library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.4.3
#install.packages("palmerpenguins")
library(palmerpenguins)
## Warning: package 'palmerpenguins' was built under R version 4.4.3
glimpse(penguins)
## Rows: 344
## Columns: 8
## $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel…
## $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse…
## $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, …
## $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, …
## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186…
## $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, …
## $ sex <fct> male, female, female, NA, female, male, female, male…
## $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007…
dim(penguins)
## [1] 344 8
is.na(penguins)
## species island bill_length_mm bill_depth_mm flipper_length_mm
## [1,] FALSE FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE FALSE FALSE
## [4,] FALSE FALSE TRUE TRUE TRUE
## [5,] FALSE FALSE FALSE FALSE FALSE
## [6,] FALSE FALSE FALSE FALSE FALSE
## [7,] FALSE FALSE FALSE FALSE FALSE
## [8,] FALSE FALSE FALSE FALSE FALSE
## [9,] FALSE FALSE FALSE FALSE FALSE
## [10,] FALSE FALSE FALSE FALSE FALSE
## [11,] FALSE FALSE FALSE FALSE FALSE
## [12,] FALSE FALSE FALSE FALSE FALSE
## [13,] FALSE FALSE FALSE FALSE FALSE
## [14,] FALSE FALSE FALSE FALSE FALSE
## [15,] FALSE FALSE FALSE FALSE FALSE
## [16,] FALSE FALSE FALSE FALSE FALSE
## [17,] FALSE FALSE FALSE FALSE FALSE
## [18,] FALSE FALSE FALSE FALSE FALSE
## [19,] FALSE FALSE FALSE FALSE FALSE
## [20,] FALSE FALSE FALSE FALSE FALSE
## [21,] FALSE FALSE FALSE FALSE FALSE
## [22,] FALSE FALSE FALSE FALSE FALSE
## [23,] FALSE FALSE FALSE FALSE FALSE
## [24,] FALSE FALSE FALSE FALSE FALSE
## [25,] FALSE FALSE FALSE FALSE FALSE
## [26,] FALSE FALSE FALSE FALSE FALSE
## [27,] FALSE FALSE FALSE FALSE FALSE
## [28,] FALSE FALSE FALSE FALSE FALSE
## [29,] FALSE FALSE FALSE FALSE FALSE
## [30,] FALSE FALSE FALSE FALSE FALSE
## [31,] FALSE FALSE FALSE FALSE FALSE
## [32,] FALSE FALSE FALSE FALSE FALSE
## [33,] FALSE FALSE FALSE FALSE FALSE
## [34,] FALSE FALSE FALSE FALSE FALSE
## [35,] FALSE FALSE FALSE FALSE FALSE
## [36,] FALSE FALSE FALSE FALSE FALSE
## [37,] FALSE FALSE FALSE FALSE FALSE
## [38,] FALSE FALSE FALSE FALSE FALSE
## [39,] FALSE FALSE FALSE FALSE FALSE
## [40,] FALSE FALSE FALSE FALSE FALSE
## [41,] FALSE FALSE FALSE FALSE FALSE
## [42,] FALSE FALSE FALSE FALSE FALSE
## [43,] FALSE FALSE FALSE FALSE FALSE
## [44,] FALSE FALSE FALSE FALSE FALSE
## [45,] FALSE FALSE FALSE FALSE FALSE
## [46,] FALSE FALSE FALSE FALSE FALSE
## [47,] FALSE FALSE FALSE FALSE FALSE
## [48,] FALSE FALSE FALSE FALSE FALSE
## [49,] FALSE FALSE FALSE FALSE FALSE
## [50,] FALSE FALSE FALSE FALSE FALSE
## [51,] FALSE FALSE FALSE FALSE FALSE
## [52,] FALSE FALSE FALSE FALSE FALSE
## [53,] FALSE FALSE FALSE FALSE FALSE
## [54,] FALSE FALSE FALSE FALSE FALSE
## [55,] FALSE FALSE FALSE FALSE FALSE
## [56,] FALSE FALSE FALSE FALSE FALSE
## [57,] FALSE FALSE FALSE FALSE FALSE
## [58,] FALSE FALSE FALSE FALSE FALSE
## [59,] FALSE FALSE FALSE FALSE FALSE
## [60,] FALSE FALSE FALSE FALSE FALSE
## [61,] FALSE FALSE FALSE FALSE FALSE
## [62,] FALSE FALSE FALSE FALSE FALSE
## [63,] FALSE FALSE FALSE FALSE FALSE
## [64,] FALSE FALSE FALSE FALSE FALSE
## [65,] FALSE FALSE FALSE FALSE FALSE
## [66,] FALSE FALSE FALSE FALSE FALSE
## [67,] FALSE FALSE FALSE FALSE FALSE
## [68,] FALSE FALSE FALSE FALSE FALSE
## [69,] FALSE FALSE FALSE FALSE FALSE
## [70,] FALSE FALSE FALSE FALSE FALSE
## [71,] FALSE FALSE FALSE FALSE FALSE
## [72,] FALSE FALSE FALSE FALSE FALSE
## [73,] FALSE FALSE FALSE FALSE FALSE
## [74,] FALSE FALSE FALSE FALSE FALSE
## [75,] FALSE FALSE FALSE FALSE FALSE
## [76,] FALSE FALSE FALSE FALSE FALSE
## [77,] FALSE FALSE FALSE FALSE FALSE
## [78,] FALSE FALSE FALSE FALSE FALSE
## [79,] FALSE FALSE FALSE FALSE FALSE
## [80,] FALSE FALSE FALSE FALSE FALSE
## [81,] FALSE FALSE FALSE FALSE FALSE
## [82,] FALSE FALSE FALSE FALSE FALSE
## [83,] FALSE FALSE FALSE FALSE FALSE
## [84,] FALSE FALSE FALSE FALSE FALSE
## [85,] FALSE FALSE FALSE FALSE FALSE
## [86,] FALSE FALSE FALSE FALSE FALSE
## [87,] FALSE FALSE FALSE FALSE FALSE
## [88,] FALSE FALSE FALSE FALSE FALSE
## [89,] FALSE FALSE FALSE FALSE FALSE
## [90,] FALSE FALSE FALSE FALSE FALSE
## [91,] FALSE FALSE FALSE FALSE FALSE
## [92,] FALSE FALSE FALSE FALSE FALSE
## [93,] FALSE FALSE FALSE FALSE FALSE
## [94,] FALSE FALSE FALSE FALSE FALSE
## [95,] FALSE FALSE FALSE FALSE FALSE
## [96,] FALSE FALSE FALSE FALSE FALSE
## [97,] FALSE FALSE FALSE FALSE FALSE
## [98,] FALSE FALSE FALSE FALSE FALSE
## [99,] FALSE FALSE FALSE FALSE FALSE
## [100,] FALSE FALSE FALSE FALSE FALSE
## [101,] FALSE FALSE FALSE FALSE FALSE
## [102,] FALSE FALSE FALSE FALSE FALSE
## [103,] FALSE FALSE FALSE FALSE FALSE
## [104,] FALSE FALSE FALSE FALSE FALSE
## [105,] FALSE FALSE FALSE FALSE FALSE
## [106,] FALSE FALSE FALSE FALSE FALSE
## [107,] FALSE FALSE FALSE FALSE FALSE
## [108,] FALSE FALSE FALSE FALSE FALSE
## [109,] FALSE FALSE FALSE FALSE FALSE
## [110,] FALSE FALSE FALSE FALSE FALSE
## [111,] FALSE FALSE FALSE FALSE FALSE
## [112,] FALSE FALSE FALSE FALSE FALSE
## [113,] FALSE FALSE FALSE FALSE FALSE
## [114,] FALSE FALSE FALSE FALSE FALSE
## [115,] FALSE FALSE FALSE FALSE FALSE
## [116,] FALSE FALSE FALSE FALSE FALSE
## [117,] FALSE FALSE FALSE FALSE FALSE
## [118,] FALSE FALSE FALSE FALSE FALSE
## [119,] FALSE FALSE FALSE FALSE FALSE
## [120,] FALSE FALSE FALSE FALSE FALSE
## [121,] FALSE FALSE FALSE FALSE FALSE
## [122,] FALSE FALSE FALSE FALSE FALSE
## [123,] FALSE FALSE FALSE FALSE FALSE
## [124,] FALSE FALSE FALSE FALSE FALSE
## [125,] FALSE FALSE FALSE FALSE FALSE
## [126,] FALSE FALSE FALSE FALSE FALSE
## [127,] FALSE FALSE FALSE FALSE FALSE
## [128,] FALSE FALSE FALSE FALSE FALSE
## [129,] FALSE FALSE FALSE FALSE FALSE
## [130,] FALSE FALSE FALSE FALSE FALSE
## [131,] FALSE FALSE FALSE FALSE FALSE
## [132,] FALSE FALSE FALSE FALSE FALSE
## [133,] FALSE FALSE FALSE FALSE FALSE
## [134,] FALSE FALSE FALSE FALSE FALSE
## [135,] FALSE FALSE FALSE FALSE FALSE
## [136,] FALSE FALSE FALSE FALSE FALSE
## [137,] FALSE FALSE FALSE FALSE FALSE
## [138,] FALSE FALSE FALSE FALSE FALSE
## [139,] FALSE FALSE FALSE FALSE FALSE
## [140,] FALSE FALSE FALSE FALSE FALSE
## [141,] FALSE FALSE FALSE FALSE FALSE
## [142,] FALSE FALSE FALSE FALSE FALSE
## [143,] FALSE FALSE FALSE FALSE FALSE
## [144,] FALSE FALSE FALSE FALSE FALSE
## [145,] FALSE FALSE FALSE FALSE FALSE
## [146,] FALSE FALSE FALSE FALSE FALSE
## [147,] FALSE FALSE FALSE FALSE FALSE
## [148,] FALSE FALSE FALSE FALSE FALSE
## [149,] FALSE FALSE FALSE FALSE FALSE
## [150,] FALSE FALSE FALSE FALSE FALSE
## [151,] FALSE FALSE FALSE FALSE FALSE
## [152,] FALSE FALSE FALSE FALSE FALSE
## [153,] FALSE FALSE FALSE FALSE FALSE
## [154,] FALSE FALSE FALSE FALSE FALSE
## [155,] FALSE FALSE FALSE FALSE FALSE
## [156,] FALSE FALSE FALSE FALSE FALSE
## [157,] FALSE FALSE FALSE FALSE FALSE
## [158,] FALSE FALSE FALSE FALSE FALSE
## [159,] FALSE FALSE FALSE FALSE FALSE
## [160,] FALSE FALSE FALSE FALSE FALSE
## [161,] FALSE FALSE FALSE FALSE FALSE
## [162,] FALSE FALSE FALSE FALSE FALSE
## [163,] FALSE FALSE FALSE FALSE FALSE
## [164,] FALSE FALSE FALSE FALSE FALSE
## [165,] FALSE FALSE FALSE FALSE FALSE
## [166,] FALSE FALSE FALSE FALSE FALSE
## [167,] FALSE FALSE FALSE FALSE FALSE
## [168,] FALSE FALSE FALSE FALSE FALSE
## [169,] FALSE FALSE FALSE FALSE FALSE
## [170,] FALSE FALSE FALSE FALSE FALSE
## [171,] FALSE FALSE FALSE FALSE FALSE
## [172,] FALSE FALSE FALSE FALSE FALSE
## [173,] FALSE FALSE FALSE FALSE FALSE
## [174,] FALSE FALSE FALSE FALSE FALSE
## [175,] FALSE FALSE FALSE FALSE FALSE
## [176,] FALSE FALSE FALSE FALSE FALSE
## [177,] FALSE FALSE FALSE FALSE FALSE
## [178,] FALSE FALSE FALSE FALSE FALSE
## [179,] FALSE FALSE FALSE FALSE FALSE
## [180,] FALSE FALSE FALSE FALSE FALSE
## [181,] FALSE FALSE FALSE FALSE FALSE
## [182,] FALSE FALSE FALSE FALSE FALSE
## [183,] FALSE FALSE FALSE FALSE FALSE
## [184,] FALSE FALSE FALSE FALSE FALSE
## [185,] FALSE FALSE FALSE FALSE FALSE
## [186,] FALSE FALSE FALSE FALSE FALSE
## [187,] FALSE FALSE FALSE FALSE FALSE
## [188,] FALSE FALSE FALSE FALSE FALSE
## [189,] FALSE FALSE FALSE FALSE FALSE
## [190,] FALSE FALSE FALSE FALSE FALSE
## [191,] FALSE FALSE FALSE FALSE FALSE
## [192,] FALSE FALSE FALSE FALSE FALSE
## [193,] FALSE FALSE FALSE FALSE FALSE
## [194,] FALSE FALSE FALSE FALSE FALSE
## [195,] FALSE FALSE FALSE FALSE FALSE
## [196,] FALSE FALSE FALSE FALSE FALSE
## [197,] FALSE FALSE FALSE FALSE FALSE
## [198,] FALSE FALSE FALSE FALSE FALSE
## [199,] FALSE FALSE FALSE FALSE FALSE
## [200,] FALSE FALSE FALSE FALSE FALSE
## [201,] FALSE FALSE FALSE FALSE FALSE
## [202,] FALSE FALSE FALSE FALSE FALSE
## [203,] FALSE FALSE FALSE FALSE FALSE
## [204,] FALSE FALSE FALSE FALSE FALSE
## [205,] FALSE FALSE FALSE FALSE FALSE
## [206,] FALSE FALSE FALSE FALSE FALSE
## [207,] FALSE FALSE FALSE FALSE FALSE
## [208,] FALSE FALSE FALSE FALSE FALSE
## [209,] FALSE FALSE FALSE FALSE FALSE
## [210,] FALSE FALSE FALSE FALSE FALSE
## [211,] FALSE FALSE FALSE FALSE FALSE
## [212,] FALSE FALSE FALSE FALSE FALSE
## [213,] FALSE FALSE FALSE FALSE FALSE
## [214,] FALSE FALSE FALSE FALSE FALSE
## [215,] FALSE FALSE FALSE FALSE FALSE
## [216,] FALSE FALSE FALSE FALSE FALSE
## [217,] FALSE FALSE FALSE FALSE FALSE
## [218,] FALSE FALSE FALSE FALSE FALSE
## [219,] FALSE FALSE FALSE FALSE FALSE
## [220,] FALSE FALSE FALSE FALSE FALSE
## [221,] FALSE FALSE FALSE FALSE FALSE
## [222,] FALSE FALSE FALSE FALSE FALSE
## [223,] FALSE FALSE FALSE FALSE FALSE
## [224,] FALSE FALSE FALSE FALSE FALSE
## [225,] FALSE FALSE FALSE FALSE FALSE
## [226,] FALSE FALSE FALSE FALSE FALSE
## [227,] FALSE FALSE FALSE FALSE FALSE
## [228,] FALSE FALSE FALSE FALSE FALSE
## [229,] FALSE FALSE FALSE FALSE FALSE
## [230,] FALSE FALSE FALSE FALSE FALSE
## [231,] FALSE FALSE FALSE FALSE FALSE
## [232,] FALSE FALSE FALSE FALSE FALSE
## [233,] FALSE FALSE FALSE FALSE FALSE
## [234,] FALSE FALSE FALSE FALSE FALSE
## [235,] FALSE FALSE FALSE FALSE FALSE
## [236,] FALSE FALSE FALSE FALSE FALSE
## [237,] FALSE FALSE FALSE FALSE FALSE
## [238,] FALSE FALSE FALSE FALSE FALSE
## [239,] FALSE FALSE FALSE FALSE FALSE
## [240,] FALSE FALSE FALSE FALSE FALSE
## [241,] FALSE FALSE FALSE FALSE FALSE
## [242,] FALSE FALSE FALSE FALSE FALSE
## [243,] FALSE FALSE FALSE FALSE FALSE
## [244,] FALSE FALSE FALSE FALSE FALSE
## [245,] FALSE FALSE FALSE FALSE FALSE
## [246,] FALSE FALSE FALSE FALSE FALSE
## [247,] FALSE FALSE FALSE FALSE FALSE
## [248,] FALSE FALSE FALSE FALSE FALSE
## [249,] FALSE FALSE FALSE FALSE FALSE
## [250,] FALSE FALSE FALSE FALSE FALSE
## [251,] FALSE FALSE FALSE FALSE FALSE
## [252,] FALSE FALSE FALSE FALSE FALSE
## [253,] FALSE FALSE FALSE FALSE FALSE
## [254,] FALSE FALSE FALSE FALSE FALSE
## [255,] FALSE FALSE FALSE FALSE FALSE
## [256,] FALSE FALSE FALSE FALSE FALSE
## [257,] FALSE FALSE FALSE FALSE FALSE
## [258,] FALSE FALSE FALSE FALSE FALSE
## [259,] FALSE FALSE FALSE FALSE FALSE
## [260,] FALSE FALSE FALSE FALSE FALSE
## [261,] FALSE FALSE FALSE FALSE FALSE
## [262,] FALSE FALSE FALSE FALSE FALSE
## [263,] FALSE FALSE FALSE FALSE FALSE
## [264,] FALSE FALSE FALSE FALSE FALSE
## [265,] FALSE FALSE FALSE FALSE FALSE
## [266,] FALSE FALSE FALSE FALSE FALSE
## [267,] FALSE FALSE FALSE FALSE FALSE
## [268,] FALSE FALSE FALSE FALSE FALSE
## [269,] FALSE FALSE FALSE FALSE FALSE
## [270,] FALSE FALSE FALSE FALSE FALSE
## [271,] FALSE FALSE FALSE FALSE FALSE
## [272,] FALSE FALSE TRUE TRUE TRUE
## [273,] FALSE FALSE FALSE FALSE FALSE
## [274,] FALSE FALSE FALSE FALSE FALSE
## [275,] FALSE FALSE FALSE FALSE FALSE
## [276,] FALSE FALSE FALSE FALSE FALSE
## [277,] FALSE FALSE FALSE FALSE FALSE
## [278,] FALSE FALSE FALSE FALSE FALSE
## [279,] FALSE FALSE FALSE FALSE FALSE
## [280,] FALSE FALSE FALSE FALSE FALSE
## [281,] FALSE FALSE FALSE FALSE FALSE
## [282,] FALSE FALSE FALSE FALSE FALSE
## [283,] FALSE FALSE FALSE FALSE FALSE
## [284,] FALSE FALSE FALSE FALSE FALSE
## [285,] FALSE FALSE FALSE FALSE FALSE
## [286,] FALSE FALSE FALSE FALSE FALSE
## [287,] FALSE FALSE FALSE FALSE FALSE
## [288,] FALSE FALSE FALSE FALSE FALSE
## [289,] FALSE FALSE FALSE FALSE FALSE
## [290,] FALSE FALSE FALSE FALSE FALSE
## [291,] FALSE FALSE FALSE FALSE FALSE
## [292,] FALSE FALSE FALSE FALSE FALSE
## [293,] FALSE FALSE FALSE FALSE FALSE
## [294,] FALSE FALSE FALSE FALSE FALSE
## [295,] FALSE FALSE FALSE FALSE FALSE
## [296,] FALSE FALSE FALSE FALSE FALSE
## [297,] FALSE FALSE FALSE FALSE FALSE
## [298,] FALSE FALSE FALSE FALSE FALSE
## [299,] FALSE FALSE FALSE FALSE FALSE
## [300,] FALSE FALSE FALSE FALSE FALSE
## [301,] FALSE FALSE FALSE FALSE FALSE
## [302,] FALSE FALSE FALSE FALSE FALSE
## [303,] FALSE FALSE FALSE FALSE FALSE
## [304,] FALSE FALSE FALSE FALSE FALSE
## [305,] FALSE FALSE FALSE FALSE FALSE
## [306,] FALSE FALSE FALSE FALSE FALSE
## [307,] FALSE FALSE FALSE FALSE FALSE
## [308,] FALSE FALSE FALSE FALSE FALSE
## [309,] FALSE FALSE FALSE FALSE FALSE
## [310,] FALSE FALSE FALSE FALSE FALSE
## [311,] FALSE FALSE FALSE FALSE FALSE
## [312,] FALSE FALSE FALSE FALSE FALSE
## [313,] FALSE FALSE FALSE FALSE FALSE
## [314,] FALSE FALSE FALSE FALSE FALSE
## [315,] FALSE FALSE FALSE FALSE FALSE
## [316,] FALSE FALSE FALSE FALSE FALSE
## [317,] FALSE FALSE FALSE FALSE FALSE
## [318,] FALSE FALSE FALSE FALSE FALSE
## [319,] FALSE FALSE FALSE FALSE FALSE
## [320,] FALSE FALSE FALSE FALSE FALSE
## [321,] FALSE FALSE FALSE FALSE FALSE
## [322,] FALSE FALSE FALSE FALSE FALSE
## [323,] FALSE FALSE FALSE FALSE FALSE
## [324,] FALSE FALSE FALSE FALSE FALSE
## [325,] FALSE FALSE FALSE FALSE FALSE
## [326,] FALSE FALSE FALSE FALSE FALSE
## [327,] FALSE FALSE FALSE FALSE FALSE
## [328,] FALSE FALSE FALSE FALSE FALSE
## [329,] FALSE FALSE FALSE FALSE FALSE
## [330,] FALSE FALSE FALSE FALSE FALSE
## [331,] FALSE FALSE FALSE FALSE FALSE
## [332,] FALSE FALSE FALSE FALSE FALSE
## [333,] FALSE FALSE FALSE FALSE FALSE
## [334,] FALSE FALSE FALSE FALSE FALSE
## [335,] FALSE FALSE FALSE FALSE FALSE
## [336,] FALSE FALSE FALSE FALSE FALSE
## [337,] FALSE FALSE FALSE FALSE FALSE
## [338,] FALSE FALSE FALSE FALSE FALSE
## [339,] FALSE FALSE FALSE FALSE FALSE
## [340,] FALSE FALSE FALSE FALSE FALSE
## [341,] FALSE FALSE FALSE FALSE FALSE
## [342,] FALSE FALSE FALSE FALSE FALSE
## [343,] FALSE FALSE FALSE FALSE FALSE
## [344,] FALSE FALSE FALSE FALSE FALSE
## body_mass_g sex year
## [1,] FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE
## [4,] TRUE TRUE FALSE
## [5,] FALSE FALSE FALSE
## [6,] FALSE FALSE FALSE
## [7,] FALSE FALSE FALSE
## [8,] FALSE FALSE FALSE
## [9,] FALSE TRUE FALSE
## [10,] FALSE TRUE FALSE
## [11,] FALSE TRUE FALSE
## [12,] FALSE TRUE FALSE
## [13,] FALSE FALSE FALSE
## [14,] FALSE FALSE FALSE
## [15,] FALSE FALSE FALSE
## [16,] FALSE FALSE FALSE
## [17,] FALSE FALSE FALSE
## [18,] FALSE FALSE FALSE
## [19,] FALSE FALSE FALSE
## [20,] FALSE FALSE FALSE
## [21,] FALSE FALSE FALSE
## [22,] FALSE FALSE FALSE
## [23,] FALSE FALSE FALSE
## [24,] FALSE FALSE FALSE
## [25,] FALSE FALSE FALSE
## [26,] FALSE FALSE FALSE
## [27,] FALSE FALSE FALSE
## [28,] FALSE FALSE FALSE
## [29,] FALSE FALSE FALSE
## [30,] FALSE FALSE FALSE
## [31,] FALSE FALSE FALSE
## [32,] FALSE FALSE FALSE
## [33,] FALSE FALSE FALSE
## [34,] FALSE FALSE FALSE
## [35,] FALSE FALSE FALSE
## [36,] FALSE FALSE FALSE
## [37,] FALSE FALSE FALSE
## [38,] FALSE FALSE FALSE
## [39,] FALSE FALSE FALSE
## [40,] FALSE FALSE FALSE
## [41,] FALSE FALSE FALSE
## [42,] FALSE FALSE FALSE
## [43,] FALSE FALSE FALSE
## [44,] FALSE FALSE FALSE
## [45,] FALSE FALSE FALSE
## [46,] FALSE FALSE FALSE
## [47,] FALSE FALSE FALSE
## [48,] FALSE TRUE FALSE
## [49,] FALSE FALSE FALSE
## [50,] FALSE FALSE FALSE
## [51,] FALSE FALSE FALSE
## [52,] FALSE FALSE FALSE
## [53,] FALSE FALSE FALSE
## [54,] FALSE FALSE FALSE
## [55,] FALSE FALSE FALSE
## [56,] FALSE FALSE FALSE
## [57,] FALSE FALSE FALSE
## [58,] FALSE FALSE FALSE
## [59,] FALSE FALSE FALSE
## [60,] FALSE FALSE FALSE
## [61,] FALSE FALSE FALSE
## [62,] FALSE FALSE FALSE
## [63,] FALSE FALSE FALSE
## [64,] FALSE FALSE FALSE
## [65,] FALSE FALSE FALSE
## [66,] FALSE FALSE FALSE
## [67,] FALSE FALSE FALSE
## [68,] FALSE FALSE FALSE
## [69,] FALSE FALSE FALSE
## [70,] FALSE FALSE FALSE
## [71,] FALSE FALSE FALSE
## [72,] FALSE FALSE FALSE
## [73,] FALSE FALSE FALSE
## [74,] FALSE FALSE FALSE
## [75,] FALSE FALSE FALSE
## [76,] FALSE FALSE FALSE
## [77,] FALSE FALSE FALSE
## [78,] FALSE FALSE FALSE
## [79,] FALSE FALSE FALSE
## [80,] FALSE FALSE FALSE
## [81,] FALSE FALSE FALSE
## [82,] FALSE FALSE FALSE
## [83,] FALSE FALSE FALSE
## [84,] FALSE FALSE FALSE
## [85,] FALSE FALSE FALSE
## [86,] FALSE FALSE FALSE
## [87,] FALSE FALSE FALSE
## [88,] FALSE FALSE FALSE
## [89,] FALSE FALSE FALSE
## [90,] FALSE FALSE FALSE
## [91,] FALSE FALSE FALSE
## [92,] FALSE FALSE FALSE
## [93,] FALSE FALSE FALSE
## [94,] FALSE FALSE FALSE
## [95,] FALSE FALSE FALSE
## [96,] FALSE FALSE FALSE
## [97,] FALSE FALSE FALSE
## [98,] FALSE FALSE FALSE
## [99,] FALSE FALSE FALSE
## [100,] FALSE FALSE FALSE
## [101,] FALSE FALSE FALSE
## [102,] FALSE FALSE FALSE
## [103,] FALSE FALSE FALSE
## [104,] FALSE FALSE FALSE
## [105,] FALSE FALSE FALSE
## [106,] FALSE FALSE FALSE
## [107,] FALSE FALSE FALSE
## [108,] FALSE FALSE FALSE
## [109,] FALSE FALSE FALSE
## [110,] FALSE FALSE FALSE
## [111,] FALSE FALSE FALSE
## [112,] FALSE FALSE FALSE
## [113,] FALSE FALSE FALSE
## [114,] FALSE FALSE FALSE
## [115,] FALSE FALSE FALSE
## [116,] FALSE FALSE FALSE
## [117,] FALSE FALSE FALSE
## [118,] FALSE FALSE FALSE
## [119,] FALSE FALSE FALSE
## [120,] FALSE FALSE FALSE
## [121,] FALSE FALSE FALSE
## [122,] FALSE FALSE FALSE
## [123,] FALSE FALSE FALSE
## [124,] FALSE FALSE FALSE
## [125,] FALSE FALSE FALSE
## [126,] FALSE FALSE FALSE
## [127,] FALSE FALSE FALSE
## [128,] FALSE FALSE FALSE
## [129,] FALSE FALSE FALSE
## [130,] FALSE FALSE FALSE
## [131,] FALSE FALSE FALSE
## [132,] FALSE FALSE FALSE
## [133,] FALSE FALSE FALSE
## [134,] FALSE FALSE FALSE
## [135,] FALSE FALSE FALSE
## [136,] FALSE FALSE FALSE
## [137,] FALSE FALSE FALSE
## [138,] FALSE FALSE FALSE
## [139,] FALSE FALSE FALSE
## [140,] FALSE FALSE FALSE
## [141,] FALSE FALSE FALSE
## [142,] FALSE FALSE FALSE
## [143,] FALSE FALSE FALSE
## [144,] FALSE FALSE FALSE
## [145,] FALSE FALSE FALSE
## [146,] FALSE FALSE FALSE
## [147,] FALSE FALSE FALSE
## [148,] FALSE FALSE FALSE
## [149,] FALSE FALSE FALSE
## [150,] FALSE FALSE FALSE
## [151,] FALSE FALSE FALSE
## [152,] FALSE FALSE FALSE
## [153,] FALSE FALSE FALSE
## [154,] FALSE FALSE FALSE
## [155,] FALSE FALSE FALSE
## [156,] FALSE FALSE FALSE
## [157,] FALSE FALSE FALSE
## [158,] FALSE FALSE FALSE
## [159,] FALSE FALSE FALSE
## [160,] FALSE FALSE FALSE
## [161,] FALSE FALSE FALSE
## [162,] FALSE FALSE FALSE
## [163,] FALSE FALSE FALSE
## [164,] FALSE FALSE FALSE
## [165,] FALSE FALSE FALSE
## [166,] FALSE FALSE FALSE
## [167,] FALSE FALSE FALSE
## [168,] FALSE FALSE FALSE
## [169,] FALSE FALSE FALSE
## [170,] FALSE FALSE FALSE
## [171,] FALSE FALSE FALSE
## [172,] FALSE FALSE FALSE
## [173,] FALSE FALSE FALSE
## [174,] FALSE FALSE FALSE
## [175,] FALSE FALSE FALSE
## [176,] FALSE FALSE FALSE
## [177,] FALSE FALSE FALSE
## [178,] FALSE FALSE FALSE
## [179,] FALSE TRUE FALSE
## [180,] FALSE FALSE FALSE
## [181,] FALSE FALSE FALSE
## [182,] FALSE FALSE FALSE
## [183,] FALSE FALSE FALSE
## [184,] FALSE FALSE FALSE
## [185,] FALSE FALSE FALSE
## [186,] FALSE FALSE FALSE
## [187,] FALSE FALSE FALSE
## [188,] FALSE FALSE FALSE
## [189,] FALSE FALSE FALSE
## [190,] FALSE FALSE FALSE
## [191,] FALSE FALSE FALSE
## [192,] FALSE FALSE FALSE
## [193,] FALSE FALSE FALSE
## [194,] FALSE FALSE FALSE
## [195,] FALSE FALSE FALSE
## [196,] FALSE FALSE FALSE
## [197,] FALSE FALSE FALSE
## [198,] FALSE FALSE FALSE
## [199,] FALSE FALSE FALSE
## [200,] FALSE FALSE FALSE
## [201,] FALSE FALSE FALSE
## [202,] FALSE FALSE FALSE
## [203,] FALSE FALSE FALSE
## [204,] FALSE FALSE FALSE
## [205,] FALSE FALSE FALSE
## [206,] FALSE FALSE FALSE
## [207,] FALSE FALSE FALSE
## [208,] FALSE FALSE FALSE
## [209,] FALSE FALSE FALSE
## [210,] FALSE FALSE FALSE
## [211,] FALSE FALSE FALSE
## [212,] FALSE FALSE FALSE
## [213,] FALSE FALSE FALSE
## [214,] FALSE FALSE FALSE
## [215,] FALSE FALSE FALSE
## [216,] FALSE FALSE FALSE
## [217,] FALSE FALSE FALSE
## [218,] FALSE FALSE FALSE
## [219,] FALSE TRUE FALSE
## [220,] FALSE FALSE FALSE
## [221,] FALSE FALSE FALSE
## [222,] FALSE FALSE FALSE
## [223,] FALSE FALSE FALSE
## [224,] FALSE FALSE FALSE
## [225,] FALSE FALSE FALSE
## [226,] FALSE FALSE FALSE
## [227,] FALSE FALSE FALSE
## [228,] FALSE FALSE FALSE
## [229,] FALSE FALSE FALSE
## [230,] FALSE FALSE FALSE
## [231,] FALSE FALSE FALSE
## [232,] FALSE FALSE FALSE
## [233,] FALSE FALSE FALSE
## [234,] FALSE FALSE FALSE
## [235,] FALSE FALSE FALSE
## [236,] FALSE FALSE FALSE
## [237,] FALSE FALSE FALSE
## [238,] FALSE FALSE FALSE
## [239,] FALSE FALSE FALSE
## [240,] FALSE FALSE FALSE
## [241,] FALSE FALSE FALSE
## [242,] FALSE FALSE FALSE
## [243,] FALSE FALSE FALSE
## [244,] FALSE FALSE FALSE
## [245,] FALSE FALSE FALSE
## [246,] FALSE FALSE FALSE
## [247,] FALSE FALSE FALSE
## [248,] FALSE FALSE FALSE
## [249,] FALSE FALSE FALSE
## [250,] FALSE FALSE FALSE
## [251,] FALSE FALSE FALSE
## [252,] FALSE FALSE FALSE
## [253,] FALSE FALSE FALSE
## [254,] FALSE FALSE FALSE
## [255,] FALSE FALSE FALSE
## [256,] FALSE FALSE FALSE
## [257,] FALSE TRUE FALSE
## [258,] FALSE FALSE FALSE
## [259,] FALSE FALSE FALSE
## [260,] FALSE FALSE FALSE
## [261,] FALSE FALSE FALSE
## [262,] FALSE FALSE FALSE
## [263,] FALSE FALSE FALSE
## [264,] FALSE FALSE FALSE
## [265,] FALSE FALSE FALSE
## [266,] FALSE FALSE FALSE
## [267,] FALSE FALSE FALSE
## [268,] FALSE FALSE FALSE
## [269,] FALSE TRUE FALSE
## [270,] FALSE FALSE FALSE
## [271,] FALSE FALSE FALSE
## [272,] TRUE TRUE FALSE
## [273,] FALSE FALSE FALSE
## [274,] FALSE FALSE FALSE
## [275,] FALSE FALSE FALSE
## [276,] FALSE FALSE FALSE
## [277,] FALSE FALSE FALSE
## [278,] FALSE FALSE FALSE
## [279,] FALSE FALSE FALSE
## [280,] FALSE FALSE FALSE
## [281,] FALSE FALSE FALSE
## [282,] FALSE FALSE FALSE
## [283,] FALSE FALSE FALSE
## [284,] FALSE FALSE FALSE
## [285,] FALSE FALSE FALSE
## [286,] FALSE FALSE FALSE
## [287,] FALSE FALSE FALSE
## [288,] FALSE FALSE FALSE
## [289,] FALSE FALSE FALSE
## [290,] FALSE FALSE FALSE
## [291,] FALSE FALSE FALSE
## [292,] FALSE FALSE FALSE
## [293,] FALSE FALSE FALSE
## [294,] FALSE FALSE FALSE
## [295,] FALSE FALSE FALSE
## [296,] FALSE FALSE FALSE
## [297,] FALSE FALSE FALSE
## [298,] FALSE FALSE FALSE
## [299,] FALSE FALSE FALSE
## [300,] FALSE FALSE FALSE
## [301,] FALSE FALSE FALSE
## [302,] FALSE FALSE FALSE
## [303,] FALSE FALSE FALSE
## [304,] FALSE FALSE FALSE
## [305,] FALSE FALSE FALSE
## [306,] FALSE FALSE FALSE
## [307,] FALSE FALSE FALSE
## [308,] FALSE FALSE FALSE
## [309,] FALSE FALSE FALSE
## [310,] FALSE FALSE FALSE
## [311,] FALSE FALSE FALSE
## [312,] FALSE FALSE FALSE
## [313,] FALSE FALSE FALSE
## [314,] FALSE FALSE FALSE
## [315,] FALSE FALSE FALSE
## [316,] FALSE FALSE FALSE
## [317,] FALSE FALSE FALSE
## [318,] FALSE FALSE FALSE
## [319,] FALSE FALSE FALSE
## [320,] FALSE FALSE FALSE
## [321,] FALSE FALSE FALSE
## [322,] FALSE FALSE FALSE
## [323,] FALSE FALSE FALSE
## [324,] FALSE FALSE FALSE
## [325,] FALSE FALSE FALSE
## [326,] FALSE FALSE FALSE
## [327,] FALSE FALSE FALSE
## [328,] FALSE FALSE FALSE
## [329,] FALSE FALSE FALSE
## [330,] FALSE FALSE FALSE
## [331,] FALSE FALSE FALSE
## [332,] FALSE FALSE FALSE
## [333,] FALSE FALSE FALSE
## [334,] FALSE FALSE FALSE
## [335,] FALSE FALSE FALSE
## [336,] FALSE FALSE FALSE
## [337,] FALSE FALSE FALSE
## [338,] FALSE FALSE FALSE
## [339,] FALSE FALSE FALSE
## [340,] FALSE FALSE FALSE
## [341,] FALSE FALSE FALSE
## [342,] FALSE FALSE FALSE
## [343,] FALSE FALSE FALSE
## [344,] FALSE FALSE FALSE
colSums(is.na(penguins))
## species island bill_length_mm bill_depth_mm
## 0 0 2 2
## flipper_length_mm body_mass_g sex year
## 2 2 11 0
penguenler <- penguins %>%
rename(tur = species,
ada = island,
gaga_uzunlugu = bill_length_mm,
gaga_derinligi = bill_depth_mm,
yuzgec_uzunlugu = flipper_length_mm,
vucut_kutlesi = body_mass_g,
cinsiyet = sex,
yil = year)
penguenlerclean <- na.omit(penguenler)
dim(penguenlerclean)
## [1] 333 8
glimpse(penguenlerclean)
## Rows: 333
## Columns: 8
## $ tur <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adelie…
## $ ada <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgersen,…
## $ gaga_uzunlugu <dbl> 39.1, 39.5, 40.3, 36.7, 39.3, 38.9, 39.2, 41.1, 38.6, …
## $ gaga_derinligi <dbl> 18.7, 17.4, 18.0, 19.3, 20.6, 17.8, 19.6, 17.6, 21.2, …
## $ yuzgec_uzunlugu <int> 181, 186, 195, 193, 190, 181, 195, 182, 191, 198, 185,…
## $ vucut_kutlesi <int> 3750, 3800, 3250, 3450, 3650, 3625, 4675, 3200, 3800, …
## $ cinsiyet <fct> male, female, female, female, male, female, male, fema…
## $ yil <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, …
View(penguenlerclean)
penguenlerclean <- penguenlerclean %>% mutate(bma = vucut_kutlesi / yuzgec_uzunlugu)
##Türlere göre betimsel istatistikler
penguenlerclean1 <- penguenlerclean %>%
group_by(tur) %>%
summarise(ort = mean(bma),
ss = sd(bma),
min = min(bma),
maks = max(bma),
n = n())
glimpse(penguenlerclean1)
## Rows: 3
## Columns: 6
## $ tur <fct> Adelie, Chinstrap, Gentoo
## $ ort <dbl> 19.48037, 19.04376, 23.41415
## $ ss <dbl> 2.179467, 1.598395, 1.881543
## $ min <dbl> 15.15544, 14.06250, 18.99038
## $ maks <dbl> 25.27174, 22.85714, 28.50679
## $ n <int> 146, 68, 119
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.4.3
ggplot(data = penguenlerclean, aes(x = tur, y = bma, fill = tur)) +
geom_boxplot(alpha = 0.8, outlier.shape = 21, outlier.fill = "white", outlier.color = "black") +
labs(title = "Penguen Turlerine Gore Vucut Kutlesi Dagılımı")
Yorum: Kutu grafiğibe bakıldığında gentoo penguenlerin vücut kütlelerinin ortalaması diğerlerine göre daha fazla olduğu görülmektedir.
ggplot(data = penguenlerclean, aes(x = gaga_derinligi, y = gaga_uzunlugu)) +
geom_point(aes(color=tur), size = 2, alpha = 0.7) +
labs(title = "Gaga Uzunluğu ve Derinliği Arası",
x = "Gaga_Uzunluğu (mm)", y = "Gaga Derinliği (mm)") + theme_minimal() +
geom_smooth(method = "lm", se = TRUE, linewidth = 1)
## `geom_smooth()` using formula = 'y ~ x'
Saçılım grafiği incelendiğinde Regresyon çizgisi soldan sağa aşağıya doğru seyretmektedir. Dolayısısıyla genel olarak gaga uzunluğu ile gaga derinliği arasında negatif ilişki olduğu görülebilir. Başka bir deyişle gaga uzunluğu arttıkça gaga derinliği azalmaktadır.
ggplot(penguenlerclean, aes(x = gaga_uzunlugu, y = gaga_derinligi, color = tur)) +
geom_point() +
geom_smooth(method = "lm", se = TRUE) +
facet_wrap(~tur) +
theme_minimal() +
labs(title = "Tur Bazında Gaga Uzunlugu ve Gaga Derinligi İliskisi\n",
x = "\nGaga Uzunlugu",
y = "Gaga Derinligi\n")
## `geom_smooth()` using formula = 'y ~ x'
Grafik incelendiğinde gaga uzunluğu arttıkça gaga derinliğinin de arttığı görülmektedir.
adelie_model <- lm(gaga_derinligi ~ gaga_uzunlugu, data = penguenlerclean %>% filter(tur == "Adelie"))
chinstrap_model <- lm(gaga_derinligi ~ gaga_uzunlugu, data = penguenlerclean %>% filter(tur == "Chinstrap"))
gentoo_model <- lm(gaga_derinligi ~ gaga_uzunlugu, data = penguenlerclean %>% filter(tur == "Gentoo"))
summary(adelie_model)
##
## Call:
## lm(formula = gaga_derinligi ~ gaga_uzunlugu, data = penguenlerclean %>%
## filter(tur == "Adelie"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1487 -0.7926 -0.0842 0.5550 3.4990
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.48771 1.37010 8.385 4.23e-14 ***
## gaga_uzunlugu 0.17668 0.03521 5.018 1.51e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.129 on 144 degrees of freedom
## Multiple R-squared: 0.1489, Adjusted R-squared: 0.1429
## F-statistic: 25.18 on 1 and 144 DF, p-value: 1.515e-06
summary(chinstrap_model)
##
## Call:
## lm(formula = gaga_derinligi ~ gaga_uzunlugu, data = penguenlerclean %>%
## filter(tur == "Chinstrap"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.65742 -0.46033 -0.01862 0.61473 1.69801
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.56914 1.55053 4.882 6.99e-06 ***
## gaga_uzunlugu 0.22221 0.03168 7.015 1.53e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8659 on 66 degrees of freedom
## Multiple R-squared: 0.4271, Adjusted R-squared: 0.4184
## F-statistic: 49.21 on 1 and 66 DF, p-value: 1.526e-09
summary(gentoo_model)
##
## Call:
## lm(formula = gaga_derinligi ~ gaga_uzunlugu, data = penguenlerclean %>%
## filter(tur == "Gentoo"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.57143 -0.52974 -0.04479 0.45417 2.96109
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1210 1.0583 4.839 4.02e-06 ***
## gaga_uzunlugu 0.2076 0.0222 9.352 7.34e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7491 on 117 degrees of freedom
## Multiple R-squared: 0.4277, Adjusted R-squared: 0.4229
## F-statistic: 87.45 on 1 and 117 DF, p-value: 7.337e-16
Regresyon katsayısı (eğim, gaga_uzunlugu için) = 0.22221. Yani gaga_uzunluğu 1 birim arttığında gaga_derinliği ort. 0.222 birim artıyor. Bu katsayı anlamlı: t = 7.015, p = 1.53e-09 (p << 0.001) → istatistiksel olarak güçlü bir ilişki.