rm(list=ls())
library(tidyverse)
library(tidyquant)
library(timetk)
library(PerformanceAnalytics)

1. Import data file

# Import data using read_tsv()
data1 <- read_tsv("tej_day_price_2024_20250630.txt")

# Show results
glimpse(data1)
## Rows: 337,347
## Columns: 12
## $ CO_ID                 <chr> "1101 TCC", "1102 ACC", "1103 CHC", "1104 UCC", …
## $ Date                  <dbl> 20240102, 20240102, 20240102, 20240102, 20240102…
## $ `TSE ID`              <dbl> 1101, 1102, 1103, 1104, 1108, 1109, 1110, 1201, …
## $ `TSE Sector`          <chr> "01", "01", "01", "01", "01", "01", "01", "02", …
## $ `English Short Name`  <chr> "TCC", "ACC", "CHC", "UCC", "Lucky Cement", "HSI…
## $ `Open(NTD)`           <dbl> 32.5373, 37.2642, 17.7825, 26.0628, 14.1679, 16.…
## $ `High(NTD)`           <dbl> 32.5373, 37.4442, 17.7825, 26.1505, 14.1679, 16.…
## $ `Low(NTD)`            <dbl> 32.3038, 36.9492, 17.5953, 25.9750, 14.0343, 16.…
## $ `Close(NTD)`          <dbl> 32.3972, 37.0392, 17.6421, 26.0628, 14.0788, 16.…
## $ `Volume(1000S)`       <dbl> 14937, 6223, 171, 260, 442, 228, 57, 126, 48, 18…
## $ `Amount(NTD1000)`     <dbl> 518751, 256522, 3240, 7736, 6992, 4159, 1075, 24…
## $ `Market Cap.(NTD MN)` <dbl> 262026, 145941, 14896, 19995, 6395, 6209, 10754,…

2. Replace column names

data2 <- data1 %>%
  rename(
    date = 2,      # Date column
    id = 3,        # TSE ID column
    name = 5,      # English Short Name column
    price = 9,     # Close(NTD) column
    cap = 12       # Market Cap.(NTD MN) column
  ) %>%
  select(id, name, date, price, cap)

glimpse(data2)
## Rows: 337,347
## Columns: 5
## $ id    <dbl> 1101, 1102, 1103, 1104, 1108, 1109, 1110, 1201, 1203, 1210, 1213…
## $ name  <chr> "TCC", "ACC", "CHC", "UCC", "Lucky Cement", "HSINGTA", "Tuna Cem…
## $ date  <dbl> 20240102, 20240102, 20240102, 20240102, 20240102, 20240102, 2024…
## $ price <dbl> 32.3972, 37.0392, 17.6421, 26.0628, 14.0788, 16.1807, 18.3336, 1…
## $ cap   <dbl> 262026, 145941, 14896, 19995, 6395, 6209, 10754, 9640, 13992, 52…

3. Convert to wide format

data3 <- data2 %>%
  select(id, date, price) %>%
  mutate(
    id = as.character(id),           # Convert id to text
    date = ymd(as.character(date))   # Convert date to date format
  ) %>%
  spread(key = id, value = price)    # Change from long to wide format

# Show results
data3
## # A tibble: 358 × 947
##    date       `1101` `1102` `1103` `1104` `1108` `1109` `1110` `1201` `1203`
##    <date>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 2024-01-02   32.4   37.0   17.6   26.1   14.1   16.2   18.3   18.2   55.3
##  2 2024-01-03   31.9   36.6   17.5   25.9   14.0   16.1   18.2   18.2   54.7
##  3 2024-01-04   31.9   37.0   17.5   25.5   14.1   16.1   18.4   18.1   54.1
##  4 2024-01-05   32.1   37.0   17.5   25.8   14.1   16.1   18.3   18.1   54.9
##  5 2024-01-08   32.0   37.2   17.6   25.7   14.2   16.1   18.3   18.1   54.6
##  6 2024-01-09   31.8   36.9   17.5   25.4   13.8   16.0   18.4   18.1   54.6
##  7 2024-01-10   31.5   36.6   17.4   25.4   13.7   16.0   18.5   18.0   53.4
##  8 2024-01-11   31.5   36.7   17.5   25.6   13.8   16.1   18.5   18.0   55.1
##  9 2024-01-12   31.5   36.6   17.5   25.6   13.8   16.0   18.4   18.0   54.4
## 10 2024-01-15   31.4   36.6   17.4   25.4   13.8   16.0   18.3   18.0   53.8
## # ℹ 348 more rows
## # ℹ 937 more variables: `1210` <dbl>, `1213` <dbl>, `1215` <dbl>, `1216` <dbl>,
## #   `1217` <dbl>, `1218` <dbl>, `1219` <dbl>, `1220` <dbl>, `1225` <dbl>,
## #   `1227` <dbl>, `1229` <dbl>, `1231` <dbl>, `1232` <dbl>, `1233` <dbl>,
## #   `1234` <dbl>, `1235` <dbl>, `1236` <dbl>, `1301` <dbl>, `1303` <dbl>,
## #   `1304` <dbl>, `1305` <dbl>, `1307` <dbl>, `1308` <dbl>, `1309` <dbl>,
## #   `1310` <dbl>, `1312` <dbl>, `1313` <dbl>, `1314` <dbl>, `1315` <dbl>, …

4. Find stocks with NA values

na_counts <- data3 %>%
  select(-date) %>%
  summarise(across(everything(), ~sum(is.na(.)))) %>%
  pivot_longer(everything(), names_to = "key", values_to = "value") %>%
  filter(value > 0) %>%
  arrange(value)

na_counts
## # A tibble: 10 × 2
##    key   value
##    <chr> <int>
##  1 7722     18
##  2 7732     43
##  3 7736     53
##  4 7750    108
##  5 7765    151
##  6 3716    160
##  7 4585    177
##  8 7780    196
##  9 7788    198
## 10 7799    217

5. Replace NA values

# Replace NA with closest available stock prices
data5 <- data3 %>%
  tk_xts(date_var = date) %>%
  na.locf() %>%                      # Replace NA with last observation carried forward
  tk_tbl(preserve_index = TRUE, rename_index = "date")

# Show results
data5
## # A tibble: 358 × 947
##    date       `1101` `1102` `1103` `1104` `1108` `1109` `1110` `1201` `1203`
##    <date>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 2024-01-02   32.4   37.0   17.6   26.1   14.1   16.2   18.3   18.2   55.3
##  2 2024-01-03   31.9   36.6   17.5   25.9   14.0   16.1   18.2   18.2   54.7
##  3 2024-01-04   31.9   37.0   17.5   25.5   14.1   16.1   18.4   18.1   54.1
##  4 2024-01-05   32.1   37.0   17.5   25.8   14.1   16.1   18.3   18.1   54.9
##  5 2024-01-08   32.0   37.2   17.6   25.7   14.2   16.1   18.3   18.1   54.6
##  6 2024-01-09   31.8   36.9   17.5   25.4   13.8   16.0   18.4   18.1   54.6
##  7 2024-01-10   31.5   36.6   17.4   25.4   13.7   16.0   18.5   18.0   53.4
##  8 2024-01-11   31.5   36.7   17.5   25.6   13.8   16.1   18.5   18.0   55.1
##  9 2024-01-12   31.5   36.6   17.5   25.6   13.8   16.0   18.4   18.0   54.4
## 10 2024-01-15   31.4   36.6   17.4   25.4   13.8   16.0   18.3   18.0   53.8
## # ℹ 348 more rows
## # ℹ 937 more variables: `1210` <dbl>, `1213` <dbl>, `1215` <dbl>, `1216` <dbl>,
## #   `1217` <dbl>, `1218` <dbl>, `1219` <dbl>, `1220` <dbl>, `1225` <dbl>,
## #   `1227` <dbl>, `1229` <dbl>, `1231` <dbl>, `1232` <dbl>, `1233` <dbl>,
## #   `1234` <dbl>, `1235` <dbl>, `1236` <dbl>, `1301` <dbl>, `1303` <dbl>,
## #   `1304` <dbl>, `1305` <dbl>, `1307` <dbl>, `1308` <dbl>, `1309` <dbl>,
## #   `1310` <dbl>, `1312` <dbl>, `1313` <dbl>, `1314` <dbl>, `1315` <dbl>, …

6. Delete stocks with NA

# Get list of stocks with NA from Question 4
stocks_with_na <- na_counts$key

# Remove those stocks
data6 <- data3 %>%
  select(-any_of(stocks_with_na))

# Show dimensions
dim(data6)
## [1] 358 937

7. Calculate daily returns

# Convert to xts
data7_xts <- data6 %>%
  tk_xts(date_var = date)

# Calculate daily returns (discrete returns)
daily_returns <- Return.calculate(data7_xts, method = "discrete")

# Remove first row (NA) and show first 5 stocks, first 5 days
daily_returns_clean <- daily_returns[-1, ]
daily_returns_clean[1:5, 1:5]
##                    1101         1102         1103         1104         1108
## 2024-01-03 -0.014408653 -0.012149290 -0.007958236 -0.006733735 -0.003160781
## 2024-01-04  0.000000000  0.012298711  0.000000000 -0.013558772  0.003170803
## 2024-01-05  0.004384536 -0.001214929  0.002674026  0.010306896  0.000000000
## 2024-01-08 -0.002909225  0.004865628  0.002666895 -0.003399291  0.006328664
## 2024-01-09 -0.005841680 -0.007263102 -0.002659801 -0.013655209 -0.025155457

8. Calculate monthly returns

# Convert to monthly and calculate returns
monthly_prices <- to.monthly(data7_xts, OHLC = FALSE)
monthly_returns <- Return.calculate(monthly_prices, method = "discrete")

# Remove first row and show first 5 stocks, first 5 months
monthly_returns_clean <- monthly_returns[-1, ]
monthly_returns_clean[1:5, 1:5]
##                  1101        1102         1103        1104         1108
## Feb 2024  0.006272034  0.01760804 -0.008404066  0.01887014  0.036185231
## Mar 2024  0.001554899  0.02101398 -0.016950585  0.06397241  0.003170803
## Apr 2024 -0.003108301  0.05811288  0.057470064  0.11234002  0.072790295
## May 2024  0.029639309 -0.04920108  0.032611536 -0.03271487  0.000000000
## Jun 2024  0.036364817  0.05535680 -0.036845213  0.04852830 -0.011805133

9. Find largest cap firms

# Get the original data with cap information
data9 <- data2 %>%
  mutate(date = ymd(as.character(date))) %>%
  mutate(year1 = year(date))

# Find the 20 largest cap firms at year end of 2024 and 2025
top20_firms <- data9 %>%
  filter(date == as.Date("2024-12-31") | date == as.Date("2025-06-30")) %>%
  group_by(year1) %>%
  arrange(desc(cap)) %>%
  slice(1:20) %>%
  ungroup() %>%
  mutate(cap1 = paste0("$", format(cap, big.mark = ","))) %>%
  select(date, year1, cap, cap1, id, name)

# Show results
top20_firms
## # A tibble: 40 × 6
##    date       year1      cap cap1           id name           
##    <date>     <dbl>    <dbl> <chr>       <dbl> <chr>          
##  1 2024-12-31  2024 27877688 $27,877,688  2330 TSMC           
##  2 2024-12-31  2024  2556073 $ 2,556,073  2317 Hon Hai        
##  3 2024-12-31  2024  2266389 $ 2,266,389  2454 MediaTek       
##  4 2024-12-31  2024  1234015 $ 1,234,015  2881 Fubon Financial
##  5 2024-12-31  2024  1118242 $ 1,118,242  2308 DELTA          
##  6 2024-12-31  2024  1108574 $ 1,108,574  2382 QCI            
##  7 2024-12-31  2024  1001907 $ 1,001,907  2882 CATHAY FHC     
##  8 2024-12-31  2024   958045 $   958,045  2412 CHT            
##  9 2024-12-31  2024   767154 $   767,154  2891 CTBC Holding   
## 10 2024-12-31  2024   715219 $   715,219  3711 ASEH           
## # ℹ 30 more rows