Introduction

Simple Linear Regression is a method to model the relationship between two continuous variables.

We predict a dependent variable \(y\) based on an independent variable \(x\).


The Model

The simple linear regression model is given by:

\[ y_i = \beta_0 + \beta_1 x_i + \epsilon_i \]

where: - \(\beta_0\) = intercept
- \(\beta_1\) = slope
- \(\epsilon_i\) = random error


Estimating the Coefficients

The least squares estimates minimize the sum of squared errors:

\[ S(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \]

The solution gives:

\[ \hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \]


Example Dataset

We’ll use the built-in mtcars dataset to predict mpg (miles per gallon) from wt (weight of the car).

head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

Fitting the Model

model <- lm(mpg ~ wt, data = mtcars)
summary(model)
## 
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5432 -2.3647 -0.1252  1.4096  6.8727 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  37.2851     1.8776  19.858  < 2e-16 ***
## wt           -5.3445     0.5591  -9.559 1.29e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared:  0.7528, Adjusted R-squared:  0.7446 
## F-statistic: 91.38 on 1 and 30 DF,  p-value: 1.294e-10

Visualization

library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", se = TRUE, color = "red") +
  labs(title = "Linear Regression: MPG vs Weight",
       x = "Weight (1000 lbs)",
       y = "Miles per Gallon")
## `geom_smooth()` using formula = 'y ~ x'

Residual Plot

The residual plot shows the difference between the observed value and the predicted value.

mtcars$residuals <- resid(model)
ggplot(mtcars, aes(x = wt, y = residuals)) +
  geom_point(color = "darkgreen") +
  geom_hline(yintercept = 0, linetype = "dashed") +
  labs(title = "Residuals vs Weight",
       x = "Weight (1000 lbs)",
       y = "Residuals")

3D Visualization

library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
plot_ly(
  data = mtcars,
  x = ~wt, y = ~mpg, z = ~hp,
  type = "scatter3d",
  mode = "markers",
  marker = list(size = 5, color = ~hp, colorscale = "Viridis")
) %>%
  layout(title = "3D Plot: MPG vs Weight vs Horsepower")