##Variation
diamonds %>%
ggplot(aes(x = cut)) +
geom_bar()
diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
diamonds %>%
# Filter out bigger diamonds
filter(carat < 3) %>%
# Plot
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01)
faithful %>%
ggplot(aes(x = eruptions)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
diamonds %>%
ggplot(aes(x = y)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
diamonds %>%
ggplot(aes(x = y)) +
geom_histogram() +
coord_cartesian(ylim = c(0,50))
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
# Plot
ggplot(aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Covariation
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot()
### Two categorical variables
diamonds %>%
count(color, cut) %>%
ggplot(aes(x = color, y = cut, fill = n)) +
geom_tile()
### Two continous variables
library(hexbin)
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_hex()
diamonds %>%
filter (carat < 3) %>%
ggplot(aes(carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))