diamonds %>%
ggplot(aes(x = cut)) + geom_bar()
diamonds %>% ggplot(mapping = aes (x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) + geom_histogram(binwidth = 0.5)
diamonds %>%
ggplot(aes(x = carat, color = cut)) + geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
diamonds %>%
# Filter out diamonds > 3 carat
filter(carat > 3) %>%
# Plot
ggplot(aes(x = carat)) + geom_histogram(binwidth = 0.01)
faithful %>% ggplot(aes(eruptions)) + geom_histogram(binwidth = 0.25)
diamonds %>%
ggplot(aes(y)) + geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
diamonds %>%
ggplot(aes(y)) + geom_histogram() + coord_cartesian(ylim = c(0, 50))
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
# Plot
ggplot(aes(x = x, y = y)) + geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
diamonds %>%
ggplot(aes(x = cut, y = price)) + geom_boxplot()
diamonds %>%
count(color, cut) %>%
ggplot(aes(x = color, y = cut, fill = n)) + geom_tile()
library(hexbin)
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat, y = price)) + geom_hex()
diamonds %>%
ggplot(aes(x = carat, y = price)) + geom_boxplot(aes(group = cut_width(carat, 0.1)))
## Patterns and models
library(modelr)
mod <-lm(log(price) ~ log(carat), data = diamonds)
diamonds4 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds4 %>%
ggplot(aes(carat, resid)) + geom_point()
diamonds4 %>%
ggplot(aes(cut,resid)) + geom_boxplot()