title: “Financial Database Analysis and Application – Midterm Solutions” author: “Bat-Erdene” date: “October 27, 2025” output: html_document: toc: true toc_depth: 2 number_sections: true theme: united highlight: tango —————-
tej_data <- read_delim("tej_day_price_2024_20250630.txt", delim = "\t")
glimpse(tej_data)
## Rows: 337,347
## Columns: 12
## $ CO_ID <chr> "1101 TCC", "1102 ACC", "1103 CHC", "1104 UCC", …
## $ Date <dbl> 20240102, 20240102, 20240102, 20240102, 20240102…
## $ `TSE ID` <dbl> 1101, 1102, 1103, 1104, 1108, 1109, 1110, 1201, …
## $ `TSE Sector` <chr> "01", "01", "01", "01", "01", "01", "01", "02", …
## $ `English Short Name` <chr> "TCC", "ACC", "CHC", "UCC", "Lucky Cement", "HSI…
## $ `Open(NTD)` <dbl> 32.5373, 37.2642, 17.7825, 26.0628, 14.1679, 16.…
## $ `High(NTD)` <dbl> 32.5373, 37.4442, 17.7825, 26.1505, 14.1679, 16.…
## $ `Low(NTD)` <dbl> 32.3038, 36.9492, 17.5953, 25.9750, 14.0343, 16.…
## $ `Close(NTD)` <dbl> 32.3972, 37.0392, 17.6421, 26.0628, 14.0788, 16.…
## $ `Volume(1000S)` <dbl> 14937, 6223, 171, 260, 442, 228, 57, 126, 48, 18…
## $ `Amount(NTD1000)` <dbl> 518751, 256522, 3240, 7736, 6992, 4159, 1075, 24…
## $ `Market Cap.(NTD MN)` <dbl> 262026, 145941, 14896, 19995, 6395, 6209, 10754,…
tej_data_clean <- tej_data %>%
select(2, 3, 5, 9, 12) %>%
rename(
date = 1,
id = 2,
name = 3,
price = 4,
cap = 5
)
head(tej_data_clean)
## # A tibble: 6 × 5
## date id name price cap
## <dbl> <dbl> <chr> <dbl> <dbl>
## 1 20240102 1101 TCC 32.4 262026
## 2 20240102 1102 ACC 37.0 145941
## 3 20240102 1103 CHC 17.6 14896
## 4 20240102 1104 UCC 26.1 19995
## 5 20240102 1108 Lucky Cement 14.1 6395
## 6 20240102 1109 HSINGTA 16.2 6209
tej_wide <- tej_data_clean %>%
mutate(
id = as.character(id),
date = as.Date(as.character(date), "%Y%m%d")
) %>%
select(id, date, price) %>%
spread(key = id, value = price)
head(tej_wide)
## # A tibble: 6 × 947
## date `1101` `1102` `1103` `1104` `1108` `1109` `1110` `1201` `1203`
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2024-01-02 32.4 37.0 17.6 26.1 14.1 16.2 18.3 18.2 55.3
## 2 2024-01-03 31.9 36.6 17.5 25.9 14.0 16.1 18.2 18.2 54.7
## 3 2024-01-04 31.9 37.0 17.5 25.5 14.1 16.1 18.4 18.1 54.1
## 4 2024-01-05 32.1 37.0 17.5 25.8 14.1 16.1 18.3 18.1 54.9
## 5 2024-01-08 32.0 37.2 17.6 25.7 14.2 16.1 18.3 18.1 54.6
## 6 2024-01-09 31.8 36.9 17.5 25.4 13.8 16.0 18.4 18.1 54.6
## # ℹ 937 more variables: `1210` <dbl>, `1213` <dbl>, `1215` <dbl>, `1216` <dbl>,
## # `1217` <dbl>, `1218` <dbl>, `1219` <dbl>, `1220` <dbl>, `1225` <dbl>,
## # `1227` <dbl>, `1229` <dbl>, `1231` <dbl>, `1232` <dbl>, `1233` <dbl>,
## # `1234` <dbl>, `1235` <dbl>, `1236` <dbl>, `1301` <dbl>, `1303` <dbl>,
## # `1304` <dbl>, `1305` <dbl>, `1307` <dbl>, `1308` <dbl>, `1309` <dbl>,
## # `1310` <dbl>, `1312` <dbl>, `1313` <dbl>, `1314` <dbl>, `1315` <dbl>,
## # `1316` <dbl>, `1319` <dbl>, `1321` <dbl>, `1323` <dbl>, `1324` <dbl>, …
na_summary <- tej_wide %>%
gather(key = "stock_id", value = "price", -date) %>%
group_by(stock_id) %>%
summarise(missing_count = sum(is.na(price))) %>%
filter(missing_count > 0)
na_summary
## # A tibble: 10 × 2
## stock_id missing_count
## <chr> <int>
## 1 3716 160
## 2 4585 177
## 3 7722 18
## 4 7732 43
## 5 7736 53
## 6 7750 108
## 7 7765 151
## 8 7780 196
## 9 7788 198
## 10 7799 217
tej_filled <- tej_wide %>%
mutate_if(is.numeric, ~na.locf(., na.rm = FALSE))
head(tej_filled)
## # A tibble: 6 × 947
## date `1101` `1102` `1103` `1104` `1108` `1109` `1110` `1201` `1203`
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2024-01-02 32.4 37.0 17.6 26.1 14.1 16.2 18.3 18.2 55.3
## 2 2024-01-03 31.9 36.6 17.5 25.9 14.0 16.1 18.2 18.2 54.7
## 3 2024-01-04 31.9 37.0 17.5 25.5 14.1 16.1 18.4 18.1 54.1
## 4 2024-01-05 32.1 37.0 17.5 25.8 14.1 16.1 18.3 18.1 54.9
## 5 2024-01-08 32.0 37.2 17.6 25.7 14.2 16.1 18.3 18.1 54.6
## 6 2024-01-09 31.8 36.9 17.5 25.4 13.8 16.0 18.4 18.1 54.6
## # ℹ 937 more variables: `1210` <dbl>, `1213` <dbl>, `1215` <dbl>, `1216` <dbl>,
## # `1217` <dbl>, `1218` <dbl>, `1219` <dbl>, `1220` <dbl>, `1225` <dbl>,
## # `1227` <dbl>, `1229` <dbl>, `1231` <dbl>, `1232` <dbl>, `1233` <dbl>,
## # `1234` <dbl>, `1235` <dbl>, `1236` <dbl>, `1301` <dbl>, `1303` <dbl>,
## # `1304` <dbl>, `1305` <dbl>, `1307` <dbl>, `1308` <dbl>, `1309` <dbl>,
## # `1310` <dbl>, `1312` <dbl>, `1313` <dbl>, `1314` <dbl>, `1315` <dbl>,
## # `1316` <dbl>, `1319` <dbl>, `1321` <dbl>, `1323` <dbl>, `1324` <dbl>, …
tej_filtered <- tej_filled %>%
select(where(~!any(is.na(.))))
dim(tej_filtered)
## [1] 358 937
tej_xts <- tej_filtered %>%
tk_xts(date_var = date)
daily_returns <- Return.calculate(tej_xts, method = "discrete")[-1, ]
head(daily_returns[, 1:5], 5)
## 1101 1102 1103 1104 1108
## 2024-01-03 -0.014408653 -0.012149290 -0.007958236 -0.006733735 -0.003160781
## 2024-01-04 0.000000000 0.012298711 0.000000000 -0.013558772 0.003170803
## 2024-01-05 0.004384536 -0.001214929 0.002674026 0.010306896 0.000000000
## 2024-01-08 -0.002909225 0.004865628 0.002666895 -0.003399291 0.006328664
## 2024-01-09 -0.005841680 -0.007263102 -0.002659801 -0.013655209 -0.025155457
# Convert daily prices to end-of-month data
tej_monthly <- to.monthly(tej_xts, indexAt = "lastof", OHLC = FALSE)
# Compute discrete monthly returns
monthly_returns <- Return.calculate(tej_monthly, method = "discrete")[-1, ]
# Display first few rows
head(monthly_returns[, 1:5], 5)
## 1101 1102 1103 1104 1108
## 2024-02-29 0.006272034 0.01760804 -0.008404066 0.01887014 0.036185231
## 2024-03-31 0.001554899 0.02101398 -0.016950585 0.06397241 0.003170803
## 2024-04-30 -0.003108301 0.05811288 0.057470064 0.11234002 0.072790295
## 2024-05-31 0.029639309 -0.04920108 0.032611536 -0.03271487 0.000000000
## 2024-06-30 0.036364817 0.05535680 -0.036845213 0.04852830 -0.011805133
top_cap_firms <- tej_data_clean %>%
mutate(
date = as.Date(as.character(date), "%Y%m%d"),
year = format(date, "%Y")
) %>%
filter(date %in% as.Date(c("2024-12-31", "2025-12-31"))) %>%
group_by(year) %>%
arrange(desc(cap)) %>%
slice(1:20) %>%
ungroup()
top_cap_firms
## # A tibble: 20 × 6
## date id name price cap year
## <date> <dbl> <chr> <dbl> <dbl> <chr>
## 1 2024-12-31 2330 TSMC 1061. 27877688 2024
## 2 2024-12-31 2317 Hon Hai 178. 2556073 2024
## 3 2024-12-31 2454 MediaTek 1359. 2266389 2024
## 4 2024-12-31 2881 Fubon Financial 83.8 1234015 2024
## 5 2024-12-31 2308 DELTA 423. 1118242 2024
## 6 2024-12-31 2382 QCI 274. 1108574 2024
## 7 2024-12-31 2882 CATHAY FHC 64.8 1001907 2024
## 8 2024-12-31 2412 CHT 119. 958045 2024
## 9 2024-12-31 2891 CTBC Holding 37.0 767154 2024
## 10 2024-12-31 3711 ASEH 156. 715219 2024
## 11 2024-12-31 2886 Mega FHC 37.3 574052 2024
## 12 2024-12-31 2303 UMC 40.4 540739 2024
## 13 2024-12-31 2603 EMC 195. 487135 2024
## 14 2024-12-31 6669 Wiwynn 2544. 486903 2024
## 15 2024-12-31 1216 Uni-President 78.0 459675 2024
## 16 2024-12-31 2357 Asustek 586. 457540 2024
## 17 2024-12-31 2885 Yuanta Group 31.5 440057 2024
## 18 2024-12-31 2345 Accton 763. 433744 2024
## 19 2024-12-31 2884 E.S.F.H 25.7 431087 2024
## 20 2024-12-31 3045 TWM 109. 422590 2024
## Analysis completed successfully. Report generated on October 27, 2025 ✅