# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("MSFT", "NFLX", "META", "AMZN", "AAPL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "META" "MSFT" "NFLX"
# weights
weights <- c(0.15, 0.25, 0.2, 0.3, 0.1)
weights
## [1] 0.15 0.25 0.20 0.30 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.15
## 2 AMZN 0.25
## 3 META 0.2
## 4 MSFT 0.3
## 5 NFLX 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 154 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0873
## 2 2013-02-28 -0.0114
## 3 2013-03-28 -0.000877
## 4 2013-04-30 0.0613
## 5 2013-05-31 0.0143
## 6 2013-06-28 -0.0169
## 7 2013-07-31 0.109
## 8 2013-08-30 0.0491
## 9 2013-09-30 0.0701
## 10 2013-10-31 0.0746
## # ℹ 144 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.381
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 AAPL -0.292
## 2 AMZN -0.0902
## 3 META -0.401
## 4 MSFT 0.0146
## 5 NFLX -0.628
## 6 Portfolio -0.383
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
geom_text(aes(label = asset),
vjust = 1.5, # Nudges labels down
hjust = 0.5, # Centers labels horizontally
size = 4) # Sets text size
# Assign a value for window
window = 24
# Transform data: calculate 24 months rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = ("kurt")) %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(
x = NULL,
y = "Kurtosis",
title = paste0("Rolling ", window, " Month Kurtosis"))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
Answer: The skewness of my portfolio is at around -0.39, telling me that it has a slightly negatively skewed distribution. Since 2012-12-31, the portfolio’s kurtosis has fluctuated from -1.0 to 0.75 indicating the the portfolio has been susceptible to occasional, albeit infrequent, large losses within this timeframe. From what I’ve read, a mostly negative kurtosis is called “Platykurtic” and is representative of significantly fewer gains/losses depending on the portfolio’s overall skewness.