Ch15 Factors

General Social Survey

gss_cat
## # A tibble: 21,483 × 9
##     year marital         age race  rincome        partyid    relig denom tvhours
##    <int> <fct>         <int> <fct> <fct>          <fct>      <fct> <fct>   <int>
##  1  2000 Never married    26 White $8000 to 9999  Ind,near … Prot… Sout…      12
##  2  2000 Divorced         48 White $8000 to 9999  Not str r… Prot… Bapt…      NA
##  3  2000 Widowed          67 White Not applicable Independe… Prot… No d…       2
##  4  2000 Never married    39 White Not applicable Ind,near … Orth… Not …       4
##  5  2000 Divorced         25 White Not applicable Not str d… None  Not …       1
##  6  2000 Married          25 White $20000 - 24999 Strong de… Prot… Sout…      NA
##  7  2000 Never married    36 White $25000 or more Not str r… Chri… Not …       3
##  8  2000 Divorced         44 White $7000 to 7999  Ind,near … Prot… Luth…      NA
##  9  2000 Married          44 White $25000 or more Not str d… Prot… Other       0
## 10  2000 Married          47 White $25000 or more Strong re… Prot… Sout…       3
## # ℹ 21,473 more rows

Modify Factor Order

Unordered factor levels

##Transform data: calc avg tv hours by religion
tvhours_by_relig <- gss_cat %>%
  group_by(relig) %>%
  summarise(
    avg_tvhours = mean(tvhours, na.rm = TRUE)
  )

tvhours_by_relig
## # A tibble: 15 × 2
##    relig                   avg_tvhours
##    <fct>                         <dbl>
##  1 No answer                      2.72
##  2 Don't know                     4.62
##  3 Inter-nondenominational        2.87
##  4 Native american                3.46
##  5 Christian                      2.79
##  6 Orthodox-christian             2.42
##  7 Moslem/islam                   2.44
##  8 Other eastern                  1.67
##  9 Hinduism                       1.89
## 10 Buddhism                       2.38
## 11 Other                          2.73
## 12 None                           2.71
## 13 Jewish                         2.52
## 14 Catholic                       2.96
## 15 Protestant                     3.15
##Plot

tvhours_by_relig %>%
    ggplot(aes(x = avg_tvhours, y = relig)) +
    geom_point()

Ordered factor levels

tvhours_by_relig %>%
  ggplot(aes(x = avg_tvhours, 
             y = fct_reorder(.f = relig, .x = avg_tvhours))) +
  geom_point() +
  # Labeling
  labs(
    y = NULL,
    x = "Mean Daily Hours Watching TV"
  )

Moving a single level to the front

tvhours_by_relig %>%
  ggplot(aes(
    x = avg_tvhours,
    y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
        fct_relevel("Don't know")
  )) +
  geom_point() +
  labs(
    y = NULL,
    x = "Mean Daily Hours Watching TV"
  )

Modify Factor levels

# View distinct race categories
gss_cat %>%
  distinct(race)
## # A tibble: 3 × 1
##   race 
##   <fct>
## 1 White
## 2 Black
## 3 Other
# Recode and rename levels
gss_cat %>%
  mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
  select(race, race_rev) %>%
    filter(race == "Black")
## # A tibble: 3,129 × 2
##    race  race_rev        
##    <fct> <fct>           
##  1 Black African American
##  2 Black African American
##  3 Black African American
##  4 Black African American
##  5 Black African American
##  6 Black African American
##  7 Black African American
##  8 Black African American
##  9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
## Collapse multi level into one

# Collapse multiple levels into one
gss_cat %>%
  mutate(race_col = fct_collapse(race, "Minority" = c("Black", "Other"))) %>%
  select(race, race_col) %>%
  filter(race != "White")
## # A tibble: 5,088 × 2
##    race  race_col
##    <fct> <fct>   
##  1 Black Minority
##  2 Black Minority
##  3 Black Minority
##  4 Other Minority
##  5 Black Minority
##  6 Other Minority
##  7 Black Minority
##  8 Other Minority
##  9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump small levels into "Other"
gss_cat %>%
  count(race)
## # A tibble: 3 × 2
##   race      n
##   <fct> <int>
## 1 Other  1959
## 2 Black  3129
## 3 White 16395
gss_cat %>%
  mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
##   race_lump
##   <fct>    
## 1 White    
## 2 Other

##Ch16 Dates and Times

Creating date and times

From strings

# From strings
"2025/10/28" %>% ymd()
## [1] "2025-10-28"
# From numbers
20251028 %>% ymd()
## [1] "2025-10-28"
# With hours, minutes, and seconds
"2025-10-28 18-41-30" %>% ymd_hms()
## [1] "2025-10-28 18:41:30 UTC"

From indv Components

flights %>%
  select(year:day, hour, minute) %>%
  mutate(departure = make_datetime(
    year = year,
    month = month,
    day = day,
    hour = hour,
    min = minute
  ))
## # A tibble: 336,776 × 6
##     year month   day  hour minute departure          
##    <int> <int> <int> <dbl>  <dbl> <dttm>             
##  1  2013     1     1     5     15 2013-01-01 05:15:00
##  2  2013     1     1     5     29 2013-01-01 05:29:00
##  3  2013     1     1     5     40 2013-01-01 05:40:00
##  4  2013     1     1     5     45 2013-01-01 05:45:00
##  5  2013     1     1     6      0 2013-01-01 06:00:00
##  6  2013     1     1     5     58 2013-01-01 05:58:00
##  7  2013     1     1     6      0 2013-01-01 06:00:00
##  8  2013     1     1     6      0 2013-01-01 06:00:00
##  9  2013     1     1     6      0 2013-01-01 06:00:00
## 10  2013     1     1     6      0 2013-01-01 06:00:00
## # ℹ 336,766 more rows

From other types

# Frome date to date-time
today() %>% as_datetime
## [1] "2025-10-28 UTC"
# From date-time to date
now() %>% as_date()
## [1] "2025-10-28"

Date-time components

Getting components

date_time <- ymd_hms("2025-10-28 18-18-18")
date_time
## [1] "2025-10-28 18:18:18 UTC"
year(date_time)
## [1] 2025
month(date_time, label = TRUE, abbr = FALSE)
## [1] October
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 301
mday(date_time)
## [1] 28
wday(date_time, label = TRUE, abbr= FALSE)
## [1] Tuesday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
  make_datetime(year, month, day, time %/% 100, time %% 100)
}

flights_dt <- flights %>%
  filter(!is.na(dep_time), !is.na(arr_time)) %>%
  mutate(
    dep_time = make_datetime_100(year, month, day, dep_time),
    arr_time = make_datetime_100(year, month, day, arr_time),
    sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
    sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
  ) %>%
  select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
  transmute(wday = wday(dep_time, label = TRUE)) %>%
  ggplot(aes(wday)) +
  geom_bar()

Roundings

# floor_date for rounding down
flights_dt %>%
  mutate(week = floor_date(dep_time, "month")) %>%
  select(dep_time, week) %>%
  sample_n(10)
## # A tibble: 10 × 2
##    dep_time            week               
##    <dttm>              <dttm>             
##  1 2013-11-14 18:51:00 2013-11-01 00:00:00
##  2 2013-07-18 10:35:00 2013-07-01 00:00:00
##  3 2013-02-28 16:00:00 2013-02-01 00:00:00
##  4 2013-02-20 13:31:00 2013-02-01 00:00:00
##  5 2013-07-23 13:30:00 2013-07-01 00:00:00
##  6 2013-03-18 14:50:00 2013-03-01 00:00:00
##  7 2013-09-24 07:12:00 2013-09-01 00:00:00
##  8 2013-06-30 17:46:00 2013-06-01 00:00:00
##  9 2013-07-22 00:44:00 2013-07-01 00:00:00
## 10 2013-07-08 11:58:00 2013-07-01 00:00:00
# ceiling for rounding up
flights_dt %>%
  mutate(week = ceiling_date(dep_time, "month")) %>%
  select(dep_time, week) %>%
  sample_n(10)
## # A tibble: 10 × 2
##    dep_time            week               
##    <dttm>              <dttm>             
##  1 2013-04-22 12:41:00 2013-05-01 00:00:00
##  2 2013-03-09 07:59:00 2013-04-01 00:00:00
##  3 2013-10-30 09:21:00 2013-11-01 00:00:00
##  4 2013-07-12 22:02:00 2013-08-01 00:00:00
##  5 2013-01-19 06:33:00 2013-02-01 00:00:00
##  6 2013-08-19 06:23:00 2013-09-01 00:00:00
##  7 2013-09-11 08:56:00 2013-10-01 00:00:00
##  8 2013-09-09 20:25:00 2013-10-01 00:00:00
##  9 2013-04-28 06:39:00 2013-05-01 00:00:00
## 10 2013-12-13 21:50:00 2014-01-01 00:00:00

Setting components

flights_dt %>%
  mutate(dep_hour = update(dep_time, yday = 1)) %>%
  select(dep_time, dep_hour) %>%
  sample_n(10)
## # A tibble: 10 × 2
##    dep_time            dep_hour           
##    <dttm>              <dttm>             
##  1 2013-11-12 08:45:00 2013-01-01 08:45:00
##  2 2013-05-20 06:37:00 2013-01-01 06:37:00
##  3 2013-08-10 18:29:00 2013-01-01 18:29:00
##  4 2013-11-01 14:02:00 2013-01-01 14:02:00
##  5 2013-04-15 09:41:00 2013-01-01 09:41:00
##  6 2013-01-15 14:38:00 2013-01-01 14:38:00
##  7 2013-10-04 14:35:00 2013-01-01 14:35:00
##  8 2013-04-16 06:35:00 2013-01-01 06:35:00
##  9 2013-09-26 14:45:00 2013-01-01 14:45:00
## 10 2013-08-27 18:03:00 2013-01-01 18:03:00

Time spans