A = c(8, 9, 11, 4, 7, 8, 5)
B = c(7, 17, 10, 14, 12, 24, 11, 22)
C = c(28, 21, 26, 11, 24, 19)
D = c(26, 16, 13, 12, 9, 10, 11, 17, 15)
x = c(A, B, C, D)
group = c(rep("A", 7), rep("B", 8), rep("C", 6),rep("D", 9))
data = data.frame(x, group)
data
## x group
## 1 8 A
## 2 9 A
## 3 11 A
## 4 4 A
## 5 7 A
## 6 8 A
## 7 5 A
## 8 7 B
## 9 17 B
## 10 10 B
## 11 14 B
## 12 12 B
## 13 24 B
## 14 11 B
## 15 22 B
## 16 28 C
## 17 21 C
## 18 26 C
## 19 11 C
## 20 24 C
## 21 19 C
## 22 26 D
## 23 16 D
## 24 13 D
## 25 12 D
## 26 9 D
## 27 10 D
## 28 11 D
## 29 17 D
## 30 15 D
av = aov(x ~ group)
summary(av)
## Df Sum Sq Mean Sq F value Pr(>F)
## group 3 642.3 214.09 8.197 0.000528 ***
## Residuals 26 679.1 26.12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
av = aov(x ~ group)
TukeyHSD(av)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = x ~ group)
##
## $group
## diff lwr upr p adj
## B-A 7.1964286 -0.05969765 14.4525548 0.0525014
## C-A 14.0714286 6.27132726 21.8715299 0.0002134
## D-A 6.9047619 -0.16073856 13.9702624 0.0571911
## C-B 6.8750000 -0.69675602 14.4467560 0.0850381
## D-B -0.2916667 -7.10424368 6.5209103 0.9994049
## D-C -7.1666667 -14.55594392 0.2226106 0.0597131
plot(TukeyHSD(av), las=2 , col="brown")
## Cách vẽ đồ thị
k = 1:100
alpha0.05 = 1-(1-0.05)^k
alpha0.01 = 1-(1-0.01)^k
alpha0.001 = 1-(1-0.001)^k
k = c(1:100, 1:100, 1:100)
alpha = c(alpha0.05, alpha0.01, alpha0.001)
P.value = c(rep(0.05, 100), rep(0.01, 100), rep(0.001, 100))
dat = data.frame(alpha, k, P.value)
library(ggplot2)
p = ggplot(data=dat, aes(x=k, y=alpha, col=factor(P.value))) + geom_line()
p + scale_y_continuous(breaks=seq(0, 1, 0.05)) +
scale_x_continuous(breaks=seq(0, 100, 10)) + theme(legend.position="top") +
labs(x="Số lần kiểm định giả thuyết", y="Xác suất phát hiện ít nhất 1 kết
quả significant")