Problem 1. Silver Powder Density (Quality Progress, May 2011)

Factors (all fixed): Ammonium (2 levels), Stir (2), Temp (2)

Replicated 2 times (2 reps per cell) => 2x2x2x2 = 16 runs

Response: Density (g/cm^2)

Full factorial fixed-effects model

library(GAD)

Ammonium <- c(2,2,30,30,  2,2,30,30,  2,2,30,30,  2,2,30,30)
Stir     <- c(100,100,100,100, 150,150,150,150, 100,100,100,100, 150,150,150,150)
Temp     <- c(8,8,8,8, 8,8,8,8, 40,40,40,40, 40,40,40,40)

Density  <- c(
  14.68,15.18,15.12,17.48,
  7.54, 6.66,12.46,12.62,
  10.95,17.68,12.65,15.96,
  8.03, 8.84,14.96,14.96
)

data <- data.frame(Ammonium, Stir, Temp, Density)

# --- Convert factors 
Ammonium <- as.fixed(Ammonium)
Stir     <- as.fixed(Stir)
Temp     <- as.fixed(Temp)

# --- Model
model <- aov(Density ~ Ammonium*Stir*Temp)
gad(model)
## $anova
## Analysis of Variance Table
## 
## Response: Density
##                    Df Sum Sq Mean Sq F value   Pr(>F)   
## Ammonium            1 44.389  44.389 11.1803 0.010175 * 
## Stir                1 70.686  70.686 17.8037 0.002918 **
## Temp                1  0.328   0.328  0.0826 0.781170   
## Ammonium:Stir       1 28.117  28.117  7.0817 0.028754 * 
## Ammonium:Temp       1  0.022   0.022  0.0055 0.942808   
## Stir:Temp           1 10.128  10.128  2.5510 0.148890   
## Ammonium:Stir:Temp  1  1.519   1.519  0.3826 0.553412   
## Residuals           8 31.762   3.970                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpretation

p-values in output:

Significant (α = 0.05): Ammonium, Stir, and Ammonium:Stir

Not significant: Temp, Ammonium:Temp, Stir:Temp, Ammonium:Stir:Temp

Q2 Carbon Anode Baked Density-Full Factorial Analysis (GAD)

Temperature (800, 825, 850) × Position (1, 2), 3 replicates

library(GAD)

# Build the data frame
df <- expand.grid(
  Temp = c(800, 825, 850),
  Pos  = c(1, 2),
  Rep  = 1:3
)

df$Density <- c(
  570,1063,565,  528,988,526,
  565,1080,510,  547,1026,538,
  583,1043,590,  521,1004,532
)

#  (a) Both Temperature and Position fixed
Temp <- as.fixed(df$Temp)
Pos  <- as.fixed(df$Pos)
model.a <- aov(df$Density ~ Temp * Pos)
gad(model.a)
## $anova
## Analysis of Variance Table
## 
## Response: df$Density
##           Df Sum Sq Mean Sq  F value   Pr(>F)    
## Temp       2 945342  472671 1056.117 3.25e-14 ***
## Pos        1   7160    7160   15.998 0.001762 ** 
## Temp:Pos   2    818     409    0.914 0.427110    
## Residuals 12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Both Temperature and Position have significant effects on baked density, but there is no significant interaction between them.

#  (b) Both Temperature and Position random
Temp <- as.random(df$Temp)
Pos  <- as.random(df$Pos)
model.b <- aov(df$Density ~ Temp * Pos)
gad(model.b)
## $anova
## Analysis of Variance Table
## 
## Response: df$Density
##           Df Sum Sq Mean Sq  F value    Pr(>F)    
## Temp       2 945342  472671 1155.518 0.0008647 ***
## Pos        1   7160    7160   17.504 0.0526583 .  
## Temp:Pos   2    818     409    0.914 0.4271101    
## Residuals 12   5371     448                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# When both factors are random, Temperature remains highly significant.
#Position becomes only marginally significant (p ~ 0.05), and the interaction remains not significant.

#  (c) Temperature random, Position fixed (mixed)
Temp <- as.random(df$Temp)
Pos  <- as.fixed(df$Pos)
model.c <- aov(df$Density ~ Temp * Pos)
gad(model.c)
## $anova
## Analysis of Variance Table
## 
## Response: df$Density
##           Df Sum Sq Mean Sq  F value   Pr(>F)    
## Temp       2 945342  472671 1056.117 3.25e-14 ***
## Pos        1   7160    7160   17.504  0.05266 .  
## Temp:Pos   2    818     409    0.914  0.42711    
## Residuals 12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# The results are very similar to the random–random model.
#Temperature again shows a strong effect, while Position is borderline and the interaction is insignificant.