cox day0_meld_3

## Call:
## coxph(formula = Surv(time_to_death_90days_init, death_status_90days_init) ~ 
##     day0_meld_3, data = final_master, x = TRUE)
## 
##   n= 243, number of events= 102 
## 
##                coef exp(coef) se(coef)     z Pr(>|z|)    
## day0_meld_3 0.05484   1.05637  0.01271 4.316 1.59e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##             exp(coef) exp(-coef) lower .95 upper .95
## day0_meld_3     1.056     0.9466      1.03     1.083
## 
## Concordance= 0.642  (se = 0.027 )
## Likelihood ratio test= 18.89  on 1 df,   p=1e-05
## Wald test            = 18.63  on 1 df,   p=2e-05
## Score (logrank) test = 18.65  on 1 df,   p=2e-05

cox day0_meld

## Call:
## coxph(formula = Surv(time_to_death_90days_init, death_status_90days_init) ~ 
##     day0_meld, data = final_master, x = TRUE)
## 
##   n= 243, number of events= 102 
## 
##              coef exp(coef) se(coef)     z Pr(>|z|)    
## day0_meld 0.04998   1.05125  0.01229 4.067 4.76e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## day0_meld     1.051     0.9513     1.026     1.077
## 
## Concordance= 0.633  (se = 0.027 )
## Likelihood ratio test= 16.11  on 1 df,   p=6e-05
## Wald test            = 16.54  on 1 df,   p=5e-05
## Score (logrank) test = 16.63  on 1 df,   p=5e-05

cox day0_meld_na

## Call:
## coxph(formula = Surv(time_to_death_90days_init, death_status_90days_init) ~ 
##     day0_meld_na, data = final_master, x = TRUE)
## 
##   n= 243, number of events= 102 
## 
##                 coef exp(coef) se(coef)     z Pr(>|z|)    
## day0_meld_na 0.06247   1.06446  0.01418 4.404 1.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## day0_meld_na     1.064     0.9394     1.035     1.094
## 
## Concordance= 0.647  (se = 0.027 )
## Likelihood ratio test= 19.15  on 1 df,   p=1e-05
## Wald test            = 19.4  on 1 df,   p=1e-05
## Score (logrank) test = 19.37  on 1 df,   p=1e-05

cox clif_c_score_new

## Call:
## coxph(formula = Surv(time_to_death_90days_init, death_status_90days_init) ~ 
##     clif_c_score_new, data = final_master, x = TRUE)
## 
##   n= 243, number of events= 102 
## 
##                     coef exp(coef) se(coef)     z Pr(>|z|)    
## clif_c_score_new 0.05691   1.05856  0.01229 4.631 3.64e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                  exp(coef) exp(-coef) lower .95 upper .95
## clif_c_score_new     1.059     0.9447     1.033     1.084
## 
## Concordance= 0.632  (se = 0.028 )
## Likelihood ratio test= 21.12  on 1 df,   p=4e-06
## Wald test            = 21.45  on 1 df,   p=4e-06
## Score (logrank) test = 21.71  on 1 df,   p=3e-06

Table 1 function

Table 1

ROC_day0_meld_3

## Time-dependent-Roc curve estimated using IPCW  (n=243, without competing risks). 
##      Cases Survivors Censored AUC (%)   se
## t=7     11       227        5   62.14 8.61
## t=15    40       193       10   67.09 4.36
## t=30    72       157       14   69.83 3.52
## t=60    93       135       15   67.29 3.51
## t=85   101       121       21   65.40 3.64
## 
## Method used for estimating IPCW:marginal 
## 
## Total computation time : 0.06  secs.

ROC_day0_meld

## Time-dependent-Roc curve estimated using IPCW  (n=243, without competing risks). 
##      Cases Survivors Censored AUC (%)   se
## t=7     11       227        5   57.52 9.05
## t=15    40       193       10   65.72 4.37
## t=30    72       157       14   69.60 3.51
## t=60    93       135       15   66.27 3.55
## t=85   101       121       21   64.57 3.67
## 
## Method used for estimating IPCW:marginal 
## 
## Total computation time : 0.06  secs.

ROC_day0_meld_na

## Time-dependent-Roc curve estimated using IPCW  (n=243, without competing risks). 
##      Cases Survivors Censored AUC (%)   se
## t=7     11       227        5   61.19 8.60
## t=15    40       193       10   68.02 4.31
## t=30    72       157       14   70.58 3.46
## t=60    93       135       15   67.61 3.49
## t=85   101       121       21   65.97 3.62
## 
## Method used for estimating IPCW:marginal 
## 
## Total computation time : 0.08  secs.

ROC_clif_c_score_new

## Time-dependent-Roc curve estimated using IPCW  (n=243, without competing risks). 
##      Cases Survivors Censored AUC (%)   se
## t=7     11       227        5   71.39 6.94
## t=15    40       193       10   62.94 5.00
## t=30    72       157       14   67.49 3.90
## t=60    93       135       15   65.78 3.67
## t=85   101       121       21   65.39 3.68
## 
## Method used for estimating IPCW:marginal 
## 
## Total computation time : 0.06  secs.

ROC_day0_meld,ROC_day0_meld_3

## $p_values_AUC
##                    t=7      t=15      t=30      t=60      t=85
## Non-adjusted 0.2701947 0.4772911 0.8812400 0.4797078 0.5684626
## Adjusted     0.6278438 0.8816171 0.9998212 0.8836043 0.9425718
## 
## $Cor
##           [,1]      [,2]      [,3]      [,4]      [,5]
## [1,] 1.0000000 0.6360371 0.4285497 0.3244855 0.3013237
## [2,] 0.6360371 1.0000000 0.6980366 0.5138373 0.4846124
## [3,] 0.4285497 0.6980366 1.0000000 0.7483698 0.7013024
## [4,] 0.3244855 0.5138373 0.7483698 1.0000000 0.9427008
## [5,] 0.3013237 0.4846124 0.7013024 0.9427008 1.0000000

ROC_day0_meld_na,ROC_day0_meld_3

## $p_values_AUC
##                    t=7      t=15      t=30      t=60      t=85
## Non-adjusted 0.6908888 0.4547431 0.4404209 0.7280115 0.5373013
## Adjusted     0.9877454 0.8750328 0.8623280 0.9930671 0.9336449
## 
## $Cor
##           [,1]      [,2]      [,3]      [,4]      [,5]
## [1,] 1.0000000 0.5419346 0.3414262 0.2509966 0.2307707
## [2,] 0.5419346 1.0000000 0.6753606 0.5032827 0.4543196
## [3,] 0.3414262 0.6753606 1.0000000 0.7610873 0.6844070
## [4,] 0.2509966 0.5032827 0.7610873 1.0000000 0.9135018
## [5,] 0.2307707 0.4543196 0.6844070 0.9135018 1.0000000

ROC_clif_c_score_new,ROC_day0_meld_3

## $p_values_AUC
##                    t=7      t=15      t=30      t=60      t=85
## Non-adjusted 0.2915186 0.4885859 0.5920953 0.6984960 0.9976813
## Adjusted     0.6626041 0.8890526 0.9525597 0.9861802 1.0000000
## 
## $Cor
##           [,1]      [,2]      [,3]      [,4]      [,5]
## [1,] 1.0000000 0.3725705 0.2407046 0.2133469 0.1979553
## [2,] 0.3725705 1.0000000 0.7211449 0.6256998 0.5784714
## [3,] 0.2407046 0.7211449 1.0000000 0.8686202 0.8065766
## [4,] 0.2133469 0.6256998 0.8686202 1.0000000 0.9310685
## [5,] 0.1979553 0.5784714 0.8065766 0.9310685 1.0000000