Introduction

Questions

##Variation

Visualizing distributuions

diamonds %>%
    ggplot(aes(x = cut)) +
    geom_bar()

diamonds %>%
    ggplot(mapping = aes(x = carat)) +
    geom_histogram(binwidth = 0.5)

diamonds %>%
    
    filter(carat < 3) %>%
    
    ggplot(aes(x = carat)) +
    geom_histogram(binwidth = 0.5)

diamonds %>%
    ggplot(aes(x = carat, color = cut)) +
    geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

Typical values

diamonds %>%
    
    # Filter out bigger diamonds
    filter(carat < 3) %>%
    
    # Plot
    ggplot(aes(x = carat)) +
    geom_histogram(binwidth = 0.01)

faithful %>%
    
    ggplot(aes(x = eruptions)) +
    geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

Unusual values

diamonds %>%
    
    ggplot(aes(x = y)) +
    geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

diamonds %>%
    
    ggplot(aes(x = y)) +
    geom_histogram() +
    coord_cartesian(ylim = c(0,50))
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

Missing Values

diamonds %>%
    
    # filter(y < 3 | y > 20) %>%
    
    mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
    
    # Plot
    ggplot(aes(x = x, y = y)) +
    geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).

## Covariation

A categorical and continuous variable

diamonds %>%
    
    ggplot(aes(x = cut, y = price)) +
    geom_boxplot()

### Two categorical variables

diamonds %>%
    
    count(color, cut) %>%
    
    ggplot(aes(x = color, y = cut, fill = n)) +
    geom_tile()

### Two continous variables

library(hexbin)
diamonds %>%
    ggplot(aes(x = carat, y = price)) +
    geom_hex()

diamonds %>%
    filter (carat < 3) %>%
    ggplot(aes(carat, y = price)) +
    geom_boxplot(aes(group = cut_width(carat, 0.1)))