This analysis performs differential gene expression analysis on RNA-seq data from maize leaf samples across multiple experimental factors:
The analysis uses the limma-voom pipeline to identify genes that respond to:
Genes are classified as:
Three levels of stringency for different analyses:
Significant DEGs: for Manhattan plots, FDR <
0.05 (is_DEG).
High-confidence DEGs: for GO enrichment, FDR
< 0.05 AND \(log_2 FC \pm 2\)
(is_hiconf_DEG).
Selected DEGs: for manuscript main tables, the
union (\(\cup\)) of the top 20 by
significance and the top 20 by Mahalanobis distance
(is_selected_DEG).
library(edgeR) # Differential expression analysis
library(limma) # Linear models for RNA-seq
library(rtracklayer) # Genomic annotation handling
library(GenomicRanges) # Genomic ranges operations
library(dplyr) # Data manipulation
library(ggplot2) # Plotting
library(ggpubr) # Publication ready plots
library(ggtext) # Formatted text in plots
library(robustbase) # Robust statistics (MCD for Mahalanobis)
counts <- read.csv("data/inv4mRNAseq_gene_sample_exp.csv")
{
cat("Loaded expression data:\n")
cat(" Dimensions:", dim(counts), "\n")
cat(" Genes:", nrow(counts), "\n")
cat(" Samples:", ncol(counts) - 2, "\n")
}
## Loaded expression data:
## Dimensions: 39756 62
## Genes: 39756
## Samples: 60
sampleInfo <- read.csv("data/PSU-PHO22_Metadata.csv")
{
cat("\nSample metadata:\n")
cat(" Total samples:", nrow(sampleInfo), "\n")
cat(" Genotypes:", paste(unique(sampleInfo$Genotype), collapse = ", "), "\n")
cat(" Treatments:", paste(unique(sampleInfo$Treatment), collapse = ", "), "\n")
}
##
## Sample metadata:
## Total samples: 64
## Genotypes: CTRL, INV4
## Treatments: Low_P, High_P
# Create sample ID mapping
tag <- sampleInfo$side_tag
names(tag) <- sampleInfo$library
# Extract gene IDs
gene_ids <- data.frame(gene = counts[, 2])
# Convert to matrix and set row names
counts <- as.matrix(counts[, -c(1:2)])
rownames(counts) <- gene_ids$gene
# Map sample names using tags
sampleNames <- tag[colnames(counts)]
colnames(counts) <- sampleNames
# Reorder metadata to match count matrix column order
sampleInfo <- sampleInfo[match(sampleNames, sampleInfo$side_tag), ]
{
cat("\nAll samples in metadata:",
all(sampleNames %in% sampleInfo$side_tag), "\n")
cat("Count matrix prepared:\n")
cat(" Genes:", nrow(counts), "\n")
cat(" Samples:", ncol(counts), "\n")
}
##
## All samples in metadata: TRUE
## Count matrix prepared:
## Genes: 39756
## Samples: 60
# Create DGEList with counts and sample information
y <- DGEList(counts = counts, samples = sampleInfo)
# Define groups from Treatment and Genotype interaction
y$group <- interaction(y$samples$Treatment, y$samples$Genotype)
{
cat("\nDGEList object created\n")
}
##
## DGEList object created
head(y$samples)
Using filterByExpr to remove genes with low counts
across samples.
# Keep genes with sufficient expression
keep <- filterByExpr(y, group = y$group)
y_filtered <- y[keep, ]
{
cat("\nExpression filtering:\n")
cat(" Genes before:", nrow(y), "\n")
cat(" Genes after:", nrow(y_filtered), "\n")
cat(" Genes removed:", sum(!keep), "\n")
}
##
## Expression filtering:
## Genes before: 39756
## Genes after: 24249
## Genes removed: 15507
Compute MDS on all libraries (after gene filtering but before sample filtering) to identify low-quality samples based on library size.
# MDS with all samples (before library size filtering)
mds_all <- plotMDS(y_filtered, pch = 21, plot = TRUE)
# Histogram of library sizes
hist(
y$samples$lib.size / 1e6,
main = "Library Size Distribution",
xlab = "Library Size (millions of reads)",
breaks = 20
)
{
cat("\nLibrary size summary:\n")
print(summary(y$samples$lib.size))
cat("\nSamples with lib.size < 20 million:",
sum(y$samples$lib.size < 2e7), "\n")
}
##
## Library size summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 327979 10716231 31446964 27205445 36129276 56805083
##
## Samples with lib.size < 20 million: 17
# Prepare data for plotting
mds_qc_data <- y_filtered$samples %>%
mutate(
dim1 = mds_all$x,
dim2 = mds_all$y,
lib_size_millions = lib.size / 1e6
)
# Plot MDS colored by library size
ggplot(mds_qc_data, aes(x = dim1, y = dim2, color = lib_size_millions)) +
geom_point(size = 3) +
scale_color_viridis_c(option = "plasma") +
labs(
x = paste0("Dim1 (", round(100 * mds_all$var.explained[1]), "%)"),
y = paste0("Dim2 (", round(100 * mds_all$var.explained[2]), "%)"),
color = "Library Size\n(millions)"
) +
theme_classic2(base_size = 15)
Samples with library size < 20 million reads are considered low quality.
# Flag low count libraries
y_filtered$samples$lowCount <- y_filtered$samples$lib.size < 2e7
# Remove low quality samples
y_filtered_bySample <- y_filtered[, !y_filtered$samples$lowCount]
{
cat("\nLow quality libraries:\n")
print(table(y_filtered$samples$lowCount))
cat("\nSamples after filtering:\n")
cat(" Retained:", ncol(y_filtered_bySample), "\n")
cat(" Removed:", sum(y_filtered$samples$lowCount), "\n")
}
##
## Low quality libraries:
##
## FALSE TRUE
## 43 17
##
## Samples after filtering:
## Retained: 43
## Removed: 17
Verify experimental design balance across factors after quality filtering.
s <- y_filtered_bySample$samples
{
cat("\n=== Sample Distribution by Factors ===\n")
cat("\n-- Treatment --\n")
print(table(s$Treatment))
cat("\n-- Genotype --\n")
print(table(s$Genotype))
cat("\n-- Leaf Tissue --\n")
print(table(s$leaf_tissue))
cat("\n-- Treatment × Leaf Tissue --\n")
print(table(s$Treatment, s$leaf_tissue))
cat("\n-- Genotype × Leaf Tissue --\n")
print(table(s$Genotype, s$leaf_tissue))
cat("\n-- Treatment × Genotype × Leaf Tissue (3-way) --\n")
print(table(s$Treatment, s$Genotype, s$leaf_tissue))
}
##
## === Sample Distribution by Factors ===
##
## -- Treatment --
##
## High_P Low_P
## 24 19
##
## -- Genotype --
##
## CTRL INV4
## 20 23
##
## -- Leaf Tissue --
##
## 1 2 3 4
## 11 11 11 10
##
## -- Treatment × Leaf Tissue --
##
## 1 2 3 4
## High_P 6 6 6 6
## Low_P 5 5 5 4
##
## -- Genotype × Leaf Tissue --
##
## 1 2 3 4
## CTRL 4 6 5 5
## INV4 7 5 6 5
##
## -- Treatment × Genotype × Leaf Tissue (3-way) --
## , , = 1
##
##
## CTRL INV4
## High_P 3 3
## Low_P 1 4
##
## , , = 2
##
##
## CTRL INV4
## High_P 3 3
## Low_P 3 2
##
## , , = 3
##
##
## CTRL INV4
## High_P 3 3
## Low_P 2 3
##
## , , = 4
##
##
## CTRL INV4
## High_P 3 3
## Low_P 2 2
MDS reveals sources of variation in gene expression across samples. Dimensions 3 and 4 are extracted from eigenvectors scaled by square root of variance explained.
mds <- plotMDS(
y_filtered_bySample,
pch = 21,
label = y_filtered_bySample$samples$side_tag,
plot = FALSE
)
# Store MDS coordinates in sample data
d <- y_filtered_bySample$samples
d$dim1 <- mds$x
d$dim2 <- mds$y
d$dim3 <- mds$eigen.vectors[, 3] * sqrt(mds$var.explained[3])
d$dim4 <- mds$eigen.vectors[, 4] * sqrt(mds$var.explained[4])
# Prepare factors for plotting
d$Treatment <- factor(d$Treatment)
levels(d$Treatment) <- c("+P", "-P")
d$Genotype <- factor(d$Genotype)
d$RNA_Plant <- factor(d$RNA_Plant)
# Variance explained by each dimension
tibble(
dimension = paste("Dim", 1:4),
var_explained = round(mds$var.explained[1:4], 4)
)
Exploring which experimental factors drive the main dimensions of variation.
# Treatment
p1 <- ggplot(d, aes(x = dim1, y = dim2, color = Treatment)) +
geom_point(size = 3) +
theme_classic2(base_size = 15) +
ggtitle("Treatment")
# Row position
p2 <- ggplot(d, aes(x = dim1, y = dim2, color = row, shape = Treatment)) +
geom_point(size = 3) +
theme_classic2(base_size = 15) +
ggtitle("Row Position")
# Collection time
p3 <- ggplot(d, aes(x = dim1, y = dim2, color = decimal_time)) +
geom_point(size = 3) +
theme_classic2(base_size = 15) +
ggtitle("Collection Time")
# Collector
p4 <- ggplot(d, aes(x = dim1, y = dim2, color = COLLECTOR)) +
geom_point(size = 3) +
theme_classic2(base_size = 15) +
ggtitle("Collector")
# Genotype
p5 <- ggplot(d, aes(x = dim1, y = dim2, color = Genotype)) +
geom_point(size = 3) +
theme_classic2(base_size = 15) +
ggtitle("Genotype")
# Leaf tissue
p6 <- d %>%
mutate(leaf = factor(leaf_tissue)) %>%
ggplot(aes(x = dim1, y = dim2, color = leaf)) +
geom_point(size = 3) +
theme_classic2(base_size = 15) +
ggtitle("Leaf Tissue")
ggarrange(p1, p2, p3, p4, p5, p6, ncol = 3, nrow = 2)
d %>%
mutate(leaf = factor(leaf_tissue)) %>%
ggplot(aes(x = dim1, y = dim2)) +
xlab(paste0("dim1 (", round(100 * mds$var.explained[1]), "%)")) +
ylab(paste0("dim2 (", round(100 * mds$var.explained[2]), "%)")) +
geom_point(aes(fill = leaf, shape = Treatment), size = 4) +
scale_fill_viridis_d() +
scale_shape_manual(values = c(24, 21)) +
guides(
shape = guide_legend(
title = "Treatment",
order = 1,
override.aes = list(size = 7)
),
fill = guide_legend(
title = "Leaf",
order = 2,
override.aes = list(geom = "point", shape = 22, size = 7)
)
) +
theme_classic2(base_size = 25) +
theme(
legend.box = "horizontal",
legend.spacing = unit(0, "line"),
legend.box.spacing = unit(0, "in"),
legend.position = c(0.75, 0.17)
)
The third dimension separates by genotype.
# Set up genotype labels with italic formatting
labels <- c("CTRL", "*Inv4m*")
names(labels) <- c("CTRL", "INV4")
d %>%
ggplot(aes(x = dim3, y = dim4, fill = Genotype, shape = Treatment)) +
xlab(paste0("dim3 (", round(100 * mds$var.explained[3]), "%)")) +
ylab(paste0("dim4 (", round(100 * mds$var.explained[4]), "%)")) +
geom_point(size = 4) +
scale_fill_viridis_d(direction = -1, labels = labels) +
scale_shape_manual(values = c(24, 21)) +
guides(
shape = "none",
fill = guide_legend(
title = "Genotype",
order = 2,
override.aes = list(geom = "point", shape = 22, size = 7, reverse = TRUE)
)
) +
theme_classic2(base_size = 25) +
theme(
legend.position = c(0.89, 0.9),
legend.text = element_markdown(),
legend.spacing = unit(0, "line"),
legend.box.spacing = unit(0, "line")
)
# Calculate correlations and p-values
mds_cor_results <- tibble(
dimension = c("Dim1", "Dim2", "Dim3"),
factor = c("Treatment", "Leaf tissue", "Genotype"),
correlation = c(
cor(d$dim1, as.numeric(d$Treatment)),
cor(d$dim2, d$leaf_tissue),
cor(d$dim3, as.numeric(d$Genotype))
),
p_value = c(
cor.test(d$dim1, as.numeric(d$Treatment))$p.value,
cor.test(d$dim2, d$leaf_tissue)$p.value,
cor.test(d$dim3, as.numeric(d$Genotype))$p.value
)
) %>%
mutate(
adj_p_value = p.adjust(p_value, method = "fdr"),
correlation = round(correlation, 3),
p_value = signif(p_value, 3),
adj_p_value = signif(adj_p_value, 3)
)
mds_cor_results
Apply TMM (Trimmed Mean of M-values) normalization to account for sequencing depth differences, then fit a linear model including spatial covariates (Plot_Row, Plot_Column), biological factors (leaf_tissue, Treatment, Genotype), and their interaction. Voom transformation estimates mean-variance relationships and computes precision weights for each observation.
# TMM normalization
y_filtered_bySample <- calcNormFactors(y_filtered_bySample)
# Design matrix: spatial covariates + biological factors + interaction
design <- model.matrix(
~ Plot_Column + Plot_Row + leaf_tissue + Treatment * Genotype,
d
)
# Voom transformation with precision weights
voomR <- voom(y_filtered_bySample, design = design, plot = FALSE)
# Save normalized expression for downstream analyses
saveRDS(voomR$E, file = "~/Desktop/normalized_expression_logCPM.rda")
saveRDS(voomR, file = "~/Desktop/normalized_expression_voom_object.rda")
{
cat("Normalization factors range:",
range(y_filtered_bySample$samples$norm.factors), "\n")
cat("Design matrix:", nrow(design), "samples ×", ncol(design), "coefficients\n")
cat("Coefficients:", paste(colnames(design), collapse = ", "), "\n")
cat("Voom expression matrix:", nrow(voomR$E), "genes ×",
ncol(voomR$E), "samples\n")
}
## Normalization factors range: 0.8389793 1.136351
## Design matrix: 43 samples × 7 coefficients
## Coefficients: (Intercept), Plot_Column, Plot_Row, leaf_tissue, Treatment-P, GenotypeINV4, Treatment-P:GenotypeINV4
## Voom expression matrix: 24249 genes × 43 samples
Fit linear model to voom-transformed data, then apply robust empirical Bayes moderation to stabilize variance estimates and improve power for differential expression testing.
# Fit linear model
fit <- lmFit(voomR)
# Empirical Bayes moderation (robust = TRUE for outlier resistance)
ebfit <- eBayes(fit, robust = TRUE)
{
cat("Model fitted:", nrow(fit$coefficients), "genes ×",
ncol(fit$coefficients), "coefficients\n")
cat("\nSignificant genes per coefficient (FDR < 0.05):\n")
print(colSums(abs(decideTests(ebfit))))
}
## Model fitted: 24249 genes × 7 coefficients
##
## Significant genes per coefficient (FDR < 0.05):
## (Intercept) Plot_Column Plot_Row
## 19410 636 0
## leaf_tissue Treatment-P GenotypeINV4
## 14292 10561 974
## Treatment-P:GenotypeINV4
## 3
We focus on biological effects while accounting for spatial covariates.
# Define predictors of interest with ORIGINAL names from model
predictors_original <- c(
"leaf_tissue",
"Treatment-P",
"GenotypeINV4",
"Treatment-P:GenotypeINV4"
)
# Define STANDARDIZED names for output
predictors_standard <- c(
"leaf",
"-P",
"Inv4m",
"-P:Inv4m"
)
# Create mapping
predictor_map <- setNames(predictors_standard, predictors_original)
{
cat("\nExtracting coefficients:\n")
for (i in seq_along(predictors_original)) {
cat(" ", predictors_original[i], "→", predictors_standard[i], "\n")
}
}
##
## Extracting coefficients:
## leaf_tissue → leaf
## Treatment-P → -P
## GenotypeINV4 → Inv4m
## Treatment-P:GenotypeINV4 → -P:Inv4m
For each predictor, extract results and calculate 95% confidence intervals.
results <- list()
for (x in predictors_original) {
# Extract topTable results
r <- topTable(
ebfit,
coef = x,
sort.by = "none",
n = Inf
) %>%
tibble::rownames_to_column("gene") %>%
mutate(predictor = predictor_map[x])
# Calculate 95% confidence intervals
t_quantile <- qt(0.975, ebfit$df.residual + ebfit$df.prior)
standard_error <- ebfit$stdev.unscaled[, x] * sqrt(ebfit$s2.post)
critical_value <- t_quantile * standard_error
r$upper <- r$logFC + critical_value
r$lower <- r$logFC - critical_value
results[[predictor_map[x]]] <- r
}
{
cat("\nEffects extracted for", length(results), "predictors\n")
cat(" Genes per predictor:", nrow(results[[1]]), "\n")
}
##
## Effects extracted for 4 predictors
## Genes per predictor: 24249
Combine all predictor results and annotate with gene information.
# Define factor level order for predictors
effect_order <- c("leaf", "-P", "Inv4m", "-P:Inv4m")
effects_df <- results %>%
bind_rows() %>%
mutate(predictor = factor(predictor, levels = effect_order)) %>%
# Add negative log10 p-value for visualization
mutate(neglogP = -log10(adj.P.Val))
effects_df <- effects_df %>%
mutate(is_DEG = adj.P.Val < 0.05) %>%
mutate(regulation = case_when(
is_DEG & logFC > 0 ~ "Upregulated",
is_DEG & logFC < 0 ~ "Downregulated",
.default = "Unregulated"
))
{
cat("\nCombined effects table created:\n")
with(effects_df, {
table(predictor, is_DEG)
table(predictor, regulation)
})
}
##
## Combined effects table created:
## regulation
## predictor Downregulated Unregulated Upregulated
## leaf 6883 9957 7409
## -P 4985 13688 5576
## Inv4m 388 23275 586
## -P:Inv4m 3 24246 0
Identifies extreme differentially expressed genes using robust Mahalanobis distance based on the Minimum Covariance Determinant (MCD) method. This approach is resistant to the influence of outliers themselves, providing more reliable outlier detection than classical methods.
The MCD method estimates location and covariance using only the most central 75% of observations (alpha = 0.75), making it robust to contamination.
# Helper function: Calculate robust Mahalanobis distance for one predictor
calculate_robust_distance <- function(per_predictor, mcd_alpha) {
# Extract bivariate data (logFC and -log10(FDR))
bivariate <- per_predictor %>%
select(logFC, neglogP) %>%
as.matrix()
# Compute robust location and covariance using MCD
mcd_result <- covMcd(bivariate, alpha = mcd_alpha)
# Calculate robust Mahalanobis distances
per_predictor$mahalanobis <- mahalanobis(
x = bivariate,
center = mcd_result$center,
cov = mcd_result$cov
)
per_predictor
}
# Main function: Add robust Mahalanobis outlier flags
add_mahalanobis_outliers <- function(
data = NULL,
distance_quantile = 0.05,
FDR = 0.05,
mcd_alpha = 0.75
) {
# Calculate robust Mahalanobis distance per predictor
data <- split(data, factor(data$predictor)) %>%
lapply(calculate_robust_distance, mcd_alpha = mcd_alpha) %>%
bind_rows()
# Chi-square cutoff for bivariate data (df = 2)
cutoff <- qchisq(p = 1 - distance_quantile, df = 2)
# Flag outliers: significant AND extreme distance
data$is_mh_outlier <- (data$adj.P.Val < FDR) & (data$mahalanobis > cutoff)
# Sort by distance within groups
data %>%
ungroup() %>%
group_by(predictor, regulation) %>%
arrange(-mahalanobis, .by_group = TRUE) %>%
ungroup()
}
effects_df <- add_mahalanobis_outliers(effects_df, distance_quantile = 0.05, FDR = 0.05)
{
cat("\nMahalanobis outliers detected:\n")
with(effects_df, {
table(predictor, is_mh_outlier)
})
}
##
## Mahalanobis outliers detected:
## is_mh_outlier
## predictor FALSE TRUE
## leaf 18571 5678
## -P 18935 5314
## Inv4m 23275 974
## -P:Inv4m 24246 3
Load gene symbols, functional descriptions (Pannzer), and genomic coordinates (B73 v5 GFF3). Gene IDs are cleaned and coordinates imported as both GRanges (for overlap operations) and data.frame (for dplyr filtering).
# Gene symbols and locus names
gene_symbol <- read.table(
"/Users/fvrodriguez/Library/CloudStorage/GoogleDrive-frodrig4@ncsu.edu/My Drive/repos/inv4mRNA/data/gene_symbol.tab",
quote = "",
header = TRUE,
sep = "\t",
na.strings = ""
)
# Pannzer functional annotations
pannzer <- read.table(
"data/PANNZER_DESC.tab",
quote = "",
header = TRUE,
sep = "\t"
) %>%
group_by(gene_model) %>%
slice(1) %>%
select(gene_model, desc)
# Merge annotations
gene_pannzer <- gene_symbol %>%
left_join(pannzer, by = c("gene_model" = "gene_model"))
# Genomic coordinates (GRanges + data.frame)
v5_gff_file <- "/Users/fvrodriguez/ref/zea/Zea_mays.Zm-B73-REFERENCE-NAM-5.0.59.chr.gff3"
genes_gr <- rtracklayer::import(v5_gff_file) %>%
subset(type == "gene" & seqnames %in% 1:10)
genes <- as.data.frame(genes_gr)
genes$ID <- gsub("gene:", "", genes$ID)
{
cat("Annotations loaded:\n")
cat(" Gene symbols:", nrow(gene_symbol), "\n")
cat(" Pannzer descriptions:", nrow(pannzer), "\n")
cat(" Merged annotations:", nrow(gene_pannzer), "\n")
cat(" Genomic features:", nrow(genes), "genes across",
length(unique(genes$seqnames)), "chromosomes\n")
}
## Annotations loaded:
## Gene symbols: 44364
## Pannzer descriptions: 28308
## Merged annotations: 44364
## Genomic features: 43459 genes across 10 chromosomes
Define three nested regions on chromosome 4: (1) Inv4m inversion proper (gene-defined boundaries), (2) shared introgression including flanking regions (manually verified from genotyping data), and (3) flanking regions (in introgression but outside inversion).
# Inv4m inversion boundaries (defined by specific genes)
inv4m_start <- genes[genes$ID == "Zm00001eb190470", "start"]
inv4m_end <- genes[genes$ID == "Zm00001eb194800", "end"]
# Shared introgression boundaries (from RNAseq genotype verification)
introgression_start <- 157012149
introgression_end <- 195900523
# Extract gene IDs for each region
inv4m_gene_ids <- genes %>%
filter(seqnames == 4, start >= inv4m_start, end <= inv4m_end) %>%
pull(ID)
shared_introgression_gene_ids <- genes %>%
filter(seqnames == 4, start >= introgression_start, end <= introgression_end) %>%
pull(ID)
flanking_introgression_gene_ids <- shared_introgression_gene_ids[
!(shared_introgression_gene_ids %in% inv4m_gene_ids)
]
{
cat("Inv4m inversion: Chr4:", inv4m_start, "-", inv4m_end,
"(", length(inv4m_gene_ids), "genes )\n")
cat("Shared introgression: Chr4:", introgression_start, "-", introgression_end,
"(", length(shared_introgression_gene_ids), "genes )\n")
cat("Introgressed flanking:", length(flanking_introgression_gene_ids), "genes\n")
}
## Inv4m inversion: Chr4: 172883675 - 188132113 ( 434 genes )
## Shared introgression: Chr4: 157012149 - 195900523 ( 1099 genes )
## Introgressed flanking: 665 genes
The goal of this section is to classify differentially expressed genes (DEGs) into three tiers of stringency based on significance (FDR) and effect size (\(\log_2\text{FC}\)), as well as a final set of genes selected for deep-dive analysis.
Methodology for Fold Change Thresholds
The effect sizes are interpreted differently based on the predictor:
Leaf Position (leaf predictor): This was modeled as a continuous slope (\(\beta\)). To be considered a large effect, the total change across the 3 units (Leaf 1 \(\rightarrow\) Leaf 4) must meet the \(|\log_2\text{FC}| > 2\) criterion.
\[\\ |\text{Total Change}| = |3\beta| > 2 \implies |\beta| > \frac{2}{3} \approx 0.67\]
We use \(|\beta| > 0.7\) as the threshold for the leaf slope.
Categorical Predictors (-P, Inv4m, Interaction): The standard large effect size threshold of \(|\log_2\text{FC}| > 2.0\) is applied directly.
Three-Tier Definitions
Significant DEGs (is_DEG): All genes with FDR (adjusted P-value) \(< 0.05\).
High-confidence DEGs (is_hiconf_DEG): Significant DEGs that also meet the large effect size thresholds defined above.
Selected DEGs (is_selected_DEG): The union of the top 20 genes ranked by P-value and the top 20 high-confidence genes ranked by the Mahalanobis distance to the non-significant centroid near the origin of the \((log_2(FC) \times-log_{10}FDR)\) plane, see above.
This first tier identifies all genes that pass the statistical significance threshold, regardless of effect size. We define is_DEG as any gene where the adjusted P-value (is_significant) is less than 0.05.
{
cat("\nSignificant DEGs (is_DEG, FDR < 0.05) Count:\n")
print(with(effects_df, table(predictor, is_DEG)))
}
##
## Significant DEGs (is_DEG, FDR < 0.05) Count:
## is_DEG
## predictor FALSE TRUE
## leaf 9957 14292
## -P 13688 10561
## Inv4m 23275 974
## -P:Inv4m 24246 3
The second tier filters the significant DEGs further by applying the custom large effect size thresholds. This step defines is_hiconf_DEG as only those genes that are significant AND meet the \(\log_2\text{FC}\) threshold specific to their predictor type (0.7 for leaf slope, 2.0 for categorical terms).
is_large_effect = rep(FALSE, nrow(effects_df))
is_leaf <- effects_df$predictor == "leaf"
is_large_effect[is_leaf & abs(effects_df$logFC) > 0.7] <- TRUE
is_large_effect[!is_leaf & abs(effects_df$logFC) > 2] <- TRUE
sum(is_large_effect)
## [1] 2306
effects_df <- effects_df %>%
mutate(
is_hiconf_DEG = is_DEG & is_large_effect
)
{
cat("\nHigh-Confidence DEGs (is_hiconf_DEG) Count:\n")
print(with(effects_df, table(predictor, is_hiconf_DEG)))
}
##
## High-Confidence DEGs (is_hiconf_DEG) Count:
## is_hiconf_DEG
## predictor FALSE TRUE
## leaf 23139 1110
## -P 23453 796
## Inv4m 24110 139
## -P:Inv4m 24249 0
The final tier, is_selected_DEG, selects the most interesting genes for visualization and detailed annotation. A gene is selected if it is among the top \(N\) by P-value (among all DEGs) OR among the top \(N\) by Mahalanobis distance (among high-confidence DEGs). This step requires calculating intra-group rankings first.
rank_threshold <- 20
effects_df$desc_merged
## NULL
effects_df <- effects_df %>%
group_by(is_hiconf_DEG,predictor, regulation) %>%
mutate(
pval_rank = row_number(desc(neglogP)), # Rank by significance
mahal_rank = row_number(desc(mahalanobis)) # Rank by Mahalanobis
) %>%
ungroup() %>%
mutate(
is_selected_DEG = (pval_rank <= rank_threshold & is_hiconf_DEG) |
(mahal_rank <= rank_threshold & is_hiconf_DEG)
)
{
cat(sprintf("\nSelected DEGs (is_selected_DEG, Top N=%d by Rank) Count:\n", rank_threshold))
with(effects_df %>%
filter(is_selected_DEG & regulation!="Unregulated"),
table(regulation,predictor, is_selected_DEG)
)
}
##
## Selected DEGs (is_selected_DEG, Top N=20 by Rank) Count:
## , , is_selected_DEG = TRUE
##
## predictor
## regulation leaf -P Inv4m -P:Inv4m
## Downregulated 38 34 21 0
## Upregulated 39 36 20 0
# Join gene annotations (locus_name, desc come from gene_pannzer)
effects_df <- effects_df %>%
# 1. Join with gene_pannzer
left_join(
gene_pannzer,
by = c(gene = "gene_model"),
relationship = "many-to-many"
) %>%
# 2. Merge locus_name and desc (now that they exist)
mutate(desc_merged = coalesce(locus_name, desc)) %>%
# 3. Reorder columns for readability (using 'gene' as the key column)
select(predictor, regulation, gene, locus_symbol, desc_merged, everything()) %>%
# 4. Add genomic coordinates
inner_join(
genes %>%
select(gene = ID, CHR = seqnames, BP = start) %>%
mutate(CHR = as.character(CHR) %>% as.integer()),
by = "gene"
)
{
cat("\nAnnotations added:\n")
cat(" Final columns:", ncol(effects_df), "\n")
cat(" Genes with coordinates:\n")
with(effects_df,
table(predictor,!is.na(effects_df$CHR))
)
}
##
## Annotations added:
## Final columns: 25
## Genes with coordinates:
##
## predictor TRUE
## leaf 24067
## -P 24067
## Inv4m 24067
## -P:Inv4m 24067
Classify genes by genomic location relative to Inv4m.
effects_df <- effects_df %>%
mutate(
in_Inv4m = gene %in% inv4m_gene_ids,
in_cis = gene %in% shared_introgression_gene_ids,
in_flank = gene %in% flanking_introgression_gene_ids,
in_trans = !in_cis
)
{
cat("\nRegion classification:\n")
cat(" Inv4m genes:", sum(effects_df$in_Inv4m), "\n")
cat(" Cis genes (shared introgression):", sum(effects_df$in_cis), "\n")
cat(" Flanking genes:", sum(effects_df$in_flank), "\n")
cat(" Trans genes:", sum(effects_df$in_trans), "\n")
}
##
## Region classification:
## Inv4m genes: 1020
## Cis genes (shared introgression): 2448
## Flanking genes: 1428
## Trans genes: 93820
# Check distribution for Inv4m effect
inv4m_Region <- effects_df %>%
filter(predictor == "Inv4m", is_DEG) %>%
group_by(in_cis, in_Inv4m) %>%
summarise(n = n(), .groups = "drop")
{
cat("\nInv4m DEGs by region:\n")
print(inv4m_Region)
}
##
## Inv4m DEGs by region:
## # A tibble: 3 × 3
## in_cis in_Inv4m n
## <lgl> <lgl> <int>
## 1 FALSE FALSE 646
## 2 TRUE FALSE 184
## 3 TRUE TRUE 144
Test whether DEGs are enriched in genomic regions associated with the Inv4m introgression. Tests performed for all DEGs and high-confidence DEGs.
# Prepare data for Region enrichment tests (Inv4m predictor only)
Region_effects <- effects_df %>%
filter(predictor == "Inv4m") %>%
mutate(outside = !in_cis) %>%
group_by(gene) %>%
arrange(adj.P.Val) %>%
slice(1) %>% # Handle many-to-many annotation relationships
ungroup()
# Gene counts by region
region_summary <- with(Region_effects, {
tibble(
region = c("Genome-wide", "Outside", "Shared introgression",
"Inv4m", "Flanking"),
n_expressed = c(
length(gene),
sum(outside),
sum(in_cis),
sum(in_Inv4m),
sum(in_flank)
),
n_DEG = c(
sum(is_DEG),
sum(outside & is_DEG),
sum(in_cis & is_DEG),
sum(in_Inv4m & is_DEG),
sum(in_flank & is_DEG)
),
n_hiconf_DEG = c(
sum(is_hiconf_DEG),
sum(outside & is_hiconf_DEG),
sum(in_cis & is_hiconf_DEG),
sum(in_Inv4m & is_hiconf_DEG),
sum(in_flank & is_hiconf_DEG)
)
)
})
region_summary
# Helper function for Fisher test
run_fisher <- function(data, region_var, outcome_var) {
ct <- table(data[[region_var]], data[[outcome_var]])
ft <- fisher.test(ct)
tibble(
odds_ratio = ft$estimate,
p_value = ft$p.value,
ci_lower = ft$conf.int[1],
ci_upper = ft$conf.int[2]
)
}
# DEG enrichment tests
deg_tests <- bind_rows(
run_fisher(Region_effects, "in_cis", "is_DEG") %>%
mutate(comparison = "Shared introgression vs Outside"),
run_fisher(
Region_effects %>% filter(in_flank | outside),
"in_flank",
"is_DEG"
) %>%
mutate(comparison = "Flanking vs Outside"),
run_fisher(
Region_effects %>% filter(in_Inv4m | outside),
"in_Inv4m",
"is_DEG"
) %>%
mutate(comparison = "Inv4m vs Outside"),
run_fisher(
Region_effects %>% filter(in_cis),
"in_Inv4m",
"is_DEG"
) %>%
mutate(comparison = "Inv4m vs Flanking")
) %>%
select(comparison, everything())
{
cat("DEG Enrichment (FDR < 0.05):\n")
deg_tests
}
## DEG Enrichment (FDR < 0.05):
# High-confidence DEG enrichment tests
hiconf_deg_tests <- bind_rows(
run_fisher(Region_effects, "in_cis", "is_hiconf_DEG") %>%
mutate(comparison = "Shared introgression vs Outside"),
run_fisher(
Region_effects %>% filter(in_flank | outside),
"in_flank",
"is_hiconf_DEG"
) %>%
mutate(comparison = "Flanking vs Outside"),
run_fisher(
Region_effects %>% filter(in_Inv4m | outside),
"in_Inv4m",
"is_hiconf_DEG"
) %>%
mutate(comparison = "Inv4m vs Outside"),
run_fisher(
Region_effects %>% filter(in_cis),
"in_Inv4m",
"is_hiconf_DEG"
) %>%
mutate(comparison = "Inv4m vs Flanking")
) %>%
select(comparison, everything())
{
cat("\nHigh-confidence DEG Enrichment (FDR < 0.05, |logFC| > 2):\n")
hiconf_deg_tests
}
##
## High-confidence DEG Enrichment (FDR < 0.05, |logFC| > 2):
{
cat("\n=== Key Findings ===\n")
cat("1. DEGs are ~40-45× enriched in Inv4m region vs genome-wide\n")
cat("2. Both Inv4m and flanking show strong enrichment vs outside\n")
cat("3. No significant difference between Inv4m and flanking (p > 0.05)\n")
cat("4. Pattern holds for both all DEGs and high-confidence DEGs\n")
cat("\nInterpretation: The entire introgression (inversion + flanking)\n")
cat("shows elevated differential expression, not just the inversion proper.\n")
}
##
## === Key Findings ===
## 1. DEGs are ~40-45× enriched in Inv4m region vs genome-wide
## 2. Both Inv4m and flanking show strong enrichment vs outside
## 3. No significant difference between Inv4m and flanking (p > 0.05)
## 4. Pattern holds for both all DEGs and high-confidence DEGs
##
## Interpretation: The entire introgression (inversion + flanking)
## shows elevated differential expression, not just the inversion proper.
Showing top differentially expressed genes by adjusted p-value.
top_degs_qc <- effects_df %>%
filter(is_DEG, regulation != "Unregulated") %>%
group_by(predictor, regulation) %>%
arrange(-neglogP, .by_group = TRUE) %>%
slice(1:10) %>%
select(predictor, gene, locus_symbol,
desc_merged, logFC, neglogP) %>%
arrange(-neglogP)
{
cat("\nTop 10 DEGs per predictor and regulation:\n")
top_degs_qc
}
##
## Top 10 DEGs per predictor and regulation:
Most extreme differentially expressed genes.
top_outliers_qc <- effects_df %>%
filter(is_mh_outlier) %>%
group_by(predictor, regulation) %>%
arrange(-mahalanobis, .by_group = TRUE) %>%
slice(1:10) %>%
select(predictor, regulation, gene,
locus_symbol, desc_merged,
logFC, neglogP, mahalanobis) %>%
arrange(-neglogP)
{
cat("\nTop Mahalanobis outliers per predictor and regulation:\n")
top_outliers_qc
}
##
## Top Mahalanobis outliers per predictor and regulation:
# Overall DEG counts by predictor
overall_summary <- effects_df %>%
group_by(predictor) %>%
summarise(
total_genes = n(),
n_significant = sum(is_DEG),
n_DEG = sum(is_DEG),
n_hiconf_DEG = sum(is_hiconf_DEG),
n_selected_DEG = sum(is_selected_DEG),
pct_DEG = round(100 * n_DEG / total_genes, 2)
)
# Region distribution for Inv4m effect
inv4m_Region_summary <- effects_df %>%
filter(predictor == "Inv4m", is_DEG) %>%
group_by(regulation, in_Inv4m, in_cis) %>%
summarise(n = n(), .groups = "drop")
{
cat("\n=== DEG Summary Statistics ===\n")
overall_summary
cat("\nInv4m DEGs by region and regulation:\n")
inv4m_Region_summary
}
##
## === DEG Summary Statistics ===
##
## Inv4m DEGs by region and regulation:
Extract selected DEGs for detailed presentation in manuscript tables.
selected_degs <- effects_df %>%
filter(is_selected_DEG) %>%
select(
predictor,
regulation,
gene,
locus_symbol,
desc_merged,
logFC,
neglogP,
pval_rank,
mahal_rank
) %>%
arrange(predictor, regulation, -neglogP)
{
cat("\n=== Selected DEGs for Manuscript ===\n")
cat("Total selected DEGs:", nrow(selected_degs), "\n\n")
cat("Counts by predictor and regulation:\n")
print(with(selected_degs, table(predictor, regulation)))
}
##
## === Selected DEGs for Manuscript ===
## Total selected DEGs: 192
##
## Counts by predictor and regulation:
## regulation
## predictor Downregulated Upregulated
## leaf 38 40
## -P 34 37
## Inv4m 23 20
## -P:Inv4m 0 0
Export selected DEGs specific to the phosphorus effect with pannzer description.
p_selected <- selected_degs %>%
mutate(regulation=factor(regulation,
levels=c("Upregulated","Downregulated")
)) %>%
filter(predictor == "-P" & !is.na(selected_degs$desc_merged)) %>%
arrange(regulation, -neglogP)
{
cat("\nPhosphorus effect selected DEGs:\n")
cat(" Upregulated:", sum(p_selected$regulation == "Upregulated"), "\n")
cat(" Downregulated:", sum(p_selected$regulation == "Downregulated"), "\n")
}
##
## Phosphorus effect selected DEGs:
## Upregulated: 34
## Downregulated: 18
p_selected
# Full effects table with all columns
write.csv(
effects_df,
file = "~/Desktop/predictor_effects.csv",
row.names = FALSE
)
{
cat("\nFull effects table exported:\n")
cat(" predictor_effects.csv\n")
}
# Selected DEGs for manuscript
write.csv(
selected_degs,
file = "~/Desktop/selected_DEGs.csv",
row.names = FALSE
)
# Phosphorus selected DEGs
write.csv(
p_selected,
file = "~/Desktop/phosphorus_selected_DEGs.csv",
row.names = FALSE
)
# Inv4m selected DEGs
write.csv(
selected_degs %>% filter(predictor == "Inv4m"),
file = "~/Desktop/inv4m_selected_DEGs.csv",
row.names = FALSE
)
{
cat("\nSelected DEG tables exported:\n")
cat(" selected_DEGs.csv - All selected DEGs\n")
cat(" phosphorus_selected_DEGs.csv - Phosphorus effect\n")
cat(" inv4m_selected_DEGs.csv - Inv4m effect\n")
}
This analysis identified differentially expressed genes across four main effects:
Leaf position gradient: Genes showing expression changes along the apical-basal axis (|logFC| > 0.7, FDR < 0.05)
Phosphorus deficiency: Genes responding to low P treatment (|logFC| > 2, FDR < 0.05)
Inv4m genotype: Genes with different expression in Inv4m vs Control (|logFC| > 2, FDR < 0.05)
Treatment × Genotype interaction: Genes where the P response differs between genotypes (|logFC| > 2, FDR < 0.05)
MDS analysis revealed that:
Spatial covariates (Plot_Row, Plot_Column) were included to account for field position effects
Region enrichment: DEGs show 40-45× enrichment in the Inv4m region, with no significant difference between inversion and flanking regions
Three-tier classification:
All results include:
The full effects table contains 96268 gene × predictor combinations.
sessionInfo()
## R version 4.5.1 (2025-06-13)
## Platform: x86_64-apple-darwin20
## Running under: macOS Sequoia 15.6.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.1
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] robustbase_0.99-6 ggtext_0.1.2 ggpubr_0.6.2
## [4] ggplot2_4.0.0 dplyr_1.1.4 rtracklayer_1.69.1
## [7] GenomicRanges_1.61.5 Seqinfo_0.99.2 IRanges_2.43.5
## [10] S4Vectors_0.47.4 BiocGenerics_0.55.4 generics_0.1.4
## [13] edgeR_4.7.6 limma_3.65.7
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 viridisLite_0.4.2
## [3] farver_2.1.2 Biostrings_2.77.2
## [5] S7_0.2.0 bitops_1.0-9
## [7] fastmap_1.2.0 RCurl_1.98-1.17
## [9] GenomicAlignments_1.45.4 XML_3.99-0.19
## [11] digest_0.6.37 lifecycle_1.0.4
## [13] statmod_1.5.1 magrittr_2.0.4
## [15] compiler_4.5.1 rlang_1.1.6
## [17] sass_0.4.10 tools_4.5.1
## [19] yaml_2.3.10 knitr_1.50
## [21] ggsignif_0.6.4 S4Arrays_1.9.1
## [23] labeling_0.4.3 curl_7.0.0
## [25] DelayedArray_0.35.3 xml2_1.4.0
## [27] RColorBrewer_1.1-3 abind_1.4-8
## [29] BiocParallel_1.43.4 withr_3.0.2
## [31] purrr_1.1.0 grid_4.5.1
## [33] scales_1.4.0 SummarizedExperiment_1.39.2
## [35] cli_3.6.5 rmarkdown_2.30
## [37] crayon_1.5.3 rstudioapi_0.17.1
## [39] httr_1.4.7 rjson_0.2.23
## [41] commonmark_2.0.0 cachem_1.1.0
## [43] stringr_1.5.2 parallel_4.5.1
## [45] XVector_0.49.1 restfulr_0.0.16
## [47] matrixStats_1.5.0 vctrs_0.6.5
## [49] Matrix_1.7-4 jsonlite_2.0.0
## [51] carData_3.0-5 car_3.1-3
## [53] litedown_0.7 rstatix_0.7.3
## [55] Formula_1.2-5 locfit_1.5-9.12
## [57] jquerylib_0.1.4 tidyr_1.3.1
## [59] glue_1.8.0 DEoptimR_1.1-4
## [61] codetools_0.2-20 cowplot_1.2.0
## [63] stringi_1.8.7 gtable_0.3.6
## [65] BiocIO_1.19.0 tibble_3.3.0
## [67] pillar_1.11.1 htmltools_0.5.8.1
## [69] R6_2.6.1 evaluate_1.0.5
## [71] lattice_0.22-7 Biobase_2.69.1
## [73] markdown_2.0 backports_1.5.0
## [75] Rsamtools_2.25.3 gridtext_0.1.5
## [77] broom_1.0.10 bslib_0.9.0
## [79] Rcpp_1.1.0 SparseArray_1.9.1
## [81] xfun_0.53 MatrixGenerics_1.21.0
## [83] pkgconfig_2.0.3