# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NVDA", "INTC", "GOOG", "AMD", "AAPL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
## 3 Assign a weight to each asset
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMD" "GOOG" "INTC" "NVDA"
## [1] "NVDA" "INTC" "GOOG" "AMD" "AAPL"
# weights
weights <- c(0.20, 0.15, 0.15, 0.30, 0.20)
weights
## [1] 0.20 0.15 0.15 0.30 0.20
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.2
## 2 AMD 0.15
## 3 GOOG 0.15
## 4 INTC 0.3
## 5 NVDA 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0216
## 2 2013-06-28 0.118
## 3 2013-09-30 0.0349
## 4 2013-12-31 0.120
## 5 2014-03-31 0.0212
## 6 2014-06-30 0.115
## 7 2014-09-30 0.0245
## 8 2014-12-31 0.000410
## 9 2015-03-31 -0.00182
## 10 2015-06-30 -0.0346
## 11 2015-09-30 -0.0101
## 12 2015-12-31 0.203
## 13 2016-03-31 0.00429
## 14 2016-06-30 0.115
## 15 2016-09-30 0.217
## 16 2016-12-30 0.158
## 17 2017-03-31 0.0969
## 18 2017-06-30 0.0310
## 19 2017-09-29 0.107
## 20 2017-12-29 0.0757
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0722 0.0722
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.07085562
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 AAPL 0.045 0.119
## 2 AMD 0.0727 0.274
## 3 GOOG 0.0544 0.0905
## 4 INTC 0.0483 0.0948
## 5 NVDA 0.141 0.134
## 6 Portfolio 0.0709 0.0722
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
geom_text(aes(label = asset),
vjust = 1.5,
hjust = 0.5,
size = 4)
## 24 Months Rolling Volitlity
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 8,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
# Labeling
labs(x = NULL,
y = NULL,
title = " 8-Quarter Rolling Volatility") +
theme(plot.title = element_text(hjust = 0.5))