# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(PerformanceAnalytics)
library(ggrepel)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("NKE", "TSLA", "MSFT", "JPM", "AAPL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "JPM" "MSFT" "NKE" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 JPM 0.25
## 3 MSFT 0.2
## 4 NKE 0.2
## 5 TSLA 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.00469
## 2 2013-02-28 0.00240
## 3 2013-03-28 0.0234
## 4 2013-04-30 0.0892
## 5 2013-05-31 0.0983
## 6 2013-06-28 -0.0261
## 7 2013-07-31 0.0521
## 8 2013-08-30 0.0299
## 9 2013-09-30 0.0420
## 10 2013-10-31 0.0260
## # ℹ 50 more rows
# Define risk free rate
rfr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.497
# Create a custom function to calculate rolling SR
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)
}
# Define window
window <- 24
# Transform data: calculate rolling sharpe ratio
rolling_sr_data <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_data
## # A tibble: 37 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.790
## 2 2015-01-30 0.622
## 3 2015-02-27 0.682
## 4 2015-03-31 0.606
## 5 2015-04-30 0.602
## 6 2015-05-29 0.578
## 7 2015-06-30 0.634
## 8 2015-07-31 0.605
## 9 2015-08-31 0.452
## 10 2015-09-30 0.414
## # ℹ 27 more rows
rolling_sr_data %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
# Labeling
labs(x = NULL, y = "Rolling Sharpe Ratio")
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
The portfolio was doing well in 2015 with a high Sharpe ratio, but steadily declined through 2016, reaching its weakest point toward the end of 2016. After that, there was a structural break and the ratio improved, indicating the portfolio began earning better returns for the level of risk taken.