df = read.csv("E:\\my\\Demo.csv")
head(df)
##   X id age gender weight height pcfat
## 1 1  1  53      F     49    150  37.3
## 2 2  2  65      M     52    165  16.8
## 3 3  3  64      F     57    157  34.0
## 4 4  4  56      F     53    156  33.8
## 5 5  5  54      M     51    160  14.8
## 6 6  6  52      F     47    153  32.2
NhomA <- c(8, 9, 11, 4, 7, 8, 5)
NhomB <- c(7, 17, 10, 14, 12, 24, 11, 22)
NhomC <- c(28, 21, 26, 11, 24, 19)
NhomD <- c(26, 16, 13, 12, 9, 10, 11, 17, 15)
data <- data.frame(can_nang = c(NhomA, NhomB, NhomC, NhomD), nhom = rep(c("A", "B", "C", "D"), times = c(length(NhomA), length(NhomB), length(NhomC), length(NhomD))))
print(data)
##    can_nang nhom
## 1         8    A
## 2         9    A
## 3        11    A
## 4         4    A
## 5         7    A
## 6         8    A
## 7         5    A
## 8         7    B
## 9        17    B
## 10       10    B
## 11       14    B
## 12       12    B
## 13       24    B
## 14       11    B
## 15       22    B
## 16       28    C
## 17       21    C
## 18       26    C
## 19       11    C
## 20       24    C
## 21       19    C
## 22       26    D
## 23       16    D
## 24       13    D
## 25       12    D
## 26        9    D
## 27       10    D
## 28       11    D
## 29       17    D
## 30       15    D
tapply(data$can_nang, data$nhom, summary)
## $A
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   4.000   6.000   8.000   7.429   8.500  11.000 
## 
## $B
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    7.00   10.75   13.00   14.62   18.25   24.00 
## 
## $C
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    11.0    19.5    22.5    21.5    25.5    28.0 
## 
## $D
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    9.00   11.00   13.00   14.33   16.00   26.00
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data %>% group_by(nhom) %>% summarize(so_luong = n(), trung_binh = mean(can_nang),trung_vi = median(can_nang), do_lech_chuan = sd(can_nang))
## # A tibble: 4 × 5
##   nhom  so_luong trung_binh trung_vi do_lech_chuan
##   <chr>    <int>      <dbl>    <dbl>         <dbl>
## 1 A            7       7.43      8            2.37
## 2 B            8      14.6      13            5.95
## 3 C            6      21.5      22.5          6.09
## 4 D            9      14.3      13            5.15
boxplot(can_nang ~ nhom, data = data,
        main = "Phân phối cân nặng theo 4 nhóm",
        xlab = "Nhóm",
        ylab = "Cân nặng")

library(table1)
## 
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
## 
##     units, units<-
table1(~ weight + height, data = df)
Overall
(N=1217)
weight
Mean (SD) 55.1 (9.40)
Median [Min, Max] 54.0 [34.0, 95.0]
height
Mean (SD) 157 (7.98)
Median [Min, Max] 155 [136, 185]
plot(height ~ weight, data = df)

library(ggplot2)
ggplot(data = df, aes(x = weight, y = height)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

cor.test(df$weight, df$height)
## 
##  Pearson's product-moment correlation
## 
## data:  df$weight and df$height
## t = 25.984, df = 1215, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.5602911 0.6326135
## sample estimates:
##       cor 
## 0.5976667
library(lessR)
## 
## lessR 4.4.5                         feedback: gerbing@pdx.edu 
## --------------------------------------------------------------
## > d <- Read("")  Read data file, many formats available, e.g., Excel
##   d is default data frame, data= in analysis routines optional
## 
## Many examples of reading, writing, and manipulating data, 
## graphics, testing means and proportions, regression, factor analysis,
## customization, forecasting, and aggregation from pivot tables
##   Enter: browseVignettes("lessR")
## 
## View lessR updates, now including time series forecasting
##   Enter: news(package="lessR")
## 
## Interactive data analysis
##   Enter: interact()
## 
## 
## Attaching package: 'lessR'
## 
## The following object is masked from 'package:table1':
## 
##     label
## 
## The following objects are masked from 'package:dplyr':
## 
##     order_by, recode, rename
Plot(height, pcfat, data = df, fit = "lm")

## 
## 
## >>> Suggestions  or  enter: style(suggest=FALSE)
## Plot(height, pcfat, enhance=TRUE)  # many options
## Plot(height, pcfat, fill="skyblue")  # interior fill color of points
## Plot(height, pcfat, MD_cut=6)  # Mahalanobis distance from center > 6 is an outlier 
## 
## 
## >>> Pearson's product-moment correlation 
##  
## Number of paired values with neither missing, n = 1217 
## Sample Correlation of height and pcfat: r = -0.480 
##   
## Hypothesis Test of 0 Correlation:  t = -19.063,  df = 1215,  p-value = 0.000 
## 95% Confidence Interval for Correlation:  -0.522 to -0.435 
##   
## 
##   Line: b0 = 99.311633    b1 = -0.432014    Linear Model MSE = 39.747926   Rsq = 0.230
## 
cor.test(df$weight, df$pcfat)
## 
##  Pearson's product-moment correlation
## 
## data:  df$weight and df$pcfat
## t = 1.9745, df = 1215, p-value = 0.04855
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.0003640405 0.1123913870
## sample estimates:
##        cor 
## 0.05655573
library(gapminder)
data(gapminder)
vn = subset(gapminder, country == "Vietnam")
library(lessR)
Plot(lifeExp, year, data = vn, xlab = "Life expectancy (years)", ylab = "Year")

## 
## >>> Suggestions  or  enter: style(suggest=FALSE)
## Plot(lifeExp, year, enhance=TRUE)  # many options
## Plot(lifeExp, year, color="red")  # exterior edge color of points
## Plot(lifeExp, year, fit="lm", fit_se=c(.90,.99))  # fit line, stnd errors
## Plot(lifeExp, year, out_cut=.10)  # label top 10% from center as outliers 
## 
## 
## >>> Pearson's product-moment correlation 
##  
## Number of paired values with neither missing, n = 12 
## Sample Correlation of lifeExp and year: r = 0.995 
##   
## Hypothesis Test of 0 Correlation:  t = 30.569,  df = 10,  p-value = 0.000 
## 95% Confidence Interval for Correlation:  0.981 to 0.999 
## 
m.1 = lm(lifeExp ~ year, data = vn)
summary(m.1)
## 
## Call:
## lm(formula = lifeExp ~ year, data = vn)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1884 -0.5840  0.1335  0.7396  1.7873 
## 
## Coefficients:
##                Estimate  Std. Error t value        Pr(>|t|)    
## (Intercept) -1271.98315    43.49240  -29.25 0.0000000000510 ***
## year            0.67162     0.02197   30.57 0.0000000000329 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.314 on 10 degrees of freedom
## Multiple R-squared:  0.9894, Adjusted R-squared:  0.9884 
## F-statistic: 934.5 on 1 and 10 DF,  p-value: 0.00000000003289
m.2 = Regression(lifeExp ~ year, data = vn)

m.2
## >>> Suggestion
## # Create an R markdown file for interpretative output with  Rmd = "file_name"
## Regression(my_formula=lifeExp ~ year, data=vn, Rmd="eg")  
## 
## 
##   BACKGROUND 
## 
## Data Frame:  vn 
##  
## Response Variable: lifeExp 
## Predictor Variable: year 
##  
## Number of cases (rows) of data:  12 
## Number of cases retained for analysis:  12 
## 
## 
##   BASIC ANALYSIS 
## 
##               Estimate    Std Err  t-value  p-value    Lower 95%    Upper 95% 
## (Intercept) -1271.9832    43.4924  -29.246    0.000   -1368.8903   -1175.0760 
##        year     0.6716     0.0220   30.569    0.000       0.6227       0.7206 
## 
## Standard deviation of lifeExp: 12.17233 
##  
## Standard deviation of residuals:  1.31365 for df=10 
## 95% range of residuals:  5.85399 = 2 * (2.228 * 1.31365) 
##  
## R-squared: 0.989    Adjusted R-squared: 0.988    PRESS R-squared: 0.984 
## 
## Null hypothesis of all 0 population slope coefficients:
##   F-statistic: 934.455     df: 1 and 10     p-value:  0.000 
## 
## -- Analysis of Variance 
##  
##             df     Sum Sq    Mean Sq   F-value   p-value 
## Model        1  1612.5653  1612.5653  934.4554     0.000 
## Residuals   10    17.2567     1.7257 
## lifeExp     11  1629.8221   148.1656 
## 
## 
##   K-FOLD CROSS-VALIDATION 
## 
## 
##   RELATIONS AMONG THE VARIABLES 
## 
##           lifeExp year 
##   lifeExp    1.00 0.99 
##      year    0.99 1.00 
## 
## 
##   RESIDUALS AND INFLUENCE 
## 
## -- Data, Fitted, Residual, Studentized Residual, Dffits, Cook's Distance 
##    [sorted by Cook's Distance] 
##    [n_res_rows = 12, out of 12 ] 
## ------------------------------------------------------------- 
##           year lifeExp  fitted   resid  rstdnt  dffits  cooks 
##   12      2007 74.2490 75.9489 -1.6999 -1.6742 -1.0827 0.4965 
##    1      1952 40.4120 39.0101  1.4019  1.3167  0.8515 0.3377 
##    5      1972 50.2540 52.4424 -2.1884 -2.0016 -0.6637 0.1694 
##    9      1992 67.6620 65.8747  1.7873  1.5563  0.5937 0.1543 
##   10      1997 70.6720 69.2328  1.4392  1.2327  0.5559 0.1469 
##    4      1967 47.8380 49.0843 -1.2463 -1.0172 -0.3880 0.0750 
##    2      1957 42.8870 42.3682  0.5188  0.4300  0.2316 0.0292 
##   11      2002 73.0170 72.5908  0.4262  0.3520  0.1896 0.0197 
##    3      1962 45.3630 45.7262 -0.3632 -0.2891 -0.1304 0.0094 
##    7      1982 58.8160 59.1585 -0.3425 -0.2596 -0.0792 0.0035 
##    8      1987 62.8200 62.5166  0.3034  0.2315  0.0768 0.0032 
##    6      1977 55.7640 55.8005 -0.0365 -0.0275 -0.0084 0.0000 
## 
## 
##   PREDICTION ERROR 
## 
## -- Data, Predicted, Standard Error of Prediction, 95% Prediction Intervals 
##    [sorted by lower bound of prediction interval] 
##  ---------------------------------------------- 
## 
##           year lifeExp    pred s_pred  pi.lwr  pi.upr  width 
##    1      1952 40.4120 39.0101 1.4948 35.6794 42.3408 6.6614 
##    2      1957 42.8870 42.3682 1.4539 39.1286 45.6077 6.4790 
##    3      1962 45.3630 45.7262 1.4203 42.5616 48.8909 6.3293 
##    4      1967 47.8380 49.0843 1.3946 45.9770 52.1917 6.2147 
##    5      1972 50.2540 52.4424 1.3772 49.3738 55.5109 6.1371 
##    6      1977 55.7640 55.8005 1.3684 52.7515 58.8494 6.0979 
##    7      1982 58.8160 59.1585 1.3684 56.1096 62.2075 6.0979 
##    8      1987 62.8200 62.5166 1.3772 59.4481 65.5852 6.1371 
##    9      1992 67.6620 65.8747 1.3946 62.7673 68.9820 6.2147 
##   10      1997 70.6720 69.2328 1.4203 66.0681 72.3974 6.3293 
##   11      2002 73.0170 72.5908 1.4539 69.3513 75.8304 6.4790 
##   12      2007 74.2490 75.9489 1.4948 72.6182 79.2796 6.6614 
## 
## ---------------------------------- 
## Plot 1: Distribution of Residuals 
## Plot 2: Residuals vs Fitted Values 
## ----------------------------------
par(mfrow = c(2, 2))
plot(m.1)

library(ggfortify)
autoplot(m.1)

lifeExp = -1271.98 + 0.67*year

year <- c(1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007)
lifeExp <- c(40.4, 42.9, 45.4, 47.8, 50.3, 55.8, 58.8, 62.8, 67.7, 70.7, 73.0, 74.2)
data <- data.frame(year, lifeExp)
print(data)
##    year lifeExp
## 1  1952    40.4
## 2  1957    42.9
## 3  1962    45.4
## 4  1967    47.8
## 5  1972    50.3
## 6  1977    55.8
## 7  1982    58.8
## 8  1987    62.8
## 9  1992    67.7
## 10 1997    70.7
## 11 2002    73.0
## 12 2007    74.2
summary(data$lifeExp)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   40.40   47.20   57.30   57.48   68.45   74.20
plot(year, lifeExp, 
type = "b", pch = 19, col = "blue",
main = "Gia tăng tuổi thọ theo thời gian (1952–2007)",
xlab = "Năm", ylab = "Tuổi thọ trung bình (năm)")

model <- lm(lifeExp ~ year, data = data)
summary(model)
## 
## Call:
## lm(formula = lifeExp ~ year, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1494 -0.5944  0.1387  0.7324  1.8268 
## 
## Coefficients:
##                Estimate  Std. Error t value        Pr(>|t|)    
## (Intercept) -1271.13492    43.77173  -29.04 0.0000000000547 ***
## year            0.67119     0.02211   30.35 0.0000000000353 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.322 on 10 degrees of freedom
## Multiple R-squared:  0.9893, Adjusted R-squared:  0.9882 
## F-statistic: 921.4 on 1 and 10 DF,  p-value: 0.00000000003527
increase_per_year <- coef(model)[2]
cat("Tuổi thọ tăng trung bình mỗi năm:", round(increase_per_year, 3), "năm/năm\n")
## Tuổi thọ tăng trung bình mỗi năm: 0.671 năm/năm
predict(model, newdata = data.frame(year = 2012))
##        1 
## 79.29697
Y  = c(12.1, 11.9, 10.2, 8.0, 7.7, 5.3, 7.9, 7.8, 5.5, 2.6)
X1 = c(0,  1,  2,  3,  4, 5, 6,  7,  8,  9)
X2 = c(7,  4,  4,  6,  4, 2, 1,  1,  1,  0)
df = data.frame(Y, X1, X2)
dim(df)
## [1] 10  3
head(df)
##      Y X1 X2
## 1 12.1  0  7
## 2 11.9  1  4
## 3 10.2  2  4
## 4  8.0  3  6
## 5  7.7  4  4
## 6  5.3  5  2
m.3 = lm(Y ~ X1, data = df)
summary(m.3)
## 
## Call:
## lm(formula = Y ~ X1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1606 -1.0735  0.1742  0.8621  2.0970 
## 
## Coefficients:
##             Estimate Std. Error t value    Pr(>|t|)    
## (Intercept)  11.8545     0.8283  14.312 0.000000554 ***
## X1           -0.8788     0.1552  -5.664    0.000474 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.409 on 8 degrees of freedom
## Multiple R-squared:  0.8004, Adjusted R-squared:  0.7755 
## F-statistic: 32.08 on 1 and 8 DF,  p-value: 0.0004737
m.4 = lm(Y ~ X2, data = df)
summary(m.4)
## 
## Call:
## lm(formula = Y ~ X2, data = df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.702 -1.533 -0.034  1.667  3.066 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   5.0980     1.1222   4.543  0.00189 **
## X2            0.9340     0.2999   3.114  0.01436 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.121 on 8 degrees of freedom
## Multiple R-squared:  0.548,  Adjusted R-squared:  0.4915 
## F-statistic: 9.698 on 1 and 8 DF,  p-value: 0.01436
m.5 = lm(Y ~ X1 + X2, data = df)
summary(m.5)
## 
## Call:
## lm(formula = Y ~ X1 + X2, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.46078 -0.33384  0.00026  0.81856  1.98476 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  14.7076     2.9785   4.938  0.00168 **
## X1           -1.2042     0.3614  -3.332  0.01255 * 
## X2           -0.4629     0.4642  -0.997  0.35187   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.41 on 7 degrees of freedom
## Multiple R-squared:  0.8252, Adjusted R-squared:  0.7753 
## F-statistic: 16.53 on 2 and 7 DF,  p-value: 0.002232