# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.

Choose your stocks.

from 2012-12-31 to present

1 Import stock prices

symbols <- c("AAPL", "WMT", "TGT", "GOOG", "NFLX")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "GOOG" "NFLX" "TGT"  "WMT"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AAPL       0.25
## 2 GOOG       0.25
## 3 NFLX       0.2 
## 4 TGT        0.2 
## 5 WMT        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.100  
##  2 2013-02-28  0.0447 
##  3 2013-03-28  0.0227 
##  4 2013-04-30  0.0458 
##  5 2013-05-31  0.0233 
##  6 2013-06-28 -0.0451 
##  7 2013-07-31  0.0758 
##  8 2013-08-30  0.00990
##  9 2013-09-30  0.0235 
## 10 2013-10-31  0.0783 
## # ℹ 50 more rows

5 Calculate Sharpe Ratio

# Risk free rate
rfr <- 0.0003

portfolio_sharpe_tbl <- portfolio_returns_tbl %>%

    tq_performance(Ra = returns,
                   Rf = rfr,
                   performance_fun = SharpeRatio,
                   FUN = "StdDev") 

portfolio_sharpe_tbl
## # A tibble: 1 × 1
##   `StdDevSharpe(Rf=0%,p=95%)`
##                         <dbl>
## 1                       0.446

6 Plot

Returns Histogram with Risk-Free Rate

# Figure 7.2 Returns Histogram with Risk-Free Rate ggplot ----

portfolio_returns_tbl %>%

    ggplot(aes(returns)) +
    geom_histogram(binwidth = 0.01, fill = "cornflowerblue", alpha = 0.5) +
    geom_vline(xintercept = rfr, color = "green", size = 1) +

    annotate(geom= "text",
             x = rfr + 0.002, y = 13,
             label = "risk free rate", angle = 90, size = 5) +
    labs(y = "count")

Scatter Returns around Risk Free Rate

# Figure 7.1 Scatter Returns around Risk Free Rate ----

portfolio_returns_tbl %>%

    # Transform data
    mutate(returns_excess = if_else(returns > rfr, "above_rfr", "below_rfr")) %>%

    ggplot(aes(date, returns, color = returns_excess)) +
    geom_point(show.legend = FALSE) +

    # risk free rate
    geom_hline(yintercept = rfr, linetype = "dotted", size = 1, color = "cornflowerblue") +

    # election date
    geom_vline(xintercept = as.Date("2016-11-30"), size = 1, color = "cornflowerblue") +

    # formatting
    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +

    # labeling
    annotate(geom = "text",
             x = as.Date("2017-01-01"), y = -0.04,
             label = "Election", angle = 90, size = 5) +
    annotate(geom = "text",
             x = as.Date("2017-06-01"), y = -0.01,
             label = str_glue("No returns below the RFR
                              after the 2016 election"),
             color = "red", size = 4) +
    labs(y = "percent monthly returns",
         x = NULL)

Rolling Sharpe

# Custom function
# necessary because we would not be able to specify FUN = "StdDev" otherwise

calculate_rolling_sharpeRatio <- function(df) {

    SharpeRatio(df,
                Rf = rfr,
                FUN = "StdDev")

}

# dump(list = "calculate_rolling_sharpeRatio",
#      file = "00_scripts/calculate_rolling_sharpeRatio.R")

# Set the length of periods for rolling calculation
window <- 24

# Calculate rolling sharpe ratios
rolling_sharpe_tbl <- portfolio_returns_tbl %>%

    tq_mutate(select = returns,
              mutate_fun = rollapply,
              width = window,
              align = "right",
              FUN = calculate_rolling_sharpeRatio,
              col_rename = "sharpeRatio") %>%
    na.omit()

rolling_sharpe_tbl
## # A tibble: 37 × 3
##    date        returns sharpeRatio
##    <date>        <dbl>       <dbl>
##  1 2014-12-31 -0.0250        0.552
##  2 2015-01-30  0.0630        0.546
##  3 2015-02-27  0.0581        0.554
##  4 2015-03-31 -0.0271        0.486
##  5 2015-04-30  0.0418        0.483
##  6 2015-05-29  0.0298        0.489
##  7 2015-06-30 -0.00359       0.560
##  8 2015-07-31  0.0791        0.560
##  9 2015-08-31 -0.0377        0.486
## 10 2015-09-30 -0.0285        0.421
## # ℹ 27 more rows
# Figure 7.5 Rolling Sharpe ggplot ----

rolling_sharpe_tbl %>%

    ggplot(aes(date, sharpeRatio)) +
    geom_line(color = "cornflowerblue") +

    labs(title = paste0("Rolling ", window, "-Month Sharpe Ratio"),
         y = "rolling Sharpe Ratio",
         x = NULL) +
    theme(plot.title = element_text(hjust = 0.5)) +

    annotate(geom = "text",
             x = as.Date("2016-06-01"), y = 0.5,
             label = "This portfolio has done quite well since 2016.",
             size = 5, color = "red")

How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
The portfolio showed steady but up and down performance from 2013 to mid-2016, with returns often moving up and down around the risk-free rate. Around November 2016, there was a clear change in trend, as both the portfolio’s returns and Sharpe ratio increased and stayed higher afterward. This shift likely resulted from the U.S. presidential election in November 2016, which boosted investor confidence due to expectations of lower corporate taxes, less regulation, and stronger business growth. These changes especially benefited large technology and retail companies like Apple, Google, and Netflix, leading to better overall performance for the portfolio.