cli_iLUC 0.0000000 NA NA NA

Marginal willingness to pay

Attribute non-attendance

Policy consequentiality

Payment consequentiality

Belief in farmers

Beliefs about WTP of others

Statistic Value
Min. 0.00
1st Qu. 20.00
Median 40.00
Mean 43.02
3rd Qu. 64.00
Max. 100.00