Task: Import TEJ database file and display structure
# Import using read_tsv (tab-separated values)
data1 <- read_tsv("tej_day_price_2024_20250630.txt", show_col_types = FALSE)
# Display structure
glimpse(data1)## Rows: 337,347
## Columns: 12
## $ CO_ID <chr> "1101 TCC", "1102 ACC", "1103 CHC", "1104 UCC", …
## $ Date <dbl> 20240102, 20240102, 20240102, 20240102, 20240102…
## $ `TSE ID` <dbl> 1101, 1102, 1103, 1104, 1108, 1109, 1110, 1201, …
## $ `TSE Sector` <chr> "01", "01", "01", "01", "01", "01", "01", "02", …
## $ `English Short Name` <chr> "TCC", "ACC", "CHC", "UCC", "Lucky Cement", "HSI…
## $ `Open(NTD)` <dbl> 32.5373, 37.2642, 17.7825, 26.0628, 14.1679, 16.…
## $ `High(NTD)` <dbl> 32.5373, 37.4442, 17.7825, 26.1505, 14.1679, 16.…
## $ `Low(NTD)` <dbl> 32.3038, 36.9492, 17.5953, 25.9750, 14.0343, 16.…
## $ `Close(NTD)` <dbl> 32.3972, 37.0392, 17.6421, 26.0628, 14.0788, 16.…
## $ `Volume(1000S)` <dbl> 14937, 6223, 171, 260, 442, 228, 57, 126, 48, 18…
## $ `Amount(NTD1000)` <dbl> 518751, 256522, 3240, 7736, 6992, 4159, 1075, 24…
## $ `Market Cap.(NTD MN)` <dbl> 262026, 145941, 14896, 19995, 6395, 6209, 10754,…
✓ Successfully imported 337,347 records with 12 columns from TEJ database
Task: Rename columns 2, 3, 5, 9, and 12 to more meaningful names
# Rename key columns
data2 <- data1 %>%
rename(
date = 2, # Date column
id = 3, # TSE ID column
name = 5, # English Short Name column
price = 9, # Close(NTD) column
cap = 12 # Market Cap.(NTD MN) column
)
# Display structure
glimpse(data2)## Rows: 337,347
## Columns: 12
## $ CO_ID <chr> "1101 TCC", "1102 ACC", "1103 CHC", "1104 UCC", "110…
## $ date <dbl> 20240102, 20240102, 20240102, 20240102, 20240102, 20…
## $ id <dbl> 1101, 1102, 1103, 1104, 1108, 1109, 1110, 1201, 1203…
## $ `TSE Sector` <chr> "01", "01", "01", "01", "01", "01", "01", "02", "02"…
## $ name <chr> "TCC", "ACC", "CHC", "UCC", "Lucky Cement", "HSINGTA…
## $ `Open(NTD)` <dbl> 32.5373, 37.2642, 17.7825, 26.0628, 14.1679, 16.1807…
## $ `High(NTD)` <dbl> 32.5373, 37.4442, 17.7825, 26.1505, 14.1679, 16.2696…
## $ `Low(NTD)` <dbl> 32.3038, 36.9492, 17.5953, 25.9750, 14.0343, 16.1362…
## $ price <dbl> 32.3972, 37.0392, 17.6421, 26.0628, 14.0788, 16.1807…
## $ `Volume(1000S)` <dbl> 14937, 6223, 171, 260, 442, 228, 57, 126, 48, 1849, …
## $ `Amount(NTD1000)` <dbl> 518751, 256522, 3240, 7736, 6992, 4159, 1075, 2409, …
## $ cap <dbl> 262026, 145941, 14896, 19995, 6395, 6209, 10754, 964…
✓ Renamed 5 columns for improved readability: date,
id, name, price,
cap
Task: Convert from long to wide format with proper data types
# Select columns and reshape
data3 <- data2 %>%
select(id, date, price) %>%
mutate(
id = as.character(id), # Convert ID to text
date = ymd(date) # Parse dates
) %>%
pivot_wider(
names_from = id,
values_from = price
)
# Display preview
head(data3, 10)## # A tibble: 10 × 947
## date `1101` `1102` `1103` `1104` `1108` `1109` `1110` `1201` `1203`
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2024-01-02 32.4 37.0 17.6 26.1 14.1 16.2 18.3 18.2 55.3
## 2 2024-01-03 31.9 36.6 17.5 25.9 14.0 16.1 18.2 18.2 54.7
## 3 2024-01-04 31.9 37.0 17.5 25.5 14.1 16.1 18.4 18.1 54.1
## 4 2024-01-05 32.1 37.0 17.5 25.8 14.1 16.1 18.3 18.1 54.9
## 5 2024-01-08 32.0 37.2 17.6 25.7 14.2 16.1 18.3 18.1 54.6
## 6 2024-01-09 31.8 36.9 17.5 25.4 13.8 16.0 18.4 18.1 54.6
## 7 2024-01-10 31.5 36.6 17.4 25.4 13.7 16.0 18.5 18.0 53.4
## 8 2024-01-11 31.5 36.7 17.5 25.6 13.8 16.1 18.5 18.0 55.1
## 9 2024-01-12 31.5 36.6 17.5 25.6 13.8 16.0 18.4 18.0 54.4
## 10 2024-01-15 31.4 36.6 17.4 25.4 13.8 16.0 18.3 18.0 53.8
## # ℹ 937 more variables: `1210` <dbl>, `1213` <dbl>, `1215` <dbl>, `1216` <dbl>,
## # `1217` <dbl>, `1218` <dbl>, `1219` <dbl>, `1220` <dbl>, `1225` <dbl>,
## # `1227` <dbl>, `1229` <dbl>, `1231` <dbl>, `1232` <dbl>, `1233` <dbl>,
## # `1234` <dbl>, `1235` <dbl>, `1236` <dbl>, `1301` <dbl>, `1303` <dbl>,
## # `1304` <dbl>, `1305` <dbl>, `1307` <dbl>, `1308` <dbl>, `1309` <dbl>,
## # `1310` <dbl>, `1312` <dbl>, `1313` <dbl>, `1314` <dbl>, `1315` <dbl>,
## # `1316` <dbl>, `1319` <dbl>, `1321` <dbl>, `1323` <dbl>, `1324` <dbl>, …
✓ Transformed data to wide format: 358 rows × 947 columns
Task: Identify stocks with NA values and count them
# Count NA values for each stock
na_counts <- data3 %>%
select(-date) %>%
summarise(across(everything(), ~sum(is.na(.)))) %>%
pivot_longer(everything(), names_to = "key", values_to = "value") %>%
filter(value > 0) %>%
arrange(key)
# Display results
na_counts## # A tibble: 10 × 2
## key value
## <chr> <int>
## 1 3716 160
## 2 4585 177
## 3 7722 18
## 4 7732 43
## 5 7736 53
## 6 7750 108
## 7 7765 151
## 8 7780 196
## 9 7788 198
## 10 7799 217
⚠️ Found 10 stocks with missing values
Task: Fill NA values using forward fill (LOCF) method
# Apply LOCF (Last Observation Carried Forward)
data5 <- data3 %>%
mutate(across(-date, ~na.locf(., na.rm = FALSE)))
# Display preview
head(data5, 10)## # A tibble: 10 × 947
## date `1101` `1102` `1103` `1104` `1108` `1109` `1110` `1201` `1203`
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2024-01-02 32.4 37.0 17.6 26.1 14.1 16.2 18.3 18.2 55.3
## 2 2024-01-03 31.9 36.6 17.5 25.9 14.0 16.1 18.2 18.2 54.7
## 3 2024-01-04 31.9 37.0 17.5 25.5 14.1 16.1 18.4 18.1 54.1
## 4 2024-01-05 32.1 37.0 17.5 25.8 14.1 16.1 18.3 18.1 54.9
## 5 2024-01-08 32.0 37.2 17.6 25.7 14.2 16.1 18.3 18.1 54.6
## 6 2024-01-09 31.8 36.9 17.5 25.4 13.8 16.0 18.4 18.1 54.6
## 7 2024-01-10 31.5 36.6 17.4 25.4 13.7 16.0 18.5 18.0 53.4
## 8 2024-01-11 31.5 36.7 17.5 25.6 13.8 16.1 18.5 18.0 55.1
## 9 2024-01-12 31.5 36.6 17.5 25.6 13.8 16.0 18.4 18.0 54.4
## 10 2024-01-15 31.4 36.6 17.4 25.4 13.8 16.0 18.3 18.0 53.8
## # ℹ 937 more variables: `1210` <dbl>, `1213` <dbl>, `1215` <dbl>, `1216` <dbl>,
## # `1217` <dbl>, `1218` <dbl>, `1219` <dbl>, `1220` <dbl>, `1225` <dbl>,
## # `1227` <dbl>, `1229` <dbl>, `1231` <dbl>, `1232` <dbl>, `1233` <dbl>,
## # `1234` <dbl>, `1235` <dbl>, `1236` <dbl>, `1301` <dbl>, `1303` <dbl>,
## # `1304` <dbl>, `1305` <dbl>, `1307` <dbl>, `1308` <dbl>, `1309` <dbl>,
## # `1310` <dbl>, `1312` <dbl>, `1313` <dbl>, `1314` <dbl>, `1315` <dbl>,
## # `1316` <dbl>, `1319` <dbl>, `1321` <dbl>, `1323` <dbl>, `1324` <dbl>, …
✓ Applied LOCF imputation to handle missing values
Task: Remove stocks that had NA values
# Get list of stocks with NA
stocks_with_na <- na_counts$key
# Remove those stocks
data6 <- data3 %>%
select(-all_of(stocks_with_na))
# Display dimensions
dim(data6)## [1] 358 937
✓ Cleaned dataset dimensions: 358 rows × 937 columns
Task: Convert to time series and compute daily returns
# Convert to xts format
data7_xts <- data6 %>%
tk_xts(date_var = date)
# Calculate daily returns
returns_daily <- Return.calculate(data7_xts, method = "discrete")
# Show first 5 stocks, first 5 days (excluding first NA row)
returns_daily[-1, 1:5] %>% head(5)## 1101 1102 1103 1104 1108
## 2024-01-03 -0.014408653 -0.012149290 -0.007958236 -0.006733735 -0.003160781
## 2024-01-04 0.000000000 0.012298711 0.000000000 -0.013558772 0.003170803
## 2024-01-05 0.004384536 -0.001214929 0.002674026 0.010306896 0.000000000
## 2024-01-08 -0.002909225 0.004865628 0.002666895 -0.003399291 0.006328664
## 2024-01-09 -0.005841680 -0.007263102 -0.002659801 -0.013655209 -0.025155457
✓ Calculated discrete daily returns for 936 stocks
Task: Aggregate to monthly frequency and compute returns
# Convert to monthly prices
monthly_prices <- to.monthly(data7_xts, OHLC = FALSE)
# Calculate monthly returns
returns_monthly <- Return.calculate(monthly_prices, method = "discrete")
# Show first 5 stocks, first 5 months (excluding first NA row)
returns_monthly[-1, 1:5] %>% head(5)## 1101 1102 1103 1104 1108
## Feb 2024 0.006272034 0.01760804 -0.008404066 0.01887014 0.036185231
## Mar 2024 0.001554899 0.02101398 -0.016950585 0.06397241 0.003170803
## Apr 2024 -0.003108301 0.05811288 0.057470064 0.11234002 0.072790295
## May 2024 0.029639309 -0.04920108 0.032611536 -0.03271487 0.000000000
## Jun 2024 0.036364817 0.05535680 -0.036845213 0.04852830 -0.011805133
✓ Computed monthly returns across 17 months
Task: Identify 20 largest firms by market cap at year-ends
# Find top 20 firms by market cap
data9 <- data2 %>%
select(id, date, name, cap) %>%
mutate(
id = as.character(id),
date = ymd(date)
) %>%
filter(date == as.Date("2024-12-31") | date == as.Date("2025-06-30")) %>%
mutate(year1 = year(date)) %>%
group_by(year1) %>%
arrange(desc(cap)) %>%
slice(1:20) %>%
ungroup() %>%
mutate(cap1 = scales::dollar(cap, prefix = "$", suffix = "",
big.mark = ",", accuracy = 1)) %>%
select(date, year1, cap, cap1, id, name)
# Display results
data9## # A tibble: 40 × 6
## date year1 cap cap1 id name
## <date> <dbl> <dbl> <chr> <chr> <chr>
## 1 2024-12-31 2024 27877688 $27,877,688 2330 TSMC
## 2 2024-12-31 2024 2556073 $2,556,073 2317 Hon Hai
## 3 2024-12-31 2024 2266389 $2,266,389 2454 MediaTek
## 4 2024-12-31 2024 1234015 $1,234,015 2881 Fubon Financial
## 5 2024-12-31 2024 1118242 $1,118,242 2308 DELTA
## 6 2024-12-31 2024 1108574 $1,108,574 2382 QCI
## 7 2024-12-31 2024 1001907 $1,001,907 2882 CATHAY FHC
## 8 2024-12-31 2024 958045 $958,045 2412 CHT
## 9 2024-12-31 2024 767154 $767,154 2891 CTBC Holding
## 10 2024-12-31 2024 715219 $715,219 3711 ASEH
## # ℹ 30 more rows
🏆 Identified top 20 companies by market capitalization for 2024 and 2025
## 📊 ANALYSIS SUMMARY
## ═══════════════════════════════════════════════
## ✓ Total Records Processed: 337,347
## ✓ Clean Securities: 936
## ✓ Trading Days Analyzed: 358
## ✓ Securities with NA values: 10
## ✓ Daily Returns Calculated: 936 stocks
## ✓ Monthly Returns Calculated: 17 months
##
## ═══════════════════════════════════════════════
## 🎯 All 9 questions completed successfully!
END OF REPORT