Missing Values
stocks <- tibble(
year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
qtr = c( 1, 2, 3, 4, 2, 3, 4),
return = c(1.88, 0.59, 0.35, NA, 0.92, 0.17, 2.66)
)
stocks %>%
pivot_wider(names_from = year, values_from = return)
## # A tibble: 4 × 3
## qtr `2015` `2016`
## <dbl> <dbl> <dbl>
## 1 1 1.88 NA
## 2 2 0.59 0.92
## 3 3 0.35 0.17
## 4 4 NA 2.66
bikes <- tibble(
bike_modle = c("A", "A","B","C", "D"),
matirial = c("steel","aliminium", "steel","titanium","carbon fiber"),
price = c(100,200,300,400,500)
)
bikes %>%
pivot_wider(names_from = bike_modle,values_from = price)
## # A tibble: 4 × 5
## matirial A B C D
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 steel 100 300 NA NA
## 2 aliminium 200 NA NA NA
## 3 titanium NA NA 400 NA
## 4 carbon fiber NA NA NA 500
bikes %>%
complete(bike_modle,matirial)
## # A tibble: 16 × 3
## bike_modle matirial price
## <chr> <chr> <dbl>
## 1 A aliminium 200
## 2 A carbon fiber NA
## 3 A steel 100
## 4 A titanium NA
## 5 B aliminium NA
## 6 B carbon fiber NA
## 7 B steel 300
## 8 B titanium NA
## 9 C aliminium NA
## 10 C carbon fiber NA
## 11 C steel NA
## 12 C titanium 400
## 13 D aliminium NA
## 14 D carbon fiber 500
## 15 D steel NA
## 16 D titanium NA
treatment <- tribble(
~ person, ~ treatment, ~response,
"Derrick Whitmore", 1, 7,
NA, 2, 10,
NA, 3, 9,
"Katherine Burke", 1, 4
)
treatment %>%
fill(person,.direction = "up")
## # A tibble: 4 × 3
## person treatment response
## <chr> <dbl> <dbl>
## 1 Derrick Whitmore 1 7
## 2 Katherine Burke 2 10
## 3 Katherine Burke 3 9
## 4 Katherine Burke 1 4