What is it? Linear Regression is a method of statistics that is used to find relationships between a dependent variable (miles per gallon) and an indeopendent variable (weight and horsepower). LR fits on a straight line and this describes the outcome.
We model miles per gallon as a linear function of weight and horsepower: \[ \text{mpg} = \beta_0 + \beta_1\,\text{wt} + \beta_2\,\text{hp} + \varepsilon \]data(mtcars) mtcars <- as_tibble(mtcars) %>% mutate(car = rownames(mtcars)) head(mtcars)
## # A tibble: 6 × 12 ## mpg cyl disp hp drat wt qsec vs am gear carb car ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> ## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 Mazda RX4 ## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 Mazda RX4 W… ## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 Datsun 710 ## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 Hornet 4 Dr… ## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 Hornet Spor… ## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 Valiant