library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
lga_xna_flights <- flights %>%
filter(origin == "LGA", dest == "XNA")
lga_xna_planes <- lga_xna_flights %>%
left_join(planes, by = "tailnum") %>%
select(tailnum) %>%
distinct()
head(lga_xna_planes)
## # A tibble: 6 × 1
## tailnum
## <chr>
## 1 N722MQ
## 2 N719MQ
## 3 N739MQ
## 4 N711MQ
## 5 N723MQ
## 6 N730MQ
2. join - Add the airline name to the flights table (1 POINT)
flights_with_airline <- flights %>%
left_join(airlines, by = "carrier")
flights_with_airline %>%
select(carrier, name) %>%
distinct()
## # A tibble: 16 × 2
## carrier name
## <chr> <chr>
## 1 UA United Air Lines Inc.
## 2 AA American Airlines Inc.
## 3 B6 JetBlue Airways
## 4 DL Delta Air Lines Inc.
## 5 EV ExpressJet Airlines Inc.
## 6 MQ Envoy Air
## 7 US US Airways Inc.
## 8 WN Southwest Airlines Co.
## 9 VX Virgin America
## 10 FL AirTran Airways Corporation
## 11 AS Alaska Airlines Inc.
## 12 9E Endeavor Air Inc.
## 13 F9 Frontier Airlines Inc.
## 14 HA Hawaiian Airlines Inc.
## 15 YV Mesa Airlines Inc.
## 16 OO SkyWest Airlines Inc.
head(flights_with_airline)
## # A tibble: 6 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
used_airports <- flights %>%
select(origin, dest) %>%
distinct() %>%
rename(faa = origin)
unused_airports <- airports %>%
anti_join(used_airports, by = "faa")
head(unused_airports)
## # A tibble: 6 × 8
## faa name lat lon alt tz dst tzone
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/Ne…
## 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6 A America/Ch…
## 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/Ch…
## 4 06N Randall Airport 41.4 -74.4 523 -5 A America/Ne…
## 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/Ne…
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2 1593 -5 A America/Ne…
Create a table with the names of the airports with the most winds
(wind_speed > 30). The table must contain only the airport name
(airports$name) and no duplicate rows
high_wind_airports <- weather %>%
filter(wind_speed > 30) %>%
inner_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
high_wind_airports
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia