\[F(x,y) = P(X\leq x, Y \leq y); x,y \in \mathbb{R}\]
Properties:
\[F(x^*, y^*) - F(x^*,y)-F(x,y^*)+F(x,y)= P(x < X \leq x^*, y < Y \leq y^*) \geq 0\]
\(X\) and \(Y\) are said to be jointly continuous if \(F(x,y)\) is continuous in both arguments.
If there exists \(f(x,y)\) such that:
\[F(x,y) = \int_{-\infty}^x\int_{-\infty}^y f(t_1, t_2) dt_1 dt_2,\]
then \(f(x,y)\) is called the joint probability density function or joint pdf.
If \((X,Y)\) are jointly continuous random variables with joint pdf \(f(x,y)\), then:
Suppose \(X\) and \(Y\) have joint pdf given by:
\[f(x,y) = \begin{cases} 1 & 0 < x < 1, 0 < y < 1 \\ 0 & otherwise \end{cases}\]
TASKS:
Interactive: https://www.desmos.com/3d/un0eouqhgq
Support (always draw!):
\[\int_0^1 \int_0^1 1\ dx\ dy = \int_0^1 \left(x\big|_0^1\right)\ dy\] \[\int_0^1 1\ dy = y\big|_0^1 =1\]
Always draw/shade the region of integration!
\((x,y) \in (0,1)^2\)
\[\tiny F(x,y) = \int_0^x\int_0^y 1\ dv\ dt\] \[\tiny = \int_0^x\left(u \big|_0^y\right)dt = \int_0^x y\ dt = yt\big|_{t=0}^x = xy\]
\(0<x<1, y \geq 1\)
\[\tiny F(x,y) = \int_0^x\int_0^1 1\ dv\ dt\] \[\tiny= \int_0^x \left(y\big|_0^1\right)\ dt =\int_0^x 1 \ dt = x\]
\(x\geq 1, 0 < y <1\)
\[\tiny F(x,y) = \int_0^1\int_0^y 1\ dv\ dt\] \[\tiny= \int_0^1 \left(u\big|_0^y\right)\ d = \int_0^1 y\ dt = y\]
\[F(x,y) = \begin{cases} 0 & x < 0\ \ OR\ \ y < 0 \\ xy & 0 < x < 1, 0 < y < 1 \\ x & 0 < x < 1, y \geq 1 \\ y & x \geq 1, 0 < y < 1\\ 1 & x\geq 1, y \geq 1 \end{cases}\]
First step: Draw region!
Second step: determine order of integration
Vertical strip; \(dy\ dx\)
\[\tiny P(Y<X^2) = \int_0^1 \int_0^{x^2} 1\ dy\ dx\] \[\tiny P(Y<X^2) = \int_0^1 x^2\ dx = \frac{x^3}{3}\big|_0^1 = \frac{1}{3}\]
Horizontal strip; \(dx\ dy\)
\[\tiny P(Y<X^2) = \int_0^1 \int_{\sqrt{y}}^{1} 1\ dx\ dy\] \[\tiny P(Y<X^2) = \int_0^1 (1-\sqrt{y})\ dy = \left(y-2\frac{y^{3/2}}{3}\right)\big|_0^1 = 1-\frac{2}{3}\]
Suppose \(X\) and \(Y\) are jointly continuous with joint pdf:
\[f(x,y) = \begin{cases}3x & 0 < y < x < 1 \\ 0 & otherwise \end{cases}\]
Interactive: https://www.desmos.com/3d/bw7gleh7jj
Draw the support!
Horizontal strip; \(dx\ dy\):
\[\scriptsize \int_0^1 \int_y^1 3x\ dx\ dy=\int_0^1 \left(\frac{3x^2}{2}\big|_y^1\right)\ dy\] \[\scriptsize =\int_0^1 \frac{3}{2}(1-y^2)\ dy = \frac{3}{2}\left(y-\frac{y^3}{3}\right)\big|_0^1 = \frac{3}{2}\frac{2}{3}=1\]
Vertical strip; \(dy\ dx\):
\[\scriptsize \int_0^1 \int_0^x 3x\ dy\ dx=\int_0^1 \left(3xy\big|_{y=0}^x\right)\ dy\] \[\scriptsize =\int_0^1 3x^2\ dx = x^3\big|_0^1 = 1\]
\(F(x,y)\) cases:
\(0 < y < x < 1\):
\(y \geq x, 0 < x < 1\):
\(0 < y < 1, x \geq 1\):
Strategy: Find CDF for case 1; let \(x, y \rightarrow \infty\) for other two cases.
Vertical strips:
\[\scriptsize F(x,y) = \int_0^y\int_0^t 3t\ dv\ dt + \int_y^x \int_0^y 3t\ dv\ dt\]
Horizontal strip:
\[\scriptsize F(x,y) = \int_0^y\int_v^x 3t\ dt\ dv = \int_0^y\left( \frac{3t^2}{2}\big|_v^x\right) dv\] \[\scriptsize = \int_0^y\frac{3}{2}\left(x^2-v^2\right) dv = \frac{3}{2}\left(x^2v-\frac{v^3}{3}\right)\big|_0^y \] \[\scriptsize = \frac{3x^2y-y^3}{2}\]
\(0 < y < x < 1\):
\[\scriptsize F(x,y)= \frac{3x^2y-y^3}{2}\]
\(y \geq x, 0 < x < 1\):
\[\scriptsize \lim_{y\rightarrow \infty}F(x,y)=F(x,x)\] \[ \scriptsize= \frac{3x^3-x^3}{2}=x^3\]
\(0 < y < 1, x \geq 1\):
\[\scriptsize \lim_{x\rightarrow \infty}F(x,y)=F(1,y)\] \[ \scriptsize= \frac{3y-y^3}{2}\]
\[F(x,y) = \begin{cases} 0 & x < 0\ or\ y < 0 \\ \frac{3x^2y-y^3}{2} & 0 < y < x < 1 \\ x^3 & 0 < x < 1, y \geq x\\ \frac{3y-y^3}{2} & 0 < y < 1, x \geq 1\\ 1 & x\geq 1, y \geq 1 \end{cases}\]
Shade the region of integration!
Vertical strip:
\[\scriptsize P(0\leq X \leq 0.5, Y > 0.25) = \int_{0.25}^{0.5}\int_{0.25}^x 3x\ dy\ dx\]
Horizontal strip:
\[\scriptsize P(0\leq X \leq 0.5, Y > 0.25) = \int_{0.25}^{0.5}\int_{y}^{0.25} 3x\ dx\ dy\]
Let \(X\) and \(Y\) be joint continuous random variables with joint pdf given by:
\[f(x,y) = \begin{cases} xe^{-y} &0 < x < y < \infty \\ 0 & otherwise \end{cases}\]
Interactive: https://www.desmos.com/3d/efodrvofks
Draw the support!
Vertical strip; \(dy\ dx\):
\[\scriptsize \int_0^\infty \int_x^\infty xe^{-y}\ dy\ dx\]
Horizontal strip; \(dx\ dy\):
\[\scriptsize \int_0^\infty \int_0^y xe^{-y}\ dx\ dy=\int_0^\infty \left(\frac{x^2}{2}\big|_0^y\right)e^{-y}\ dy\] \[\scriptsize =\int_0^\infty \frac{1}{2}y^2e^{-y}\ dy=\frac{1}{2}\Gamma(3) = 1\]
\(P(X+Y<3) = P(Y < 3-X)\); draw the region!
Vertical strip; \(dy\ dx\):
\[\scriptsize \int_0^{1.5} \int_x^{3-x} xe^{-y}\ dy\ dx\]
Horizontal strips; \(dx\ dy\):
\[\scriptsize \int_0^{1.5} \int_0^{y} xe^{-y}\ dx\ dy + \int_{1.5}^{3} \int_0^{3-y} xe^{-y}\ dx\ dy\]
\[\scriptsize P(X+Y<3) = \int_0^{1.5} \int_x^{3-x} xe^{-y}\ dy\ dx = \int_0^{1.5} \left(-xe^{-y}\big|_{y=x}^{3-x}\right)dx\]
\[\scriptsize =\int_0^{1.5} x \big(e^{-x} - e^{-(3 - x)}\big)\ dx= \underbrace{\int_{0}^{1.5} x e^{-x}\, dx}_{I_1} - \underbrace{\int_{0}^{1.5} x e^{-(3 - x)}\, dx}_{I_2}.\]
\[\scriptsize I_1 = \int_{0}^{1.5} x e^{-x}\, dx = -(x + 1)e^{-x}\Big|_{0}^{1.5} = 1 - 2.5 e^{-1.5}.\]
\[\scriptsize I_2 = \int_{0}^{1.5} x e^{-(3 - x)}\, dx = e^{-3} \int_{0}^{1.5} x e^{x}\, dx = e^{-3} (x - 1)e^{x}\big|_{0}^{1.5} = e^{-3}\big(0.5 e^{1.5} + 1\big) = 0.5 e^{-1.5} + e^{-3}.\]