df<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/PowderProduction.csv",header=TRUE)
df1<-data.frame(df)
df1
## Ammonium StirRate Temperature Density
## 1 2 100 8 14.68
## 2 2 100 8 15.18
## 3 30 100 8 15.12
## 4 30 100 8 17.48
## 5 2 150 8 7.54
## 6 2 150 8 6.66
## 7 30 150 8 12.46
## 8 30 150 8 12.62
## 9 2 100 40 10.95
## 10 2 100 40 17.68
## 11 30 100 40 12.65
## 12 30 100 40 15.96
## 13 2 150 40 8.03
## 14 2 150 40 8.84
## 15 30 150 40 14.96
## 16 30 150 40 14.96
library(GAD)
df1$Ammonium<-as.fixed(df1$Ammonium)
df1$StirRate<-as.fixed(df1$StirRate)
df1$Temperature<-as.fixed(df1$Temperature)
model<-aov(df1$Density~df1$Ammonium+df1$StirRate+df1$Temperature+df1$Ammonium*df1$StirRate+df1$Ammonium*df1$Temperature+df1$StirRate*df1$Temperature+df1$Ammonium*df1$StirRate*df1$Temperature)
GAD::gad(model)
## $anova
## Analysis of Variance Table
##
## Response: df1$Density
## Df Sum Sq Mean Sq F value Pr(>F)
## df1$Ammonium 1 44.389 44.389 11.1803 0.010175 *
## df1$StirRate 1 70.686 70.686 17.8037 0.002918 **
## df1$Temperature 1 0.328 0.328 0.0826 0.781170
## df1$Ammonium:df1$StirRate 1 28.117 28.117 7.0817 0.028754 *
## df1$Ammonium:df1$Temperature 1 0.022 0.022 0.0055 0.942808
## df1$StirRate:df1$Temperature 1 10.128 10.128 2.5510 0.148890
## df1$Ammonium:df1$StirRate:df1$Temperature 1 1.519 1.519 0.3826 0.553412
## Residuals 8 31.762 3.970
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## df1$Ammonium 1 44.39 44.39 11.180 0.01018 *
## df1$StirRate 1 70.69 70.69 17.804 0.00292 **
## df1$Temperature 1 0.33 0.33 0.083 0.78117
## df1$Ammonium:df1$StirRate 1 28.12 28.12 7.082 0.02875 *
## df1$Ammonium:df1$Temperature 1 0.02 0.02 0.005 0.94281
## df1$StirRate:df1$Temperature 1 10.13 10.13 2.551 0.14889
## df1$Ammonium:df1$StirRate:df1$Temperature 1 1.52 1.52 0.383 0.55341
## Residuals 8 31.76 3.97
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df1$StirRate,df1$Ammonium,df1$Density,col=c("BLUE","RED"))
The 3 factor interaction P(value) is 0.55341, which greater than the alpha (0.05), hence we fail to reject the Null hypothesis of 3 factor interaction.
model1<-aov(df1$Density~df1$Ammonium+df1$StirRate+df1$Temperature+df1$Ammonium*df1$StirRate+df1$Ammonium*df1$Temperature+df1$StirRate*df1$Temperature)
GAD::gad(model1)
## $anova
## Analysis of Variance Table
##
## Response: df1$Density
## Df Sum Sq Mean Sq F value Pr(>F)
## df1$Ammonium 1 44.389 44.389 12.0037 0.007109 **
## df1$StirRate 1 70.686 70.686 19.1150 0.001792 **
## df1$Temperature 1 0.328 0.328 0.0886 0.772681
## df1$Ammonium:df1$StirRate 1 28.117 28.117 7.6033 0.022206 *
## df1$Ammonium:df1$Temperature 1 0.022 0.022 0.0059 0.940538
## df1$StirRate:df1$Temperature 1 10.128 10.128 2.7389 0.132317
## Residuals 9 33.281 3.698
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model1)
## Df Sum Sq Mean Sq F value Pr(>F)
## df1$Ammonium 1 44.39 44.39 12.004 0.00711 **
## df1$StirRate 1 70.69 70.69 19.115 0.00179 **
## df1$Temperature 1 0.33 0.33 0.089 0.77268
## df1$Ammonium:df1$StirRate 1 28.12 28.12 7.603 0.02221 *
## df1$Ammonium:df1$Temperature 1 0.02 0.02 0.006 0.94054
## df1$StirRate:df1$Temperature 1 10.13 10.13 2.739 0.13232
## Residuals 9 33.28 3.70
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Based on the statistics, we discovered that, as the interaction between between Stirrate and Tempearture has the least significance, we will remove it from the next model.
model3<-aov(df1$Density~df1$Ammonium+df1$StirRate+df1$Temperature+df1$Ammonium*df1$StirRate)
GAD::gad(model3)
## $anova
## Analysis of Variance Table
##
## Response: df1$Density
## Df Sum Sq Mean Sq F value Pr(>F)
## df1$Ammonium 1 44.389 44.389 11.2425 0.006443 **
## df1$StirRate 1 70.686 70.686 17.9028 0.001410 **
## df1$Temperature 1 0.328 0.328 0.0830 0.778613
## df1$Ammonium:df1$StirRate 1 28.117 28.117 7.1211 0.021851 *
## Residuals 11 43.431 3.948
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model3)
## Df Sum Sq Mean Sq F value Pr(>F)
## df1$Ammonium 1 44.39 44.39 11.242 0.00644 **
## df1$StirRate 1 70.69 70.69 17.903 0.00141 **
## df1$Temperature 1 0.33 0.33 0.083 0.77861
## df1$Ammonium:df1$StirRate 1 28.12 28.12 7.121 0.02185 *
## Residuals 11 43.43 3.95
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Based on the statistics, we discovered that, as the interaction between between Stirrate and Ammonium has the P(value) of 0.021, which is less than the alpha (0.05), hence we reject the Null hypothesis, and make the claim that there is significant interaction between Stirrate and Ammonium.
interaction.plot(df1$StirRate,df1$Ammonium,df1$Density,col=c("BLUE","RED"))
Based on the statistics, since the lines are not level, there is an interaction between Stirrate and Ammonium.
Position=c(1,2)
Temperature=c(800,825,850)
df<-expand.grid(Position,Temperature)
df1<-rbind(df,df,df)
colnames(df1)<-c("Position","Temperature")
response<-c(570,528,1063,988,565,526,565,547,1080,1026,510,538,583,521,1043,1004,590,532)
df2<-data.frame(df1,response)
df2
## Position Temperature response
## 1 1 800 570
## 2 2 800 528
## 3 1 825 1063
## 4 2 825 988
## 5 1 850 565
## 6 2 850 526
## 7 1 800 565
## 8 2 800 547
## 9 1 825 1080
## 10 2 825 1026
## 11 1 850 510
## 12 2 850 538
## 13 1 800 583
## 14 2 800 521
## 15 1 825 1043
## 16 2 825 1004
## 17 1 850 590
## 18 2 850 532
df2$Position<-as.fixed(Position)
df2$Temperature<-as.fixed(Temperature)
model4<-aov(response~Position+Temperature+Position*Temperature, data=df2)
GAD::gad(model4)
## $anova
## Analysis of Variance Table
##
## Response: response
## Df Sum Sq Mean Sq F value Pr(>F)
## Position 1 7160 7160 15.998 0.001762 **
## Temperature 2 249510 124755 278.748 8.753e-11 ***
## Position:Temperature 2 696650 348325 778.283 2.005e-13 ***
## Residuals 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
df2$Position<-as.random(Position)
df2$Temperature<-as.random(Temperature)
model5<-aov(response~Position+Temperature+Position*Temperature, data=df2)
GAD::gad(model5)
## $anova
## Analysis of Variance Table
##
## Response: response
## Df Sum Sq Mean Sq F value Pr(>F)
## Position 1 7160 7160 0.0206 0.8991
## Temperature 2 249510 124755 0.3582 0.7363
## Position:Temperature 2 696650 348325 778.2834 2.005e-13 ***
## Residuals 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
df2$Position<-as.fixed(Position)
df2$Temperature<-as.random(Temperature)
model6<-aov(response~Position+Temperature+Position*Temperature, data=df2)
GAD::gad(model6)
## $anova
## Analysis of Variance Table
##
## Response: response
## Df Sum Sq Mean Sq F value Pr(>F)
## Position 1 7160 7160 0.0206 0.8991
## Temperature 2 249510 124755 278.7476 8.753e-11 ***
## Position:Temperature 2 696650 348325 778.2834 2.005e-13 ***
## Residuals 12 5371 448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
df<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/PowderProduction.csv",header=TRUE)
df1<-data.frame(df)
df1
df1$Ammonium<-as.fixed(df1$Ammonium)
df1$StirRate<-as.fixed(df1$StirRate)
df1$Temperature<-as.fixed(df1$Temperature)
model<-aov(df1$Density~df1$Ammonium+df1$StirRate+df1$Temperature+df1$Ammonium*df1$StirRate+df1$Ammonium*df1$Temperature+df1$StirRate*df1$Temperature+df1$Ammonium*df1$StirRate*df1$Temperature)
library(GAD)
GAD::gad(model)
summary(model)
interaction.plot(df1$StirRate,df1$Ammonium,df1$Density,col=c("BLUE","RED"))
model1<-aov(df1$Density~df1$Ammonium+df1$StirRate+df1$Temperature+df1$Ammonium*df1$StirRate+df1$Ammonium*df1$Temperature+df1$StirRate*df1$Temperature)
GAD::gad(model1)
summary(model1)
model2<-aov(df1$Density~df1$Ammonium+df1$StirRate+df1$Temperature+df1$Ammonium*df1$StirRate+df1$StirRate*df1$Temperature)
GAD::gad(model2)
summary(model2)
model3<-aov(df1$Density~df1$Ammonium+df1$StirRate+df1$Temperature+df1$Ammonium*df1$StirRate)
GAD::gad(model3)
summary(model3)
interaction.plot(df1$StirRate,df1$Ammonium,df1$Density,col=c("BLUE","RED"))
Position=c(1,2)
Temperature=c(800,825,850)
df<-expand.grid(Position,Temperature)
df1<-rbind(df,df,df)
colnames(df1)<-c("Position","Temperature")
response<-c(570,528,1063,988,565,526,565,547,1080,1026,510,538,583,521,1043,1004,590,532)
df2<-data.frame(df1,response)
df2
df2$Position<-as.fixed(Position)
df2$Temperature<-as.fixed(Temperature)
model4<-aov(response~Position+Temperature+Position*Temperature, data=df2)
GAD::gad(model4)
df2$Position<-as.random(Position)
df2$Temperature<-as.random(Temperature)
model5<-aov(response~Position+Temperature+Position*Temperature, data=df2)
GAD::gad(model5)
df2$Position<-as.fixed(Position)
df2$Temperature<-as.random(Temperature)
model6<-aov(response~Position+Temperature+Position*Temperature, data=df2)
GAD::gad(model6)
COMMENT:
Based on the statistics, we discovered that, as the interaction between between Ammonium and Tempearture has the least significance, we will remove it from the next model.