library(tidyverse)
library(purrrfect)
(simstudy <- parameters(~alpha, ~beta,
c(1,2,4), c(1,2,4))
%>% add_trials(10000)
%>% mutate(X = map_dbl(alpha, \(a) rgamma(1, a)))
%>% mutate(Y = map_dbl(beta, \(b) rgamma(1, b)))
%>% mutate(U = X/(X+Y))
%>% mutate(f_U = dbeta(U, alpha, beta))
%>% mutate(Fhat_U = cume_dist(U), .by = c(alpha, beta))
%>% mutate(F_U = pbeta(U, alpha, beta))
)
# A tibble: 90,000 × 9
alpha beta .trial X Y U f_U Fhat_U F_U
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 1 2.15 1.71 0.557 1 0.569 0.557
2 1 1 2 1.37 1.13 0.549 1 0.558 0.549
3 1 1 3 0.553 0.390 0.587 1 0.595 0.587
4 1 1 4 0.184 0.598 0.235 1 0.233 0.235
5 1 1 5 0.384 2.04 0.158 1 0.156 0.158
6 1 1 6 0.118 0.803 0.128 1 0.128 0.128
7 1 1 7 1.62 3.24 0.333 1 0.335 0.333
8 1 1 8 0.414 1.35 0.235 1 0.233 0.235
9 1 1 9 0.794 1.28 0.384 1 0.387 0.384
10 1 1 10 0.426 0.386 0.525 1 0.533 0.525
# ℹ 89,990 more rows