1 Problem Statement

An article in Quality Progress (May 2011, pp. 42–48) describes the use of factorial experiments to improve a silver powder production process. This product is used in conductive pastes to manufacture a wide variety of products ranging from silicon wafers to elastic membrane switches. We consider powder density (g/cm2)(g/cm2) as the response variable and critical characteristics of this product.

1.1 part a

Write the model equation for the full factorial model

\[{y_{ijkl}} = \mu + {\tau _i} + {\beta _j} + {\gamma _k} + {(\tau \beta )_{ij}} + {(\tau \gamma )_{ik}} + {(\beta \gamma )_{jk}} + {(\tau \beta \gamma )_{ijk}} + {\varepsilon _{ijkl}}\]

1.2 part b

What factors are deemed significant, using α=.05 as a guide. Report the final p-values of significant factors (and interaction plots if necessary).

library(readr)
PowderProduction <- read_csv("PowderProduction.csv")
## Rows: 16 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (4): Ammonium, StirRate, Temperature, Density
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#View(PowderProduction)
data.frame(PowderProduction$Ammonium,PowderProduction$StirRate,PowderProduction$Temperature,PowderProduction$Density)
##    PowderProduction.Ammonium PowderProduction.StirRate
## 1                          2                       100
## 2                          2                       100
## 3                         30                       100
## 4                         30                       100
## 5                          2                       150
## 6                          2                       150
## 7                         30                       150
## 8                         30                       150
## 9                          2                       100
## 10                         2                       100
## 11                        30                       100
## 12                        30                       100
## 13                         2                       150
## 14                         2                       150
## 15                        30                       150
## 16                        30                       150
##    PowderProduction.Temperature PowderProduction.Density
## 1                             8                    14.68
## 2                             8                    15.18
## 3                             8                    15.12
## 4                             8                    17.48
## 5                             8                     7.54
## 6                             8                     6.66
## 7                             8                    12.46
## 8                             8                    12.62
## 9                            40                    10.95
## 10                           40                    17.68
## 11                           40                    12.65
## 12                           40                    15.96
## 13                           40                     8.03
## 14                           40                     8.84
## 15                           40                    14.96
## 16                           40                    14.96
ammonium<-GAD::as.fixed(PowderProduction$Ammonium)
stir_rate<-GAD::as.fixed(PowderProduction$StirRate)
temperature<-GAD::as.fixed(PowderProduction$Temperature)
model_prob1<-aov(PowderProduction$Density~ammonium+stir_rate+temperature+(ammonium*stir_rate)
                 +(ammonium*temperature)+(stir_rate*temperature)+(ammonium*stir_rate*temperature))
GAD::gad(model_prob1)
## $anova
## Analysis of Variance Table
## 
## Response: PowderProduction$Density
##                                Df Sum Sq Mean Sq F value   Pr(>F)   
## ammonium                        1 44.389  44.389 11.1803 0.010175 * 
## stir_rate                       1 70.686  70.686 17.8037 0.002918 **
## temperature                     1  0.328   0.328  0.0826 0.781170   
## ammonium:stir_rate              1 28.117  28.117  7.0817 0.028754 * 
## ammonium:temperature            1  0.022   0.022  0.0055 0.942808   
## stir_rate:temperature           1 10.128  10.128  2.5510 0.148890   
## ammonium:stir_rate:temperature  1  1.519   1.519  0.3826 0.553412   
## Residuals                       8 31.762   3.970                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.3 Conclusion

From the p-values of this output we can see that the ammonium and stir rate are both significant.

2 Problem 2

2.1 Problem Statement

A full factorial experiment was conducted to determine whether either firing temperature or furnace position affects the baked density of a carbon anode. (hint: use expand.table() in R to help generate the dataframe and use the package GAD to account for fixed and random effects in the ANOVA model)

p2_temp<-rep(seq(1,3),6)
position<-c(rep(1,9),rep(2,9))
response<-c(570,1063,565,565,1080,510,583,1043,590,528,988,526,547,1026,538,521,1004,532)
data.frame(p2_temp,position,response)
##    p2_temp position response
## 1        1        1      570
## 2        2        1     1063
## 3        3        1      565
## 4        1        1      565
## 5        2        1     1080
## 6        3        1      510
## 7        1        1      583
## 8        2        1     1043
## 9        3        1      590
## 10       1        2      528
## 11       2        2      988
## 12       3        2      526
## 13       1        2      547
## 14       2        2     1026
## 15       3        2      538
## 16       1        2      521
## 17       2        2     1004
## 18       3        2      532

2.2 part a

Assume that both Temperature and Position are fixed effects. Report p-values

p2_temp<-GAD::as.fixed(p2_temp)
position<-GAD::as.fixed(position)
model<-aov(response~position+p2_temp+(position*p2_temp))
GAD::gad(model)
## $anova
## Analysis of Variance Table
## 
## Response: response
##                  Df Sum Sq Mean Sq  F value   Pr(>F)    
## position          1   7160    7160   15.998 0.001762 ** 
## p2_temp           2 945342  472671 1056.117 3.25e-14 ***
## position:p2_temp  2    818     409    0.914 0.427110    
## Residuals        12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model)
##                  Df Sum Sq Mean Sq  F value   Pr(>F)    
## position          1   7160    7160   15.998  0.00176 ** 
## p2_temp           2 945342  472671 1056.117 3.25e-14 ***
## position:p2_temp  2    818     409    0.914  0.42711    
## Residuals        12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.3 part b

Assume that both Temperature and Position are random effects. Report p-values

p2_temp<-GAD::as.random(p2_temp)
position<-GAD::as.random(position)
model<-aov(response~position+p2_temp+(position*p2_temp))
GAD::gad(model)
## $anova
## Analysis of Variance Table
## 
## Response: response
##                  Df Sum Sq Mean Sq  F value    Pr(>F)    
## position          1   7160    7160   17.504 0.0526583 .  
## p2_temp           2 945342  472671 1155.518 0.0008647 ***
## position:p2_temp  2    818     409    0.914 0.4271101    
## Residuals        12   5371     448                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model)
##                  Df Sum Sq Mean Sq  F value   Pr(>F)    
## position          1   7160    7160   15.998  0.00176 ** 
## p2_temp           2 945342  472671 1056.117 3.25e-14 ***
## position:p2_temp  2    818     409    0.914  0.42711    
## Residuals        12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.4 part c

Assume the Position effect is fixed and the Temperature effect is random. Report p-values

p2_temp<-GAD::as.random(p2_temp)
position<-GAD::as.fixed(position)
model<-aov(response~position+p2_temp+(position*p2_temp))
GAD::gad(model)
## $anova
## Analysis of Variance Table
## 
## Response: response
##                  Df Sum Sq Mean Sq  F value   Pr(>F)    
## position          1   7160    7160   17.504  0.05266 .  
## p2_temp           2 945342  472671 1056.117 3.25e-14 ***
## position:p2_temp  2    818     409    0.914  0.42711    
## Residuals        12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model)
##                  Df Sum Sq Mean Sq  F value   Pr(>F)    
## position          1   7160    7160   15.998  0.00176 ** 
## p2_temp           2 945342  472671 1056.117 3.25e-14 ***
## position:p2_temp  2    818     409    0.914  0.42711    
## Residuals        12   5371     448                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.5 part d

Comment on similarities and/or differences between the p-values in parts a,b,c.

The temperature is always significant no matter whether it is a fixed or random effect. Postion seems to vary in significance depending on whether it is a random or fixed effect.